ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

還元

索引 還元

還元(かんげん、英:reduction)とは、対象とする物質が電子を受け取る化学反応のこと。または、原子の形式酸化数が小さくなる化学反応のこと。具体的には、物質から酸素が奪われる反応、あるいは、物質が水素と化合する反応等が相当する。 目的化学物質を還元する為に使用する試薬、原料を還元剤と呼ぶ。一般的に還元剤と呼ばれる物質はあるが、反応における還元と酸化との役割は物質間で相対的である為、実際に還元剤として働くかどうかは、反応させる相手の物質による。 還元反応が工業的に用いられる例としては、製鉄(原料の酸化鉄を還元して鉄にする)などを始めとする金属の製錬が挙げられる。また、有機合成においても、多くの種類の還元反応が工業規模で実施されている。.

101 関係: 単結合塩化スズ(II)塩酸三重結合二重結合二酸化硫黄亜鉛化学反応チオアセタールバーチ還元メチレン基メールワイン・ポンドルフ・バーレー還元ヨウ化カリウムラネー合金リンドラー触媒ルテニウムロジウムトランス (化学)トリブチルスズパラジウムヒドラジンヒドリド還元テルミット法テトラヒドロフランフラビンアデニンジヌクレオチドニッケルニトリルニトロ化合物ニコチンアミドアデニンジヌクレオチドホスフィンベンジル基アミンアマルガムアルミニウムアルミニウムイソプロポキシドアルデヒドアルカンアルコールアンモニアアート錯体アダムス触媒アセタールアゾビスイソブチロニトリルイミンウィルキンソン触媒ウォルフ・キッシュナー還元エポキシドエーテル (化学)エステルカルボン酸...カルボニル基キラリティークレメンゼン還元ケトンシュウ酸シアノ水素化ホウ素ナトリウムジボランジエチルエーテルスズセリウムBINAP珪藻土硫化水素硫黄硫酸鉄(II)窒素立体選択性第1族元素白金芳香族化合物過酸化水素製錬触媒計算複雑性理論配位子酸化酸化アルミニウム酸化クロム酸化還元反応酸化鉄酸化数酸素酵素鉱石電子電気分解水素水素化水素化トリエチルホウ素リチウム水素化ホウ素ナトリウム水素化アルミニウムリチウム水素化ジイソブチルアルミニウム水酸化カリウム活性炭溶媒有機合成化学有機電子論2-プロパノール インデックスを展開 (51 もっと) »

単結合

共有結合における単結合は通常、σ結合(シグマ結合)と呼ばれる結合でできている。 詳しい議論には、量子化学の知識が必要である。.

新しい!!: 還元と単結合 · 続きを見る »

塩化スズ(II)

塩化スズ(II)(えんかスズ、tin(II) chloride または stannous chloride)は、化学式 SnCl2 で表される+2価のスズの塩化物で、無水物、2水和物がある。無水物は常温常圧において無色〜白色の結晶性粉末で、潮解性がある。2水和物は常圧において融点 37.7 ℃ の白色結晶で強力な還元剤であり、酸化剤や強塩基と激しく反応する。硝酸塩とは非常に激しく反応し、爆発の危険がある。空気中の酸素と反応して不溶性のオキシ塩化物を生じる。水、メタノール、エタノール、酢酸、酒石酸などに可溶。.

新しい!!: 還元と塩化スズ(II) · 続きを見る »

塩酸

塩酸(えんさん、hydrochloric acid)は、塩化水素(化学式HCl)の水溶液。代表的な酸のひとつで、強い酸性を示す。.

新しい!!: 還元と塩酸 · 続きを見る »

三重結合

化学における三重結合(さんじゅうけつごう、triple bond)は、通常の単結合での2つの電子の代わりに6つの結合電子が関与する、2元素間の化学結合である。最も一般的な三重結合は、炭素-炭素間の結合であり、アルキンで見ることができる。その他の三重結合を含む官能基は、シアニドやイソシアニドである。二窒素や一酸化炭素といったいくつかの二原子分子も三重結合を持つ。構造式では、三重結合は2つの結合原子間の3本の平行線として描かれる。 三重結合は、単結合や二重結合よりも強く、短い。結合次数は3である。.

新しい!!: 還元と三重結合 · 続きを見る »

二重結合

二重結合(にじゅうけつごう、double bond)は、通常2つの代わりに4つの結合電子が関与する、2元素間の化学結合である。最も一般的な二重結合は、2炭素原子間のものでアルケンで見られる。2つの異なる元素間の二重結合には多くの種類が存在する。例えばカルボニル基は炭素原子と酸素原子間の二重結合を含む。その他の一般的な二重結合は、アゾ化合物 (N.

新しい!!: 還元と二重結合 · 続きを見る »

二酸化硫黄

二酸化硫黄(にさんかいおう、Sulfur Dioxide)は、化学式SO2の無機化合物である。刺激臭を有する気体で、別名亜硫酸ガス。化石燃料の燃焼などで大量に排出される硫黄酸化物の一種であり、きちんとした処理を行わない排出ガスは大気汚染や環境問題の一因となる。 二酸化硫黄は火山活動や工業活動により産出される。石炭や石油は多量の硫黄化合物を含んでおり、この硫黄化合物が燃焼することで発生する。火山活動でも発生する。二酸化硫黄は二酸化窒素などの存在下で酸化され硫酸となり、酸性雨の原因となる。.

新しい!!: 還元と二酸化硫黄 · 続きを見る »

亜鉛

亜鉛(あえん、zinc、zincum)は原子番号30の金属元素。元素記号は Zn。亜鉛族元素の一つ。安定な結晶構造は、六方最密充填構造 (HCP) の金属。必須ミネラル(無機質)16種の一つ。.

新しい!!: 還元と亜鉛 · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

新しい!!: 還元と化学反応 · 続きを見る »

チオアセタール

チオアセタール(thioacetal)はアセタールの硫黄アナログである。モノチオアセタールとジチオアセタールの2種類がある。モノチオアセタールはまれであり、官能基RC(OR')(SR")Hを持つ。ジチオアセタールは化学式RC(SR')2H(対称ジチオアセタール)および RC(SR')(SR")H(非対称ジチオアセタール)を持つ。 対称ジチオアセタールが比較的よく見られる。これらはアルデヒドとチオールまたはジチオールとの縮合によって調製される。これらの反応はヘミチオアセタール中間体を経て進行する。.

新しい!!: 還元とチオアセタール · 続きを見る »

バーチ還元

バーチ還元(バーチかんげん、Birch reduction)は、液体アンモニア中で金属を用いて行なう還元反応のことである。 1944年にアーサー・ジョン・バーチによって報告された。 金属の溶解によって発生する溶媒和電子による還元反応であるため、他の還元反応とはかなり反応の特性が異なる。 特に重要なのは他の反応では困難なベンゼン環の部分還元が可能であり、1,4-シクロヘキサジエンを得ることができる点である。 一般的な反応式は次のように表される。官能基の性質により水素が付加する位置が異なる。.

新しい!!: 還元とバーチ還元 · 続きを見る »

メチレン基

メチレン基(メチレンき、methylene group)とは、有機化学における2価の基の一種。メタンから水素が2個取り除かれた構造にあたる。.

新しい!!: 還元とメチレン基 · 続きを見る »

メールワイン・ポンドルフ・バーレー還元

メールワイン・ポンドルフ・バーレー還元(-かんげん、Meerwein‐Ponndorf‐Verley reduction)は、ケトンまたはアルデヒドのカルボニル基のみを選択的に還元しアルコール体を与える反応である。メールワイン・ポンドルフ還元と呼ばれる場合もある。1920年代に、Meerwein、Ponndorf、Verley らによってそれぞれ独自に報告された。MPV還元と略称される。 この反応は、Lewis酸性を持つ、アルミニウムイソプロポキシドと反応物のカルボニル体とが6員環遷移状態を経由して、イソプロポキシドからヒドリド転位が生じることで還元反応が進行する。一連の過程は可逆反応であり、この反応機構でアルコールからカルボニルへと酸化する反応はオッペナウアー酸化として知られている。6員環遷移状態を経由するヒドリド転位反応である為、形式的にはヒドリド還元であるが、炭素二重結合、エステル基、ニトロ基、ハロゲン基を還元せず選択的にケトンあるいはアルデヒドを温和な条件でアルコール体へと還元できる。また、本反応にはカルボニル構造をとることが必須であり、ケト-エノール互変異性によりエノール体が優位なカルボニル化合物では反応がうまく進行しないことが知られている。 金属アルコキシドとしては、アルミニウムイソプロポキシドが利用されるが、ジルコニウムアルコキシド、ランタノイドアルコキシドを本反応に適用した例が知られている。 アルミニウムイソプロポキシドを利用する場合は、アルコキシドの交換が生じるのでイソプロパノール溶媒中で反応させ、穏やかに加熱して、生成するアセトンを反応系外へ留去する。生成したアルコールはアルミニウムアルコキシドとなっているので、無機酸で処理することで目的のアルコール体を得る。 アルミニウムイソプロポキシドを用いた非対称ケトンを本反応に適用すると、ラセミ体のアルコール体が得られる。しかし、この反応は6員環遷移状態を経由するので、嵩高い金属錯体を利用することで、エナンチオ面選択的に反応を進行させることもできる。光学活性なサマリウム錯体を利用して高エナンチオマー選択的にカルボニルを還元する方法も報告されている。.

新しい!!: 還元とメールワイン・ポンドルフ・バーレー還元 · 続きを見る »

ヨウ化カリウム

ヨウ化カリウム(ヨウかカリウム、Potassium Iodide)は、カリウムとヨウ素からなる無機化合物。化学式 KI、式量 166.00で、潮解性を持つ無色の固体。 水酸化カリウムとヨウ化水素酸の反応によって得ることができる。水溶液中では電離してヨウ化物イオンとカリウムイオンになっている。硫酸の存在でヨウ素が遊離するので、この性質を用いて滴定反応に広く用いられる。極性溶媒に容易に溶ける。工業的にはヨウ化化合物を作るための材料として用いられる。また、水には溶けにくいヨウ素がヨウ化カリウム水溶液には三ヨウ化物イオン(I3−)となって溶解し、ヨウ素ヨウ化カリウム溶液となる。この溶液はヨウ素液と通称され、ヨウ素デンプン反応を起こす。 また、空気酸化と光によって徐々にヨウ素が遊離し、黒ずむので、遮光の上、密栓して保存する。.

新しい!!: 還元とヨウ化カリウム · 続きを見る »

ラネー合金

ラネー合金(ラネーごうきん、Raney Alloy)は、ある反応に対して触媒活性を有する金属と、その金属が溶解しない酸やアルカリで溶解除去される金属との合金である。1925年にアメリカの技術者マレイ・ラネー (Murray Raney) によって考案された。.

新しい!!: 還元とラネー合金 · 続きを見る »

リンドラー触媒

リンドラー触媒(りんどらーしょくばい、Lindlar's catalyst)とは、触媒作用を減弱させた不均一系パラジウム触媒である。触媒作用を減弱させるために触媒毒となる物質を添加する事を「触媒を被毒する」と言い表す。 リンドラー触媒は狭義には炭酸カルシウムに担持したパラジウムを酢酸鉛(II)で被毒したものを指すが、担体自体が被毒性を持つ炭酸バリウムにパラジウム、プラチナ、ニッケルなどを担持させた不均一系触媒も広義にはリンドラー触媒と呼ばれる。 アルキンに対する不均一系触媒による接触水素化反応は、水素が同じ側から付加するsyn付加の為、得られるアルケンはZ体(シス体)となる。しかし生成したアルケンも接触水素化反応を受ける為、消費される水素量を制御することでアルケンを選択的に得ることはパラジウム-活性炭などの一般的な不均一系触媒では困難である。 一方、リンドラー触媒では被毒により触媒作用が減弱している為、アルキンに対する反応性は残存しているものの、アルケンへの水素付加は極めて遅い。したがって、リンドラー触媒を用いて消費される水素量を制御することでアルキンからアルケンを選択的に得ることが可能になる。しかしアルキン選択性を持つわけではないので、ニトロ基などアルキンよりも接触水素化反応への感受性の高い基が存在すれば、そちらも接触水素化反応を受ける。 リンドラー触媒は不均一系触媒を製造する方法に準じて製造される。すなわち塩化パラジウム等を含む水溶液に担体を懸濁させ水素ガス攪拌吸収させて担体上に金属パラジウムを析出させた後、担体が被毒作用を持たなければ、適宜被毒物質を添加して製造する。この際酸成分が残存すると触媒作用が増強されるため、アルカリで処理して酸性分が残存しないようにしたり、反応系中が酸性化しないように考慮する必要もある。あるいは調製済みのリンドラー触媒が多数の試薬メーカーから提供されているので必ずしも用時調製の必要はない。.

新しい!!: 還元とリンドラー触媒 · 続きを見る »

ルテニウム

ルテニウム(ruthenium)は原子番号44の元素。元素記号は Ru。漢字では釕(かねへんに了)と表記される。白金族元素の1つ。貴金属にも分類される。銀白色の硬くて脆い金属(遷移金属)で、比重は12.43、融点は2500 、沸点は4100 (融点、沸点とも異なる実験値あり)。常温、常圧で安定な結晶構造は、六方最密充填構造 (HCP)。酸化力のある酸に溶ける。王水とはゆっくり反応。希少金属である。.

新しい!!: 還元とルテニウム · 続きを見る »

ロジウム

ウム(rhodium)は原子番号45の元素。元素記号は Rh。白金族元素の1つ。貴金属にも分類される。銀白色の金属(遷移金属)で、比重は12.5 (12.4)、融点は1966 、沸点は3960 (融点、沸点とも異なる実験値あり)。常温、常圧で安定な結晶構造は面心立方構造。加熱下において酸化力のある酸に溶ける。王水には難溶。高温でハロゲン元素と反応。高温で酸化されるが、更に高温になると再び単体へ分離する。酸化数は-1価から+6価までをとり得る。レアメタルである。.

新しい!!: 還元とロジウム · 続きを見る »

トランス (化学)

トランス (trans) とは、有機化合物や無機化合物の立体化学について、2個の置換基の位置関係を示す用語のひとつで、「シス」(cis) との対として用いられる。ほか、いくつかの化学用語で接頭語とされている。.

新しい!!: 還元とトランス (化学) · 続きを見る »

トリブチルスズ

トリブチルスズ (tributyltin または tributylstannane) とは、示性式が (n-C4H9)3SnH と表される有機スズ化合物。トリ-n-ブチルスズ もしくは 水素化トリブチルスズ(すいそかトリブチルスズ、tributyltin hydride)とも呼ばれ、TBT と略称される。有機合成においてラジカル的還元剤として用いられる。 かつては酸化物である酸化トリブチルスズ、(n-C4H9)3Sn-O-Sn(n-C4H9)3 とともに貝やフジツボや海藻の付着を防ぐ目的で船底や魚網の塗料に加えられていたが、貝のオス化など海洋生物に悪影響を与えることが判明した。現在、これらの化合物はロッテルダム条約の適用内と考えられていて、国際海事機関 (IMO) により使用が禁止されている。.

新しい!!: 還元とトリブチルスズ · 続きを見る »

パラジウム

パラジウム(palladium)は原子番号46の元素。元素記号は Pd。白金族元素の1つ。貴金属にも分類される。 常温、常圧で安定な結晶構造は、面心立方構造 (FCC)。銀白色の金属(遷移金属)で、比重は12.0、融点は1555 (実験条件等により若干値が異なることあり)。酸化力のある酸(硝酸など)には溶ける。希少金属の1つ。.

新しい!!: 還元とパラジウム · 続きを見る »

ヒドラジン

ヒドラジン (hydrazine) は、無機化合物の一種で、分子式 N2H4と表される弱塩基。 アンモニアに似た刺激臭を持つ無色の液体で、空気に触れると白煙を生じる。水に易溶。強い還元性を持ち、分解しやすい。引火性があり、ロケットや航空機の燃料として用いられる。 常温での保存が可能であるため、F-16戦闘機の非常用電源装置(EPU)やロシアなどのミサイルの燃料としても広く用いられており、また人工衛星や宇宙探査機の姿勢制御用推進器の燃料としても使われている。プラスチック成形時の発泡剤、エアバッグ起爆剤、各種脱酸素剤として広く使用され、特に火力・原子力発電所用高圧ボイラーの防食剤として使用されている。水加ヒドラジンは水素に代わる燃料電池の燃料としても模索されている。 だが人体へは、気化吸引、皮膚への接触ともに腐食をもたらす。また中毒症状をおこす。「毒物及び劇物取締法」により毒物に指定されている。 水と共沸し、55 mol%のヒドラジンを含む混合物を与える。化学実験で用いる際は通常、抱水ヒドラジン(ヒドラジン一水和物、N2H4•H2O)が用いられる。.

新しい!!: 還元とヒドラジン · 続きを見る »

ヒドリド還元

ヒドリド還元(ヒドリドかんげん、hydride reduction)とは、化合物の還元を求核剤としての水素供与体により行う還元反応のことである。 ヒドリド還元に属する反応の範囲は用いる文脈や人によって揺れが見られる。例えば「水素化ジイソブチルアルミニウムによるエポキシドの還元は、ヒドリド還元とは位置選択性が異なる。」というような使い方がされることがある。 同じアルミニウムの水素化物を用いる反応であっても、水素化アルミニウムリチウムと水素化ジイソブチルアルミニウムでは反応機構が異なるためこの二つを区別しているのである。 一方で、水素化トリブチルスズによるハロゲン化物の還元のように、実際にはヒドリドではなくラジカル的な還元反応であっても、形式的にヒドリド還元と見なせることからヒドリド還元の範疇に含む場合もある。 このようにヒドリド還元に含まれる反応は多岐に渡る。.

新しい!!: 還元とヒドリド還元 · 続きを見る »

テルミット法

テルミット法(テルミットほう、thermite process)とは金属アルミニウムで金属酸化物を還元する冶金法の総称である。ギリシャ語の(therm - 熱)に由来する。別称としてテルミット反応、アルミノテルミー法 (aluminothermy process) とも呼ばれる。また、この方法はハンス・ゴルトシュミット(:en:Hans Goldschmidt)により発明されたのでゴルトシュミット法とも呼ばれる。.

新しい!!: 還元とテルミット法 · 続きを見る »

テトラヒドロフラン

テトラヒドロフラン(、THF)は、飽和の5員環に酸素を1つ含んだ環状エーテル化合物である。常温・常圧では芳香を持つ無色の液体である。別名テトラメチレンオキシド、オキソラン、オキサシクロペンタン。.

新しい!!: 還元とテトラヒドロフラン · 続きを見る »

フラビンアデニンジヌクレオチド

フラビンアデニンジヌクレオチド(flavin adenine dinucleotide、FAD)は、いくつかの代謝反応に必要な酸化還元反応の補因子である。FADには2種の酸化還元状態が存在し、それらの生化学的役割は2種の間で変化する。FADは還元されることによって2原子の水素を受容し、FADH2となる。 FADH2はエネルギーキャリアであり、還元された補酵素はミトコンドリアでの酸化的リン酸化の基質として使われる。FADH2は酸化されてFADとなり、これは一般的なエネルギーキャリアのATPを2分子作ることが可能である。真核生物の代謝でのFADの一次供給源はクエン酸回路とβ酸化である。クエン酸回路では、FADはコハク酸をフマル酸に酸化するコハク酸デヒドロゲナーゼの補欠分子族である。一方、β酸化ではアシルCoAデヒドロゲナーゼの酵素反応の補酵素として機能する。 FADはリボフラビン(ビタミンB2)から誘導される。いくつかの酸化還元酵素はフラボ酵素またはフラビンタンパク質(フラボプロテイン)と呼ばれ、電子移動において機能する補欠分子族としてFADを要する。 Category:フラビン Category:ヌクレオチド Category:補因子.

新しい!!: 還元とフラビンアデニンジヌクレオチド · 続きを見る »

ニッケル

ニッケル (nikkel, nickel, niccolum) は、原子番号28の金属元素である。元素記号は Ni。 地殻中の存在比は約105 ppmと推定されそれほど多いわけではないが、鉄隕石中には数%含まれる。特に 62Ni の1核子当たりの結合エネルギーが全原子中で最大であるなどの点から、鉄と共に最も安定な元素である。岩石惑星を構成する元素として比較的多量に存在し、地球中心部の核にも数%含まれると推定されている。.

新しい!!: 還元とニッケル · 続きを見る »

ニトリル

ニトリル (nitrile) は R−C≡N で表される構造を持つ有機化合物の総称である。カルボン酸やその誘導体と、炭素の酸化数において同等とされる。なお、手袋などの家庭用品によく使われるニトリルは、ニトリルゴム(ブタジエンアクリロニトリル共重合体)のことである。.

新しい!!: 還元とニトリル · 続きを見る »

ニトロ化合物

ニトロ化合物(ニトロかごうぶつ)とは R−NO2 構造を有する有機化合物である。特性基となっている1価の置換基 −NO2 は ニトロ基 と呼ばれる。単にニトロ化合物という場合は、Rが炭素置換基であるものをさす。広義には硝酸エステル (R'−ONO2) も含める場合がある(この場合の −ONO2 はニトロ基とは呼ばれない)。Rが窒素置換基の場合はニトラミンと呼ばれる (R'RN−NO2)。 また、ニトロ基 −NO2 を化合物に導入することをニトロ化と呼ぶ。生体内においても、一酸化窒素から生じる活性窒素種がタンパク質、脂質、核酸をニトロ化する事が知られている。その結果、ニトロ化された生体物質の機能が傷害されたり変化したりする。.

新しい!!: 還元とニトロ化合物 · 続きを見る »

ニコチンアミドアデニンジヌクレオチド

ニコチンアミドアデニンジヌクレオチド (nicotinamide adenine dinucleotide) とは、全ての真核生物と多くの古細菌、真正細菌で用いられる電子伝達体である。さまざまな脱水素酵素の補酵素として機能し、酸化型 (NAD) および還元型 (NADH) の2つの状態を取り得る。二電子還元を受けるが、中間型は生じない。略号であるNAD(あるいはNADでも同じ)のほうが論文や口頭でも良く使用されている。またNADH2とする人もいるが間違いではない。 かつては、ジホスホピリジンヌクレオチド (DPN)、補酵素I、コエンザイムI、コデヒドロゲナーゼIなどと呼ばれていたが、NADに統一されている。別名、ニコチン酸アミドアデニンジヌクレオチドなど。.

新しい!!: 還元とニコチンアミドアデニンジヌクレオチド · 続きを見る »

ホスフィン

ホスフィン (phosphine) は分子式 PH3 で表される無機化合物。リン化水素(リンかすいそ、hydrogen phosphide)、水素化リン (phosphorus hydride)とも呼ばれる。IUPAC組織名はホスファン (phosphane) である。「ホスフィン」は PH3 を母化合物とする有機化合物 R3P の総称でもある。 ホスフィンは半導体製造のドーピングガスの原料であり、ケイ素をn形にする場合や、InGaP(インジウムガリウムリン)などといった半導体を製造するときにも用いる。 常温では無色腐魚臭の可燃性気体で、常温の空気中で自然発火する。極めて毒性が強く(許容量 0.3 ppm)、吸入すると肺水腫や昏睡状態に陥る。融点 -134 ℃、沸点 -87.8 ℃、密度 1.379 g/L (気体, 25 ℃)。日本ではその強い毒性から、毒物及び劇物取締法において、医薬用外毒物の指定を受けている。 アンモニアと同様に強酸性媒体中で水素イオンを受け取りホスホニウムイオン PH4^+ となる塩基としての作用を持つが、アンモニアと比べて弱塩基であり、水溶液中では水分子から水素イオンを受け取り水酸化物イオン OH- を放出する作用は極めて弱い。.

新しい!!: 還元とホスフィン · 続きを見る »

ベンジル基

ベンジル基 ベンジル基 (benzyl group) は有機化学における原子団のひとつで、芳香族アルキル基の一種。トルエン上のメチル基から水素1個が失われた構造にあたる1価の置換基である。構造式は C6H5CH2− と表される。しばしば Bn または Bzl と略記される。 C6H5CH.

新しい!!: 還元とベンジル基 · 続きを見る »

アミン

アミン(amine)とは、アンモニアの水素原子を炭化水素基または芳香族原子団で置換した化合物の総称である。 置換した数が1つであれば第一級アミン、2つであれば第二級アミン、3つであれば第三級アミンという。また、アルキル基が第三級アミンに結合して第四級アンモニウムカチオンとなる。一方アンモニアもアミンに属する。 塩基、配位子として広く利用される。.

新しい!!: 還元とアミン · 続きを見る »

アマルガム

アマルガム(amalgam)は、水銀と他の金属との合金の総称である。 広義では、混合物一般を指す。水銀は他の金属との合金をつくりやすい性質があり、常温で液体になる合金も多い。.

新しい!!: 還元とアマルガム · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

新しい!!: 還元とアルミニウム · 続きを見る »

アルミニウムイソプロポキシド

アルミニウムイソプロポキシド (aluminium isopropoxide) はアルミニウムアルコキシドの一種で、化学式が Al(O-i-Pr)3(i-Pr はイソプロピル基。-CH(CH3)2)と表される白色の固体。有機合成において反応試剤、触媒として用いられる。この化合物の実際の構造は複雑で、さらに結晶化後の時間や、溶媒による変化があることが知られている。.

新しい!!: 還元とアルミニウムイソプロポキシド · 続きを見る »

アルデヒド

最も単純なアルデヒド:ホルムアルデヒド アルデヒド (aldehyde) とは、分子内に、カルボニル炭素に水素原子が一つ置換した構造を有する有機化合物の総称である。カルボニル基とその炭素原子に結合した水素原子および任意の基(-R)から構成されるため、一般式は R-CHO で表される。任意の基(-R)を取り除いた部分をホルミル基(formyl group)、またはアルデヒド基という。アルデヒドとケトンとでは、前者は炭素骨格の終端となるが、ケトンは炭素骨格の中間点となる点で異なる。多くのアルデヒドは特有の臭気を持つ。.

新しい!!: 還元とアルデヒド · 続きを見る »

アルカン

アルカン(、)とは、一般式 で表される鎖式飽和炭化水素である。メタン系炭化水素、パラフィン系炭化水素や脂肪族化合物McMurry(2004)、p.39。とも呼ばれる。炭素数が大きいものはパラフィンとも呼ばれる。アルカンが置換基となった場合、一価の置換基をアルキル基、二価の置換基をアルキレン基と呼ぶ。環状の飽和炭化水素はシクロアルカンと呼ばれる。 IUPACの定義によれば、正式には、環状のもの(シクロアルカン)はアルカンに含まれない。しかし両者の性質がよく似ていることや言葉の逐語訳から、シクロアルカンを「環状アルカン」と称し、本来の意味でのアルカンを「非環状アルカン」と呼ぶことがある。結果的に、あたかも飽和炭化水素全体の別称であるかのように「アルカン」の語が用いられることもあるが、不適切である。 主に石油に含まれ、分留によって取り出される。個別の物理的性質などについてはデータページを参照。生物由来の脂肪油に対して、石油由来のアルカン類を鉱油(mineral oil)と呼ぶ。.

新しい!!: 還元とアルカン · 続きを見る »

アルコール

アルコールの構造。炭素原子は他の炭素原子、または水素原子に結合する。 化学においてのアルコール(alcohol)とは、炭化水素の水素原子をヒドロキシ基 (-OH) で置き換えた物質の総称である。芳香環の水素原子を置換したものはフェノール類と呼ばれ、アルコールと区別される。 最初に「アルコール」として認識された物質はエタノール(酒精)である。この歴史的経緯により、一般的には単に「アルコール」と言えば、エタノールを指す。.

新しい!!: 還元とアルコール · 続きを見る »

アンモニア

アンモニア (ammonia) は分子式が NH_3 で表される無機化合物。常温常圧では無色の気体で、特有の強い刺激臭を持つ。 水に良く溶けるため、水溶液(アンモニア水)として使用されることも多く、化学工業では基礎的な窒素源として重要である。また生体において有毒であるため、重要視される物質である。塩基の程度は水酸化ナトリウムより弱い。 窒素原子上の孤立電子対のはたらきにより、金属錯体の配位子となり、その場合はアンミンと呼ばれる。 名称の由来は、古代エジプトのアモン神殿の近くからアンモニウム塩が産出した事による。ラテン語の sol ammoniacum(アモンの塩)を語源とする。「アモンの塩」が意味する化合物は食塩と尿から合成されていた塩化アンモニウムである。アンモニアを初めて合成したのはジョゼフ・プリーストリー(1774年)である。 共役酸 (NH4+) はアンモニウムイオン、共役塩基 (NH2-) はアミドイオンである。.

新しい!!: 還元とアンモニア · 続きを見る »

アート錯体

アート錯体(アートさくたい、ate complex)とは、ルイス酸性を持つ金属化合物に対して、ルイス塩基が配位したアニオン性の錯イオンのことである。中でも特に有機金属錯体および金属ヒドリド錯体についてこのように呼ぶことが多い。アート錯体の名はアニオン性原子団をIUPAC命名法で命名する際に使用される接尾辞である-ateに由来する。 例えば、ボランBH3はホウ素がエネルギーの低い空軌道を持つためルイス酸性を持つ。これに対して水素化ナトリウムNaHを反応させると、ルイス塩基であるヒドリドイオンがボランに対して配位してアート錯体であるテトラヒドロホウ酸イオン(BH4)-が生成する。 アート錯体は対応するルイス酸に比べて、その金属上のアルキル基や水素原子を他の化合物の求電子性を持つ部位に付加させようとする性質(すなわち求核性)が高い。そのため、求核剤として使用される。例えば、上記の例のボランは炭素-炭素二重結合のような求核性を持つ部位に対してヒドロホウ素化を起こすのに対して、テトラヒドロホウ酸イオンからなる化合物である水素化ホウ素ナトリウムは通常の炭素-炭素二重結合とは反応せず、求電子性を持つカルボニル炭素を還元する性質を持つ。 またアート錯体はその中心金属が過剰に電子を保持している状態であるため、他の化合物を還元することがある。有機銅アート錯体であるギルマン試薬(R2CuLi)はこの性質により、α,β-不飽和カルボニル化合物に対してまず一電子還元を起こした後にアルキル基を付加させる。この一電子還元の過程の存在によってアルキルリチウムやグリニャール試薬のような他の求核性アルキル化剤とは異なり、1,4-付加が優先して起こる独特の反応性を持つ。 Category:錯体化学 Category:有機反応試剤 Category:配位化合物.

新しい!!: 還元とアート錯体 · 続きを見る »

アダムス触媒

アダムス触媒(アダムスしょくばい、Adams' catalyst)は酸化白金とも呼ばれる物質で、酸化白金(IV)水和物(PtO2-H2O)とも表記される。アダムス触媒は有機化学の分野で、水素添加や水素化分解の触媒として利用される。アダムス触媒は暗褐色の粉末で市販品が入手可能である。酸化物の状態では触媒としての活性は持たず、水素と処理して白金黒に変換したものが反応に利用される。.

新しい!!: 還元とアダムス触媒 · 続きを見る »

アセタール

アセタール (acetal) は有機化合物のうち、R3−C(OR1)(OR2)−R4 で表されるエーテルの呼称で、アルデヒドもしくはケトンに酸触媒下でアルコールを縮合させると得られる。 かつてはアルデヒドから得られるものをアセタール、ケトンから得られるものをケタールと呼んで区別していたが、現在はいずれもアセタールと呼ぶことが推奨されている。 アルデヒド、ケトンのアセタール化反応は二段階の可逆反応であり、反応中間体としてヘミアセタール (R1−C(OR')(OH)−R2) が生成する。これは通常は不安定なので直ちに別のアルコールと反応しアセタールとなるか、脱アルコールして元のアルデヒド、ケトンに戻る。しかし強い電子求引性基を持つアルデヒドやケトンをアルコール溶媒に溶解した場合には、ヘミアセタールが安定に生成することがある。 アセタールはアルデヒドやケトンのような求電子性をあまり示さず、またアルコールのような求核性も示さない。そして温和な酸性条件で元のアルデヒドやケトン、ジオールへと戻すことができる。そのため、アルデヒド、ケトン、1,2- または 1,3-ジオールの保護基としてしばしば使用される。特に、ジオールとアセトンが縮合してできる環状アセタールのことをアセトニド (acetonide) と呼ぶ。 「アセタール」はアセトアルデヒドジエチルアセタール ((CH3CH2O)2CHCH3) の慣用名でもある。 アセタール構造を持つ重合体として、ポリアセタール(アセタール樹脂)がある。.

新しい!!: 還元とアセタール · 続きを見る »

アゾビスイソブチロニトリル

アゾビスイソブチロニトリル (azobisisobutyronitrile) は、有機反応試剤の一種で、プラスチックやゴムの発泡剤や、ラジカル反応の開始剤として用いられる。略称として AIBN と呼ばれる。また別名として α,α'‐アゾビスイソブチロニトリルと呼ばれる場合もある。 AIBN はアセトン、硫酸ヒドラジン、シアン化水素を原料に合成され、ラジカル開始剤に利用される。また、樹脂の発泡剤として利用されることもある。.

新しい!!: 還元とアゾビスイソブチロニトリル · 続きを見る »

イミン

イミン (imine) とは有機化合物の分類のひとつで、構造式が R'-C(.

新しい!!: 還元とイミン · 続きを見る »

ウィルキンソン触媒

ウィルキンソン触媒(ウィルキンソンしょくばい、Wilkinson's catalyst)はクロロトリス(トリフェニルホスフィン)ロジウム(I)(chlorotris(triphenylphosphine)rhodium(I))の慣用名であり、その名は1973年にノーベル賞を受賞した有機金属化学者、ジェフリー・ウィルキンソン卿からとられている。この化合物は平面4配位、16電子の錯体で、普通赤または紫色の結晶性固体(融点245–250 ℃)として単離される。ウィルキンソン触媒は塩化ロジウム(III) 3水和物を過剰のトリフェニルホスフィン存在下、エタノールで還元して合成される。.

新しい!!: 還元とウィルキンソン触媒 · 続きを見る »

ウォルフ・キッシュナー還元

ウォルフ・キッシュナー還元(ウォルフ・キッシュナーかんげん、Wolff-Kishner reduction)はケトンやアルデヒドのカルボニル基をヒドラジンによって還元してメチレン基にする化学反応のことである。 center 1911年にロシアのニコライ・キッシュナー、1912年にプファルツのルートヴィヒ・ヴォルフによって独立に発見された。原報はカルボニル化合物をヒドラジンと反応させてヒドラゾンとした後、塩基とともに封管中で加熱融解するというかなり厳しい反応条件であったが、1946年に黄鳴竜(ファン・ミンロン、Huang—Minlon)によってカルボニル化合物とヒドラジン水和物をエチレングリコール中で水酸化カリウムを触媒としてヒドラゾンを単離することなく反応させる改良法が報告された。また溶媒としてジメチルスルホキシドを使用すると室温付近の温和な条件でも反応が進行するという改良法も報告されている。 反応機構はヒドラジンとカルボニル化合物が反応して生成したヒドラゾン(R2C.

新しい!!: 還元とウォルフ・キッシュナー還元 · 続きを見る »

エポキシド

ポキシド (epoxide) は3員環のエーテルであるオキサシクロプロパン(オキシラン)を構造式中に持つ化合物の総称で、最も単純なものはエチレンオキシド(エポキシエタン)である。置換基として見る場合はエポキシ基と呼ばれる。化学工業、有機合成化学の分野において中間体として重要である。.

新しい!!: 還元とエポキシド · 続きを見る »

エーテル (化学)

ーテルの一般構造式 エーテル(ether)は有機化合物の分類のひとつで、構造式を R−O−R'(R, R' はアルキル基、アリール基などの有機基、O は酸素原子)の形で表される化合物を指す。また、エーテルに含まれる −O− の部分をエーテル結合という。また、溶媒としてのジエチルエーテルを単にエーテルということも多い。ジエチルエーテルが発見された際に、その高い揮発性を「地上にあるべきではない物質が天に帰ろうとしている」と解釈されたことから、古来天界の物質として考えられていたエーテルの名を援用して名付けられた。 なお、高揮発性の低沸点石油留分が名称の由来と同一発想で「石油エーテル」と命名され、実務分野ではそのまま定着しているが、石油エーテルは炭化水素のみで構成され化学種のエーテルを含んでいない。.

新しい!!: 還元とエーテル (化学) · 続きを見る »

エステル

ルボン酸エステルの基本構造。RおよびR'は任意のアルキル基またはアリール基。 エステル (ester) は、有機酸または無機酸のオキソ酸とアルコールまたはフェノールのようなヒドロキシ基を含む化合物との縮合反応で得られる化合物である。単にエステルと呼ぶときはカルボン酸とアルコールから成るカルボン酸エステル (carboxylate ester) を指すことが多く、カルボン酸エステルの特性基 (R−COO−R') をエステル結合 (ester bond) と呼ぶ事が多い。エステル結合による重合体はポリエステル (polyester) と呼ばれる。また、低分子量のカルボン酸エステルは果実臭をもち、バナナやマンゴーなどに含まれている。 エステルとして、カルボン酸エステルのほかに以下のような種の例が挙げられる。.

新しい!!: 還元とエステル · 続きを見る »

カルボン酸

ルボン酸(カルボンさん、carboxylic acid)とは、少なくとも一つのカルボキシ基(−COOH)を有する有機酸である。カルボン酸の一般式はR−COOHと表すことができ、Rは一価の官能基である。カルボキシ基(carboxy group)は、カルボニル基(RR'C.

新しい!!: 還元とカルボン酸 · 続きを見る »

カルボニル基

ルボニル基(カルボニルき、carbonyl group)は有機化学における置換基のひとつで、−C(.

新しい!!: 還元とカルボニル基 · 続きを見る »

キラリティー

ラリティー (chirality) は、3次元の図形や物体や現象が、その鏡像と重ね合わすことができない性質。掌性。 キラリティがあることをキラル (chiral) という。英語風の発音でカイラリティ、カイラルともいう。これらの語はギリシャ語で「手」を意味するχειρ (cheir) が語源である。手はキラルなものの一例で、右手とその鏡像である左手は互いに重ね合わせられない(右手の掌と左手の甲を向かい合わせたときに重なり合わないということである)。一方でキラリティがない、つまり鏡像と重ね合わせられることをアキラル (achiral) という。キラルな図形とその鏡像を互いに(たとえば右手に対する左手を)enantiomorphsと言い、ギリシャ語で「反対」を意味するεναντιος (enantios) が語源である。 対掌性(たいしょうせい)ともいう。対掌とは右と左の手のひらの対を意味している。対称性と紛らわしいが、キラリティとは鏡像対称性の欠如であり、むしろ逆の意味になる。 幾何学的な図形のほか、分子、結晶、スピン構造などについて使われる。以下では分子のキラリティを中心に述べる。.

新しい!!: 還元とキラリティー · 続きを見る »

クレメンゼン還元

レメンゼン還元(クレメンゼンかんげん、Clemmensen reduction)は亜鉛アマルガムを用いて塩酸などの強酸性の溶媒中でケトンやアルデヒドのカルボニル基を還元してメチレン基にする化学反応である。 1913年にエリック・クレメンゼンによって報告された。 水に溶けにくい基質では酢酸やメタノール、ジオキサンを補助溶媒とする。 また、トルエンを溶媒として二相系で反応を行なうこともある。 このようにすると、亜鉛アマルガムの表面に樹脂状の副生成物が固着して反応が停止するのを防止することができる。 原報は反応条件としてはかなり激しいため適用できる基質が限定されること、また水銀を使用するため、現在では有機合成に使われることはまれとなっている。 代わりに塩化水素の無水酢酸、ジエチルエーテル、ジオキサン等の溶液中で亜鉛粉末を加えて行なう非水系の改良法が知られており、こちらが適用される。 亜鉛アマルガムの表面で起こっている反応のため反応機構の詳細は明らかではない。 しかし、アルコールはこの条件ではメチレン基へと還元されないため、アルコールは反応中間体ではないと推定されている。 カルボニル基の還元により、Zn-C-OH の構造が生成した後、これからヒドロキシ基が脱離してカルベン錯体のようになり、これがプロトン化されてメチレン基となる機構が提唱されている。.

新しい!!: 還元とクレメンゼン還元 · 続きを見る »

ケトン

アセトン ケトン (ketone) は R−C(.

新しい!!: 還元とケトン · 続きを見る »

シュウ酸

ュウ酸(シュウさん、蓚酸、oxalic acid)は構造式 HOOC–COOH 、示性式 (COOH)2 で表される、もっとも単純なジカルボン酸。分子量は90.03(無水物)及び126.07(二水和物)。IUPAC命名法ではエタン二酸 (ethanedioic acid)。1776年、カール・ヴィルヘルム・シェーレによりカタバミ (oxalis) から初めて単離されたことから命名された。 命名の由来にもなったように、植物に多く含まれる。漢字の「蓚」はタデ科のスイバを意味する。タデ科(他にギシギシ、イタドリなど)、カタバミ科、アカザ科(アカザ、ホウレンソウなど)の植物には水溶性シュウ酸塩(シュウ酸水素ナトリウムなど)が、サトイモ科(サトイモ、ザゼンソウ、マムシグサなど)には不溶性シュウ酸塩(シュウ酸カルシウムなど)が含まれる。とろろが肌に付くと痒みを生じるのは、シュウ酸カルシウムの針状結晶が肌に刺さって刺激を受ける為である。 体内で血液中のカルシウムイオンと強く結合するため毒性があり、毒物及び劇物取締法により劇物に指定されている。 還元性があるため、滴定によく使われる。また、染料原料や漂白剤としても用いられる。.

新しい!!: 還元とシュウ酸 · 続きを見る »

シアノ水素化ホウ素ナトリウム

アノ水素化ホウ素ナトリウム(シアノすいそかほうそナトリウム、sodium cyanoborohydride)は、化学式が NaBH3CN と表される無機化合物。無色の塩で、有機合成化学においてイミンの還元に用いられる。.

新しい!!: 還元とシアノ水素化ホウ素ナトリウム · 続きを見る »

ジボラン

ボラン (diborane、B2H6) は、ホウ素の水素化物。狭義のボラン(モノボラン、BH3)の二量体として存在する。 単体は無色で、特徴的な甘い臭気を持つ気体。分子量は 27.67(空気を1とした場合の比重は 0.965)。融点は -164.9 ℃、沸点は -92.8 ℃。CAS登録番号は 19287-45-7。 ジボランは水素化ホウ素ナトリウム (NaBH4) を硫酸で加水分解するか、BF3 や BCl3 と処理すると得られる。.

新しい!!: 還元とジボラン · 続きを見る »

ジエチルエーテル

チルエーテル(diethyl ether)とは、エチル基とエチル基がエーテル結合した分子構造をしている有機化合物である。したがって、分子式は で、示性式は 、又は、で表される。分子量 74.12 。密度は0.708 g/cm。特徴的な甘い臭気を持つ、無色透明の液体である。エチルエーテル、硫酸エーテルとも呼び、また単にエーテルというときはこのジエチルエーテルのことを指す場合が多い。IUPAC名ではエトキシエタンとも呼ばれる。.

新しい!!: 還元とジエチルエーテル · 続きを見る »

スズ

(錫、Tin、Zinn)とは、典型元素の中の炭素族元素に分類される金属で、原子番号50の元素である。元素記号は Sn。.

新しい!!: 還元とスズ · 続きを見る »

セリウム

リウム(cerium)は原子番号58の元素で、元素記号は Ce。軟らかく、銀白色の、延性に富む金属で、空気中で容易に酸化される。セリウムの名は準惑星ケレスに因んでいる。セリウムは希土類元素として最も豊富に存在して、地殻中に質量パーセント濃度で0.046%含んでいる。さまざまな鉱物中で見つかり、最も重要なのはモナザイトとバストネサイトである。セリウムの商業的な用途はたくさんある。触媒、排出物を還元するための燃料への添加剤、ガラス、エナメルの着色剤などがある。酸化物はガラス研磨剤、スクリーンの蛍光体、蛍光灯などで重要な成分である。.

新しい!!: 還元とセリウム · 続きを見る »

BINAP

BINAPの球棒モデル。 BINAP(バイナップ、IUPAC名: 2,2'-ビス(ジフェニルホスフィノ)-1,1'-ビナフチル; (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl)は不斉合成において広く利用されている重要な不斉配位子である。BINAPはその構造中に不斉中心原子を持たないが、ナフチル基が2個単結合で繋がれた1,1'-ビナフチル構造に由来した軸不斉を持つ。2個のナフチル基のπ平面は剛直なので、ジフェニルホスフィノ基とペリ位の水素の立体障害が効いてナフチル基間の単結合の回転が制限されるためである。BINAPでは2個のナフチル基のπ平面が成す角度は約90°に固定され、2種のエナンチオマー、アトロプ異性体が存在する。 有機合成においてBINAPのキラルな構造は高いエナンチオ選択的な反応を可能にする。ルテニウムやロジウム、またパラジウムのような遷移金属を中心とするBINAP錯体によるエナンチオ選択的な触媒反応が報告されている。例えばRh-BINAPやRu-BINAPによって触媒された不斉水素化(野依不斉水素化反応)は野依良治らによって開発され、彼はこの功績により2001年のノーベル化学賞を受賞した。最も重要でよく知られている野依らの研究はRh-BINAPを用いた (−)-メントールの不斉合成である。(−)-メントールは広く使われている香料・医薬品であるが、その立体選択的な化学合成が高砂香料工業により工業化された。 BINAPはBINOL(1,1'-ビ(2-ナフトール))からトリフルオロメタンスルホン酸エステルを経て合成される。(R),(S)-エナンチオマー共に市販品が入手可能である。.

新しい!!: 還元とBINAP · 続きを見る »

珪藻土

バキア産の珪藻土 珪藻土(けいそうど、diatomite、diatomaceous earth)は、藻類の一種である珪藻の殻の化石よりなる堆積物(堆積岩)である。ダイアトマイトともいう。珪藻の殻は二酸化ケイ素(SiO2)でできており、珪藻土もこれを主成分とする。 珪藻が海や湖沼などで大量に増殖し死滅すると、その死骸は水底に沈殿する。死骸の中の有機物の部分は徐々に分解されていき、最終的には二酸化ケイ素を主成分とする殻のみが残る。このようにしてできた珪藻の化石からなる岩石が珪藻土である。多くの場合白亜紀以降の地層から産出される。.

新しい!!: 還元と珪藻土 · 続きを見る »

硫化水素

硫化水素や二酸化硫黄を主成分とする火山性ガスを噴出する噴気孔(黒部立山・地獄谷) 硫化水素(りゅうかすいそ、hydrogen sulfide)は化学式 H2S をもつ硫黄と水素の無機化合物。無色の気体で、腐卵臭を持つ。空気に対する比重は1.1905である。.

新しい!!: 還元と硫化水素 · 続きを見る »

硫黄

硫黄(いおう、sulfur, sulphur)は原子番号 16、原子量 32.1 の元素である。元素記号は S。酸素族元素の一つ。多くの同素体や結晶多形が存在し、融点、密度はそれぞれ異なる。沸点 444.674 ℃。大昔から自然界において存在が知られており、発見者は不明になっている。硫黄の英名 sulfur は、ラテン語で「燃える石」を意味する言葉に語源を持っている。.

新しい!!: 還元と硫黄 · 続きを見る »

硫酸鉄(II)

硫酸鉄(II)(りゅうさんてつ、Iron(II) sulfate)は、組成式 FeSO4の化合物。比重は無水物では3.346、七水和物(化学式:FeSO4·7H2O)では1.895で、青緑色の結晶(緑礬とも呼ばれる)。鉄に希硫酸を加えて反応させて得ることができる。水に可溶。空気中で徐々に酸化され表面に黄褐色の塩基性硫酸鉄(III) Fe(OH)SO4 を生じる。加熱すると結晶水を失い、80–123 ℃で1水和物、300 ℃で無水和物となる。お歯黒、インキ、紺青の製造原料、還元剤、媒染剤、医薬、木材防腐剤などに利用される。 硫酸鉄(II) は食品添加物として認められているが、硫酸鉄(III) は認められていない。硫酸鉄(II) を食品に使用した場合の表示は「硫酸鉄」または「硫酸第一鉄」となる。.

新しい!!: 還元と硫酸鉄(II) · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: 還元と窒素 · 続きを見る »

立体選択性

立体選択性(りったいせんたくせい)とは、ある化学反応の生成物として複数の立体異性体が考えられる場合に、ある特定の立体異性体が優先的に得られる反応の性質についていう。 考えられる生成物の立体異性体がジアステレオマーの関係にある場合にはジアステレオ選択性、エナンチオマーの関係にある場合にはエナンチオ選択性という。 立体選択性を定量的に表すためには、生成物の異性体比やジアステレオマー過剰率、鏡像体過剰率が使用される。 また、その反応の機構上ある特定の立体異性体のみしか得られないような反応の性質を立体特異性という。 例えばSN2反応は脱離基の背面側から求核剤が反応するというその機構上必ずワルデン反転を伴う。 そのため立体特異性のある反応である。 しかしある反応である特定の立体異性体のみしか得られなかったからといってその反応が立体特異性を持つとは限らない。.

新しい!!: 還元と立体選択性 · 続きを見る »

第1族元素

1族元素(だいいちぞくげんそ)とは、周期表において第1族に属する元素。水素・リチウム・ナトリウム・カリウム・ルビジウム・セシウム・フランシウムがこれに該当する。このうち、水素を除いた元素についてはアルカリ金属 (alkali metal) といい、単体では最外殻s軌道電子が自由電子として振舞うため金属的な性質を示す。 周期表の一番左側に位置する元素群で、価電子は最外殻のs軌道にある電子である。s軌道は1電子のみが占有する。.

新しい!!: 還元と第1族元素 · 続きを見る »

白金

白金(はっきん、platinum)は原子番号78の元素。元素記号は Pt。白金族元素の一つ。 学術用語としては白金が正しいが、現代日本の日常語においてはプラチナと呼ばれることもある。白金という言葉はオランダ語の witgoud(wit.

新しい!!: 還元と白金 · 続きを見る »

芳香族化合物

芳香族化合物(ほうこうぞくかごうぶつ、aromatic compounds)は、ベンゼンを代表とする環状不飽和有機化合物の一群。炭化水素のみで構成されたものを芳香族炭化水素 (aromatic hydrocarbon)、環構造に炭素以外の元素を含むものを複素芳香族化合物 (heteroaromatic compound) と呼ぶ。狭義には芳香族化合物は芳香族炭化水素と同義である。 19世紀ごろ知られていた芳香をもつ化合物の共通構造であったことから「芳香族」とよばれるようになった。したがって匂い(芳香)は芳香族の特性ではない。.

新しい!!: 還元と芳香族化合物 · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

新しい!!: 還元と銅 · 続きを見る »

過酸化水素

過酸化水素(かさんかすいそ、Hydrogen peroxide)は、化学式 HO で表される化合物。しばしば過水(かすい)と略称される。主に水溶液で扱われる。対象により強力な酸化剤にも還元剤にもなり、殺菌剤、漂白剤として利用される。発見者はフランスのルイ・テナール。.

新しい!!: 還元と過酸化水素 · 続きを見る »

製錬

製錬(せいれん、smelting)とは鉱石を還元することによって金属を取り出す過程のことである。製錬によって取り出された金属は純度が低い場合が多く、純度を高めるために精錬が必要な場合がある。ここまでのプロセスを冶金ということがある。 なお、硫黄、黒鉛、滑石、ケイ素(金属ケイ素)など、非金属の精製も製錬と呼ぶ場合がある(とくに硫黄は溶融による不純物の除去が必要なため、硫黄鉱山には製錬所が併設されている事が多かった)。また、三酸化ヒ素(いわゆる亜ヒ酸)や三酸化アンチモンなど、金属化合物の精製工程も(原料・工程が狭義の製錬と密接しているため)製錬の範疇に入れる場合もある。 現在、アンチモンやアルミニウム、ケイ素のように経済的理由から日本での製錬が行われなくなった金属も存在する。逆に、水銀や貴金属(金、銀、パラジウムなど)は、環境保護や資源保護の観点からリサイクルの一環として、鉱石から廃棄物に原料を変更して日本国内での製錬が続いている。.

新しい!!: 還元と製錬 · 続きを見る »

触媒

触媒(しょくばい)とは、特定の化学反応の反応速度を速める物質で、自身は反応の前後で変化しないものをいう。また、反応によって消費されても、反応の完了と同時に再生し、変化していないように見えるものも触媒とされる。「触媒」という用語は明治の化学者が英語の catalyser、ドイツ語の Katalysator を翻訳したものである。今日では、触媒は英語では catalyst、触媒の作用を catalysis という。 今日では反応の種類に応じて多くの種類の触媒が開発されている。特に化学工業や有機化学では欠くことができない。また、生物にとっては酵素が重要な触媒としてはたらいている。.

新しい!!: 還元と触媒 · 続きを見る »

計算複雑性理論

計算複雑性理論(けいさんふくざつせいりろん、computational complexity theory)とは、計算機科学における計算理論の一分野であり、アルゴリズムのスケーラビリティや、特定の計算問題の解法の複雑性(計算問題の困難さ)などを数学的に扱う。計算量理論、計算の複雑さの理論、計算複雑度の理論ともいう。.

新しい!!: 還元と計算複雑性理論 · 続きを見る »

配位子

配位子(はいいし、リガンド、ligand)とは、金属に配位する化合物をいう。.

新しい!!: 還元と配位子 · 続きを見る »

酸化

酸化(さんか、英:oxidation)とは、対象の物質が酸素と化合すること。 例えば、鉄がさびて酸化鉄になる場合、鉄の電子は酸素(O2)に移動しており、鉄は酸化されていることが分かる。 目的化学物質を酸化する為に使用する試薬、原料を酸化剤と呼ぶ。ただし、反応における酸化と還元との役割は物質間で相対的である為、一般的に酸化剤と呼ぶ物質であっても、実際に酸化剤として働くかどうかは、反応させる相手の物質による。.

新しい!!: 還元と酸化 · 続きを見る »

酸化アルミニウム

酸化アルミニウム(さんかアルミニウム、)は、化学式がAlOで表されるアルミニウムの両性酸化物である。通称はアルミナ(α-アルミナ)、礬土(ばんど)。天然にはコランダム、ルビー、サファイアとして産出する。おもに金属アルミニウムの原料として使われるほか、硬度を生かして研磨剤、高融点を生かして耐火物としての用途もある。立方晶系のγ-アルミナは高比表面積を持つことから触媒として重要である。.

新しい!!: 還元と酸化アルミニウム · 続きを見る »

酸化クロム

酸化クロム(さんかクロム、chromium oxide)はクロムの酸化物。クロムの酸化数に応じて酸化クロム(II)、酸化クロム(III)、酸化クロム(IV)、酸化クロム(VI)が存在する。また、混合酸化物(mixed oxide、MOX)、過酸化物も知られている。 クロムの酸化還元電位は Cr(III) が最も安定であり、酸化物も酸化クロム(III)が最も安定である。酸化クロム(IV)、酸化クロム(VI)は酸化剤として用いられる。.

新しい!!: 還元と酸化クロム · 続きを見る »

酸化還元反応

酸化還元反応(さんかかんげんはんのう)とは化学反応のうち、反応物から生成物が生ずる過程において、原子やイオンあるいは化合物間で電子の授受がある反応のことである。英語表記の Reduction / Oxidation から、レドックス (Redox) というかばん語も一般的に使われている。 酸化還元反応ではある物質の酸化プロセスと別の物質の還元プロセスが必ず並行して進行する。言い換えれば、一組の酸化される物質と還元される物質があってはじめて酸化還元反応が完結する。したがって、反応を考えている人の目的や立場の違いによって単に「酸化反応」あるいは「還元反応」と呼称されている反応はいずれも酸化還元反応と呼ぶべきものである。酸化還元反応式は、そのとき酸化される物質が電子を放出する反応と、還元される物質が電子を受け取る反応に分けて記述する、すなわち電子を含む2つの反応式に分割して記述することができる。このように電子を含んで式化したものを半反応式、半電池反応式、あるいは半電池式と呼ぶ。.

新しい!!: 還元と酸化還元反応 · 続きを見る »

酸化鉄

酸化鉄(さんかてつ)は鉄の酸化物の総称。酸化数に応じて酸化鉄(II) (FeO) や酸化鉄(III) (Fe2O3) など組成が異なるものが知られる。いずれも鉄の酸化物であり、水酸化鉄と並んで錆を構成する成分である。 酸化鉄は自然界では鉱物として見いだされ、代表的なものは赤鉄鉱(ヘマタイト)、褐鉄鉱(リモナイト)、磁鉄鉱(マグネタイト)、 ウスタイト、磁赤鉄鉱(マグヘマイト)長倉三郎、「酸化鉄」、『岩波理化学辞典』、第5版CD-ROM版、岩波書店、1999年である。.

新しい!!: 還元と酸化鉄 · 続きを見る »

酸化数

酸化数(さんかすう、英: Oxidation number)とは、対象原子の電子密度が、単体であるときと比較してどの程度かを知る目安の値である。1938年に米国のウェンデル・ラティマー (Wendell Mitchell Latimer) が考案した。 酸化とはある原子が電子を失うことであるから、単体であったときより電子密度が低くなっている。それに対して還元とはある原子が電子を得ることであるから、単体であったときより電子密度が高くなっている。 ある原子が酸化状態にある場合、酸化数は正の値をとり、その値が大きいほど電子不足の状態にあることを示す。逆に還元状態にある場合には負の数値をとり、その値が大きいほど電子過剰の状態にあることを示す。 酸化数はローマ数字で記述するのが通例である。.

新しい!!: 還元と酸化数 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 還元と酸素 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

新しい!!: 還元と酵素 · 続きを見る »

鉱石

鉱石(こうせき、ore)は、人間の経済活動にとって有用な資源となる鉱物、またはそれを含有する岩石のことである。 資源として有用な鉱物は、コレクターが収集したり、博物館で展示されるような、その種類だけ顕著に集まった状態で埋蔵されていることはほとんどなく、他のさまざまな鉱物と混在した岩石の状態で産することがほとんどである。こうした岩石を鉱石と呼ぶ。鉱石に有用鉱物が充分な密度で含まれているか、またひとつの鉱山に鉱石が充分な量埋蔵されているかが、経済的な資源採掘に値する鉱山か否かを判断する上で重要である。鉱物資源として有用な鉱物がいくら高密度で鉱石の中に存在しても、十分な利益が得られるほどの埋蔵量がないと鉱山は運営できない。 金山では、菱刈金山の金鉱石が世界有数の金含有量を有する鉱石と、大きな埋蔵量で著名である。.

新しい!!: 還元と鉱石 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

新しい!!: 還元と鉄 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: 還元と電子 · 続きを見る »

電気分解

電気分解(でんきぶんかい)英語:Electrolysisは、化合物に電圧をかけることで、陰極で還元反応、陽極で酸化反応を起こして化合物を化学分解する方法である。略して電解ともいう。同じ原理に基づき、電気化学的な酸化還元反応によって物質を合成する方法は電解合成と呼ばれ、特に生成物が高分子となる場合は電解重合という。 塩素やアルミニウムなど様々な化学物質が電気分解によって生産されている。水の電気分解は初等教育の中でも取り上げられる典型的な化学実験であるとともに、エネルギー源として期待される水素の製造法として研究が進められている。.

新しい!!: 還元と電気分解 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 還元と水 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: 還元と水素 · 続きを見る »

水素化

水素化(すいそか、hydrogenation)とは、水素ガスを還元剤として化合物に対して水素原子を付加する還元反応のことである。水素添加反応(すいそてんかはんのう)、略して水添(すいてん)と呼ばれることもある。この反応は触媒を必要とするため、接触水素化(せっしょくすいそか、catalytic hydrogenation)とも呼ばれる。文脈によっては水素化反応を使用した実験手法・技術のことを指す場合もある。 より広義には還元剤が何であるかを問わず、化合物に水素原子を付加する還元反応全般のことを指す場合もある。.

新しい!!: 還元と水素化 · 続きを見る »

水素化トリエチルホウ素リチウム

水素化トリエチルホウ素リチウム(すいそかトリエチルホウそリチウム、lithium triethylborohydride, LiTEBH)とは有機金属化合物の一種で、ヒドリド還元に用いられる試薬。示性式は LiBH(C2H5)3。Super-Hydride(スーパーヒドリド)の商標のもとに THF溶液が市販されている、求核性や選択性が極めて強いヒドリド化剤。 LiTEBH の反応形式は水素化ホウ素リチウム (LiBH4) 水素化アルミニウムリチウム (LiAlH4, LAH) に似るが、求核性はそれらよりもはるかに上回る。.

新しい!!: 還元と水素化トリエチルホウ素リチウム · 続きを見る »

水素化ホウ素ナトリウム

水素化ホウ素ナトリウム(すいそかホウそナトリウム、sodium borohydrideもしくはsodium tetrahydroborate)は 化学式を NaBH4 で表される無機化合物で、ケトンやアルデヒドなどを始めとするさまざまな有機化合物の還元反応に用いられる代表的な還元剤のひとつである。ハーバート・ブラウンによって初めて合成され、偶然にその還元力が見出された。.

新しい!!: 還元と水素化ホウ素ナトリウム · 続きを見る »

水素化アルミニウムリチウム

水素化アルミニウムリチウム(すいそかアルミニウムリチウム、lithium aluminium hydride)は、組成式 LiAlH4で表されるアルミニウムのヒドリド錯体で無機化合物の一種であり、ケトン、アルデヒド、アミド、エステルなどの還元に用いられる。粉末状の強い還元剤であり、水と激しく反応し水素を発生するため、使用する際はジエチルエーテルなどの脱水溶媒を用いる必要がある。LAH(ラー)という略称がよく用いられる。.

新しい!!: 還元と水素化アルミニウムリチウム · 続きを見る »

水素化ジイソブチルアルミニウム

水素化ジイソブチルアルミニウム(すいそかジイソブチルアルミニウム、diisobutylaluminium hydride)は有機合成において汎用される還元剤である。DIBAL, DIBAH, DIBAL-H などと略される。化学式は 2AlH、もしくはイソブチル基を iBu と略記し iBu2AlH と表される。もともとはアルケンを重合させる際の共触媒として開発された化合物である。.

新しい!!: 還元と水素化ジイソブチルアルミニウム · 続きを見る »

水酸化カリウム

水酸化カリウム(すいさんかカリウム、potassium hydroxide)は硬くてもろい白色の結晶で、カリウムの水酸化物であり、カリウムイオンと水酸化物イオンよりなるイオン結晶である。苛性カリ(かせいカリ、caustic potash )とも呼ばれる。 化学式は KOH であり、式量は 56.11 である。塩化カリウムの水溶液を電解して得られる。 製造過程において水分を完全に除去するのが困難であり、市販品はKOH含有量85%程度のものが多く、無水物と一水和物(KOH·H2O)との混合物であり、多少の炭酸カリウムも含まれる。.

新しい!!: 還元と水酸化カリウム · 続きを見る »

活性炭

活性炭(かっせいたん、英語 activated carbon)とは、特定の物質を選択的に分離、除去、精製するなどの目的で吸着効率を高めるために化学的または物理的な処理(活性化、賦活)を施した多孔質の炭素を主な成分とする物質である。.

新しい!!: 還元と活性炭 · 続きを見る »

溶媒

水は最も身近で代表的な溶媒である。 溶媒(ようばい、solvent)は、他の物質を溶かす物質の呼称。工業分野では溶剤(ようざい)と呼ばれることも多い。最も一般的に使用される水のほか、アルコールやアセトン、ヘキサンのような有機物も多く用いられ、これらは特に有機溶媒(有機溶剤)と呼ばれる。 溶媒に溶かされるものを溶質(solute)といい、溶媒と溶質を合わせて溶液(solution)という。溶媒としては、目的とする物質を良く溶かすこと(溶解度が高い)、化学的に安定で溶質と化学反応しないことが最も重要である。目的によっては沸点が低く除去しやすいことや、可燃性や毒性、環境への影響などを含めた安全性も重視される。水以外の多くの溶媒は、きわめて燃えやすく、毒性の強い蒸気を出す。また、化学反応では、溶媒の種類によって反応の進み方が著しく異なることが知られている(溶媒和効果)。 一般的に溶媒として扱われる物質は常温常圧では無色の液体であり、独特の臭気を持つものも多い。有機溶媒は一般用途としてドライクリーニング(テトラクロロエチレン)、シンナー(トルエン、テルピン油)、マニキュア除去液や接着剤(アセトン、酢酸メチル、酢酸エチル)、染み抜き(ヘキサン、石油エーテル)、合成洗剤(オレンジオイル)、香水(エタノール)あるいは化学合成や樹脂製品の加工に使用される。また抽出に用いる。.

新しい!!: 還元と溶媒 · 続きを見る »

有機合成化学

有機合成化学(ゆうきごうせいかがく、英語:organic synthetic chemistry)とは、有機化合物の新規な合成方法を研究する学問であり、有機化学の一大分野である。時として合成有機化学(synthetic organic chemistry)、あるいは「有機」の語が略されて単に合成化学と呼ばれる場合もある。.

新しい!!: 還元と有機合成化学 · 続きを見る »

有機電子論

有機電子論(ゆうきでんしろん、electronic theory of organic chemistry)とは化学結合の性質および反応機構を、電荷の静電相互作用と原子を構成する価電子とにより説明する理論である。有機化学の領域では単に電子論と呼ばれる。.

新しい!!: 還元と有機電子論 · 続きを見る »

2-プロパノール

2-プロパノール(2-propanol)は分子式はC3H8O、示性式はCH3CH(OH)CH3と表される、第二級アルコールの一種である。プロパノールの2種類の構造異性体のうちの一つである。消防法に定める第4類危険物 アルコール類に該当する。.

新しい!!: 還元と2-プロパノール · 続きを見る »

ここにリダイレクトされます:

還元反応

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »