ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

亜鉛

索引 亜鉛

亜鉛(あえん、zinc、zincum)は原子番号30の金属元素。元素記号は Zn。亜鉛族元素の一つ。安定な結晶構造は、六方最密充填構造 (HCP) の金属。必須ミネラル(無機質)16種の一つ。.

288 関係: 加水分解原子番号おしろい半金属半減期単体反磁性古代ローマ古代ギリシア可採埋蔵量吐き気合金塩基塩化亜鉛塩酸塑性天平天然存在比導電性高分子小腸尿崩壊モード不均化不動態両性 (化学)中国下痢人工放射性元素二元化合物二酸化マンガン亜酸化窒素二酸化炭素亜鉛めっき鋼板亜鉛欠乏症強磁性体液微量元素地球の大気地金地殻化合物化粧品ペルーナトリウムマンガン乾電池マトリックスメタロプロテアーゼマグネシウムチーズポルトガル...ポルトガル人メキシコメタロセンモリブデン酸亜鉛ヨーロッパヨウ化亜鉛ヨウ化エチルリン化亜鉛リン酸リン酸亜鉛リボ核酸ルーマニアレバー (食材)トタンブリストルブルックヘブン国立研究所ヒドロキシルアミンヒ素ビスマスビタミンAピコメートルテルルデンドライトデオキシリボ核酸フランスフッ化亜鉛フィチン酸ドイツ人ニュルンベルクニッケルダンベリー (コネチカット州)ダイカストダキアダキア人ベータ崩壊周期表味覚味蕾和漢三才図会めまいアノードアメリカ合衆国アメリカ地質調査所アメリカ航空宇宙局アルミニウムアルカリマンガン乾電池アルゴンアンチモンインドインスリンイオン半径イオン化傾向イギリスウールウィスカーエビエステルオランダカドミウムカキ (貝)カソードガリウムガンマ崩壊キロワット時キプロスグレーチングケルビンコネチカット州コバルトコムギコークスジルコニウムジンクホワイトジンククロメートジェフリー・ウィルキンソンジエチル亜鉛スウェーデン人スズセレン化亜鉛サーバサプリメント免疫系六方最密充填構造共有結合元素記号光沢前立腺創傷国立健康・栄養研究所皮膚炎石炭理化学研究所硝酸硝酸亜鉛硫化亜鉛硫黄硫酸硫酸亜鉛神岡鉱山神経症空気亜鉛電池窒化亜鉛窒素第12族元素第15族元素第16族元素第17族元素第18族元素筋肉精子精液納豆細胞分裂紀元前40世紀結晶結晶構造痙攣炎色反応炭素炭酸亜鉛炭酸脱水酵素産業革命甲状腺無煙炭無月経熱膨張率燃料電池異極鉱牛乳牛肉D軌道銅欠乏症融点過電圧遷移元素菱亜鉛鉱非金属元素顔料風化食事食物繊維計算化学読売新聞貧血貧金属質量数黒鉱黄銅黄色錯体閃亜鉛鉱蒸留蒸気肝臓還元還元剤脾臓脆性膵液臭化亜鉛金属金属元素長さの比較腎臓腐食酢酸亜鉛酸化亜鉛酸化インジウムスズ酸素酸解離定数酵素難燃剤電子配置電子捕獲電子殻電解精錬電気伝導体電気めっき透明薄膜トランジスタ透明電極Journal of the Chemical SocietyParts-per表記Ppm核異性体格子定数栄養素標準電極電位正徳 (日本)水和水素水銀水酸化亜鉛沸点沈殿洋白液晶ディスプレイ溶融亜鉛めっき木炭有機亜鉛化合物明治昇華 (化学)浮遊選鉱海水文禄日本放射能放射性同位体1 E2 s1 E3 s1 E4 s1 E5 s1 E7 s12世紀1509年1620年16世紀1713年1737年1743年1746年1798年1850年代1881年1889年1910年1910年代 インデックスを展開 (238 もっと) »

加水分解

加水分解(かすいぶんかい、hydrolysis)とは、反応物に水が反応し、分解生成物が得られる反応のことである。このとき水分子 (H2O) は、生成物の上で H(プロトン成分)と OH(水酸化物成分)とに分割して取り込まれる。反応形式に従った分類により、加水分解にはいろいろな種類の反応が含まれる。 化合物ABが極性を持ち、Aが陽性、Bが陰性であるとき、ABが水と反応するとAはOHと結合し、BはHと結合する形式の反応が一般的である。 加水分解の逆反応は脱水縮合である。.

新しい!!: 亜鉛と加水分解 · 続きを見る »

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

新しい!!: 亜鉛と原子番号 · 続きを見る »

おしろい

おしろい(白粉)とは、本来は女性が顔や首筋などに塗布して肌を色白に見せるために使用する化粧品で、その種類に応じて、粉おしろい、水おしろい、練りおしろいなどに分類される。.

新しい!!: 亜鉛とおしろい · 続きを見る »

半金属

半金属(はんきんぞく、metalloid)とは、元素の分類において金属と非金属の中間の性質を示す物質のことである。その定義は曖昧であり、決定的な定義や分類基準は存在せず、様々な方法によって分類が試みられている。 一般的にはホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン、テルルの6元素が半金属とされ、セレン、ポロニウム、アスタチンの3元素がしばしば加えられる。炭素やリンなどは通常半金属とはされないものの、その同素体にはグラファイトや黒リンのような半金属性を有しているものが存在する。これらの半金属元素は周期表上において、おおよそホウ素からポロニウムまでを繋ぐライン上に現れるが、その境界線の引き方にもまた多くの議論がある。 半金属に特徴的な性質としては脆性、半導体性、金属光沢、酸化物の示す両性などが挙げられ、半金属のイオン化エネルギーや電気陰性度の値は一定の範囲に収まる。半金属の単体もしくはその化合物は、ガラスや半導体、合金の構成元素として広く利用されている。.

新しい!!: 亜鉛と半金属 · 続きを見る »

半減期

半減期(はんげんき、half-life)とは、ある放射性同位体が、放射性崩壊によってその内の半分が別の核種に変化するまでにかかる時間を言う。.

新しい!!: 亜鉛と半減期 · 続きを見る »

単体

単体(たんたい、simple substance)とは、単一の元素からできている純物質のことである。 水素 (H2)、酸素 (O2) などの等核二原子分子や、ナトリウム (Na)、金 (Au) などの純金属が含まれる。 これに対して、水 (H2O) など2種類以上の元素からできている純物質は化合物という。 酸素 (O2) とオゾン (O3)、あるいは赤リンと黄リンのように、同じ元素からできた単体であっても、異なる性質を示す場合がある。 このような単体同士の関係を同素体という。 たとえば、ダイヤモンドとグラファイトを混ぜ合わせた物質は、単一の炭素原子からできているが、密度・融点・沸点などの物理的性質が一定にさだまらないので純物質ではなく(したがって単体でもなく)、2種類の単体(炭素の同素体)の混合物である。.

新しい!!: 亜鉛と単体 · 続きを見る »

卵(たまご、らん)とは、動物のメスが未受精の卵細胞や、受精し胚発生が進行した状態で体外(外環境)へ産み出される雌性の生殖細胞と付属物の総称である。このため、生殖を目的として外部に放出(産卵)される卵は、その多くが周辺環境と内部を隔てる構造を持ち、幾らかでも恒常性を保つ機能を持つ。この保護機構は種により異なる。なお、卵細胞そのものを卵という場合もある。 大きさとしては、直径約100μm のウニの卵から、長径約 11cm のダチョウの卵まで、様々な卵が存在する。なお、卵黄自体は一つの細胞である。このため2000年代現在、確認されている世界最大の細胞は、ダチョウの卵の卵黄である。 体外に産み出される卵は、卵細胞、あるいは多少発生の進んだ胚と、それを包む構造からなり、場合によっては発生を支持する構造を内部に持っていたり、外部に囲いがあったりするものもある。また発生に消費されるエネルギーとして脂肪が蓄えられているものも多く、このため卵自体は他の生物にとって大変優れた食料ともなる(後述)。.

新しい!!: 亜鉛と卵 · 続きを見る »

反磁性

反磁性(はんじせい、diamagnetism)とは、磁場をかけたとき、物質が磁場の逆向きに磁化され(=負の磁化率)、磁場とその勾配の積に比例する力が、磁石に反発する方向に生ずる磁性のことである 。 反磁性体は自発磁化をもたず、磁場をかけた場合にのみ反磁性の性質が表れる。反磁性は、1778年にセバールド・ユスティヌス・ブルグマンス によって発見され、その後、1845年にファラデーがその性質を「反磁性」と名づけた。 原子中の対になった電子(内殻電子を含む)が必ず弱い反磁性を生み出すため、実はあらゆる物質が反磁性を持っている。しかし、反磁性は非常に弱いため、強磁性や常磁性といったスピンによる磁性を持つ物質では隠れて目立たない。つまり、差し引いた結果の磁性として反磁性があらわれている物質のことを反磁性体と呼ぶに過ぎない。 このように、ほとんどの物質において反磁性は非常に弱いが、超伝導体は例外的に強い反磁性を持つ(後述)。なお、標準状態において最も強い反磁性をもつ物質はビスマスである。 なお、反強磁性(antiferromagnetism)は反磁性とは全く違う現象である。.

新しい!!: 亜鉛と反磁性 · 続きを見る »

古代ローマ

古代ローマ(こだいローマ、Roma antiqua)は、イタリア半島中部に位置した多部族からなる都市国家から始まり、領土を拡大して地中海世界の全域を支配する世界帝国までになった国家の総称である。当時の正式な国号は元老院ならびにローマ市民(Senatus Populusque Romanus)であり、共和政成立から使用されて以来滅亡まで体制が変わっても維持された。伝統的には476年のロムルス・アウグストゥルスの退位をもって古代ローマの終焉とするのが一般的であるが、ユスティニアヌス1世によってイタリア本土が再構成される554年までを古代ローマに含める場合もある。ローマ市は、帝国の滅亡後も一都市として存続し、世界帝国ローマの記憶は以後の思想や制度に様々な形で残り、今日まで影響を与えている。.

新しい!!: 亜鉛と古代ローマ · 続きを見る »

古代ギリシア

この項目では、太古から古代ローマに占領される以前までの古代ギリシアを扱う。.

新しい!!: 亜鉛と古代ギリシア · 続きを見る »

可採埋蔵量

可採埋蔵量(かさいまいぞうりょう)または経済可採埋蔵量(けいざいかさいまいぞうりょう)は、地下に存在する石油や天然ガスなどといった地下資源の埋蔵量のうち、「現在の市価で」技術的・経済的に掘り出すことができる埋蔵総量から、既生産分を引いた量のこと。既生産分を含めた量を究極可採埋蔵量または経済総埋蔵量という。価格高騰期には採掘に高いコストがかかる資源もカウントされるようになるため大幅に増大したり、不況などにより価格が大幅に下落するとコストの低い鉱山のみがカウントされるようになり大きく減少するなど、経済的要因で大きく変動してしまう旧式化した指標で、利用する際には注意が必要であり、最近はピーク理論で測られる場合が増えている。また可採埋蔵量を現在の年間生産量で割った可採年数は、前述の経済的理由による可採埋蔵量の変動に加え、経済動向(=需要)に依存する短期的な生産量の増減も関わってくるため、やはり実際の資源枯渇年数とは乖離する可能性も大きい点を考慮する必要がある。.

新しい!!: 亜鉛と可採埋蔵量 · 続きを見る »

吐き気

吐き気(はきけ)とは、腹部上部に不快感を覚え、嘔吐したくなる症状を促す感覚である。嘔気(おうき)、悪心(おしん)ともいう。むかつきもこれに近い症状である。.

新しい!!: 亜鉛と吐き気 · 続きを見る »

合金

合金(ごうきん、alloy)とは、単一の金属元素からなる純金属に対して、複数の金属元素あるいは金属元素と非金属元素から成る金属様のものをいう。純金属に他の元素を添加し組成を調節することで、機械的強度、融点、磁性、耐食性、自己潤滑性といった性質を変化させ材料としての性能を向上させた合金が生産されて様々な用途に利用されている。 一言に合金といっても様々な状態があり、完全に溶け込んでいる固溶体、結晶レベルでは成分の金属がそれぞれ独立している共晶、原子のレベルで一定割合で結合した金属間化合物などがある。合金の作製方法には、単純に数種類の金属を溶かして混ぜ合わせる方法や、原料金属の粉末を混合して融点以下で加熱する焼結法、化学的手法による合金めっき、ボールミル装置を使用して機械的に混合するメカニカルアロイングなどがある。ただし、全ての金属が任意の割合で合金となるわけではなく、合金を得られる組成の範囲については、物理的・化学的に制限(あるいは最適点)が存在する。.

新しい!!: 亜鉛と合金 · 続きを見る »

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

新しい!!: 亜鉛と塩基 · 続きを見る »

塩化亜鉛

塩化亜鉛(えんかあえん、Zinc chloride)とは、亜鉛の塩化物である。1648年にドイツの J. R. グラウバーによって最初に合成された 水町 邦彦、「塩化亜鉛」、『世界大百科事典』、CD-ROM版、平凡社、1998年。。 無水物の斜方晶は塩素が六方最密構造、亜鉛が4面体空孔に配置した構造。過剰な塩素の存在や濃厚溶液では亜鉛に四面体型に塩素が配位した2-構造が見られる。28 ℃以上では無水塩が長倉三郎ら(編)、「塩化亜鉛」、『岩波理化学辞典』、第5版 CD-ROM版、岩波書店、1998年。 、28 ℃以下で水和物を形成し、28 ℃で1.5水和物、11.5 ℃で2.5水和物、6 ℃で3水和物、−30 ℃で4水和物を形成することが知られている 。 潮解性を示し水溶液は一部が加水分解により中程度の酸性(pHは4前後)を示す 。濃厚溶液は粘度が高く蛍光を発する。水の他にエタノール、アセトン、グリセリン、エーテルにも溶ける。 加熱すると分解し、有毒なヒューム(煙、粉塵: 塩化水素、酸化亜鉛)を生じる。 製造法は金属亜鉛または酸化亜鉛に塩酸を加えると得られる。あるいは工業的には無水塩化亜鉛は亜鉛と塩化水素から以下の反応で生成する 。 用途はめっきの際の表面清浄剤、羊毛の難燃性処理,にかわ製造,防腐剤などあるいはマンガン乾電池の電解液に使われる。 はんだ付けの際、融剤として用いられる。これは塩化亜鉛の水溶液が加水分解されて酸性を示し、金属酸化物を溶かしやすいことと、はんだ付けの温度では蒸発してしまうことがないからである。 塩化亜鉛の微粉末(ヒューム)は刺激性であり、眼、呼吸器あるいは皮膚を刺激する。ヒュームを大量に吸引するとチアノーゼを起こす 。水生生物に対して毒性が強い。 また寒剤にもなり、塩化亜鉛/氷 を51:49で混合すると、−62 ℃と低温になる。.

新しい!!: 亜鉛と塩化亜鉛 · 続きを見る »

塩酸

塩酸(えんさん、hydrochloric acid)は、塩化水素(化学式HCl)の水溶液。代表的な酸のひとつで、強い酸性を示す。.

新しい!!: 亜鉛と塩酸 · 続きを見る »

塑性

塑性(そせい、英語:plasticity)は、力を加えて変形させたとき、永久変形を生じる物質の性質のことを指す。延性と展性がある。荷重を完全に除いた後に残るひずみ(伸び、縮みのこと)を永久ひずみあるいは残留ひずみという。この特性は加工しやすさを意味し金属が世界中に普及した大きな要因である。またこの特性を結晶学的に説明することに成功したのがOrowanらによる転位論である。 金属材料の展性および延性についての明確な定義は多岐に渡り一言には説明しづらいが、実用的には、次のように考えられている。金属材料の塑性変形抵抗を示す代表的指標に硬さがあり、さらには機械的性質を調べる代表的な方法として、引張試験があるが、低強度域(破壊力学的欠陥の作用しない領域)では硬さと比例関係にある。 この際、得られる特性値として、次のようなものがある。.

新しい!!: 亜鉛と塑性 · 続きを見る »

天平

天平(てんぴょう)は、日本の元号の一つ。神亀の後、天平感宝の前。729年から749年までの期間を指す。この時代の天皇は聖武天皇。 奈良時代の最盛期にあたるため、東大寺、唐招提寺などに残るその時代の文化を天平文化と呼ぶことが多い。.

新しい!!: 亜鉛と天平 · 続きを見る »

天然存在比

天然存在比(てんねんそんざいひ)はある元素について、同位体の種類ごとに自然界に存在する割合である。通常、周期表では元素の重量について、同位体を含んだ加重平均の値が記されている。.

新しい!!: 亜鉛と天然存在比 · 続きを見る »

導電性高分子

導電性高分子(どうでんせいこうぶんし)または、導電性ポリマー(conductive polymers、intrinsically conducting polymers、ICPs)とは、電気伝導性を持つ高分子化合物の呼称である。共役したポリエン系がエネルギー帯を形成し伝導性を示すと考えられている。代表的な物質としてはポリアセチレン、ポリチオフェン類などが挙げられる。「導電性」と呼ばれているが、実際の性質は導体というより半導体であり、高分子半導体などと呼ぶ場合もある。.

新しい!!: 亜鉛と導電性高分子 · 続きを見る »

小腸

小腸(しょうちょう、英Small intestine)とは、消化器のうち消化管の腸の一部である。小腸では消化と吸収を行う。.

新しい!!: 亜鉛と小腸 · 続きを見る »

尿

泌尿器の概要。腎臓でつくられた尿は輸尿管を経由して膀胱へと送られ、一定量が溜まったら尿道を介して排尿される。 尿(にょう、いばり)は、腎臓により生産される液体状の排泄物。血液中の水分や不要物、老廃物からなる。小便(しょうべん)、ションベン、小水(しょうすい)、お尿(おにょう)、ハルン、おしっこ(しっこ)等とも呼ばれる。古くは「ゆばり」「ゆまり」(湯放)と言った。 尿の生産・排泄に関わる器官を泌尿器と呼ぶ。ヒトの場合、腎臓で血液から濾し取られることで生産された尿は、尿管を経由して膀胱に蓄積され尿道口から排出される。生産量は水分摂取量にもよるが、1時間あたり60ml、1日約1.5リットルである。膀胱の容量は、成人で平均して500ml程度で、膀胱総容積の4/5程度蓄積されると大脳に信号が送られ、尿意を催す。日本人がといわれている。.

新しい!!: 亜鉛と尿 · 続きを見る »

崩壊モード

崩壊モード(ほうかいもーど、decay mode  小田稔ほか編、『』、研究社、1998年、項目「decay mode」より。ISBN 978-4-7674-3456-8)とは物理学で放射性同位体や不安定な素粒子が崩壊する際、どのような崩壊をするかその様式を分別したものである。単にモードという事もある 原子核の崩壊モードには以下のようなものが挙げられる。.

新しい!!: 亜鉛と崩壊モード · 続きを見る »

不均化

不均化(ふきんか)とは、同一種類の化学種(多くの場合は分子)が2個以上互いに反応して2種類以上の異なる種類の生成物を与える化学反応のこと。不均化の逆反応は均等化である。 化学反応式で記述するとnを2以上として で表される反応のことである。場合によっては他の物質が関与することもある。 まず、A のうちある分子が酸化剤、別の分子が還元剤として反応し、酸化された B と還元された C を与えるタイプの反応がある。 例えば塩素酸カリウムは 400 ℃ 以上で過塩素酸カリウムと塩化カリウムに不均化する。 この反応では 3分子の塩素酸イオンが還元剤として働いて+V価から+VII価へ酸化され、1分子の塩素酸イオンは酸化剤として働いて+V価から−I価へ還元されている。 カニッツァロ反応では2分子のアルデヒドから酸化されたカルボン酸塩と還元されたアルコールそれぞれ1分子が生成する。 アルコキシドを触媒とすると、エステル化まで進む。これをティシチェンコ反応と呼び、酢酸エチルや安息香酸ベンジルの製法となっている。 ラジカル連鎖反応の終止反応として1分子のラジカルがもう1分子のラジカルから原子団(通常は水素原子)を引き抜いてそれぞれ飽和化合物と不飽和化合物となりラジカルが消滅する反応がある。 一方のラジカルは水素を失って、もう一方のラジカルは水素を得ているので、この反応も酸化還元反応である。 スーパーオキシドジスムターゼは生体内で発生する活性酸素の一つであるスーパーオキシドアニオンラジカルを不均化させて過酸化水素と酸素に変換している。 また、同一種類の2分子の間で原子団を交換した結果、異なる2つの生成物となり不均化することもある。 例えば非対称なジスルフィドは塩基触媒により対称なジスルフィドへと不均化する。 生体内にはトランスフェラーゼと呼ばれるある原子団をある基質から別の基質に転移させる酵素が存在するが、転移元と転移先が同一の物質であるならこの反応は不均化反応となる。 このような反応を行う酵素としては、デキストリン間で糖鎖の転移を行うデキストリングリコシルトランスフェラーゼが知られている。.

新しい!!: 亜鉛と不均化 · 続きを見る »

不動態

不動態(ふどうたい、不働態とも)とは、金属表面に腐食作用に抵抗する酸化被膜が生じた状態のこと。この被膜は溶液や酸にさらされても溶け去ることが無いため、内部の金属を腐食から保護するために用いられる。なお、本来「不働態」が正字であるが、現在は「不動態」と表記する。 酸化力のある酸にさらされた場合や、陽極酸化処理によって生じる。不動態の典型的な被膜の厚みは、例えばステンレスに生じる不動態の場合、数nmである。 すべての金属が不動態となるわけではない。不動態になりやすいのは、アルミニウム、クロム、チタンなどやその合金である。また、これらの金属は弁金属(バルブメタル)と呼ばれる。.

新しい!!: 亜鉛と不動態 · 続きを見る »

両性 (化学)

化学において両性物質(りょうせいぶっしつ、amphoteric substance)とは、酸とも塩基とも反応する物質のことである。多くの金属(亜鉛、スズ、鉛、アルミニウム、ベリリウムなど)と半金属は両性酸化物を作る。この他、アミノ基とカルボキシル基の両方を持つアミノ酸、自動イオン化(自己イオン化)化合物である水やアンモニアも両性物質に含まれる。.

新しい!!: 亜鉛と両性 (化学) · 続きを見る »

中国

中国(ちゅうごく)は、ユーラシア大陸の東部を占める地域、および、そこに成立した国家や社会。中華と同義。 、中国大陸を支配する中華人民共和国の略称として使用されている。ではその地域に成立した中華民国、中華人民共和国に対する略称としても用いられる。 本記事では、「中国」という用語の「意味」の変遷と「呼称」の変遷について記述する。中国に存在した歴史上の国家群については、当該記事および「中国の歴史」を参照。.

新しい!!: 亜鉛と中国 · 続きを見る »

下痢

下痢(げり、diarrhea)は、健康時の便と比較して、非常に緩いゲル(粥)状・若しくは液体状の便が出る状態である。主に消化機能の異常により、人間を含む動物が患う症状であり、その際の便は軟便(なんべん)、泥状便(でいじょうべん)、水様便(すいようべん)ともいう。東洋医学では泄瀉(泄は大便が希薄で、出たり止まったりすること。瀉は水が注ぐように一直線に下る)とも呼ばれる。世界では毎年17億人が発症し、また毎年76万人の5歳以下児童が下痢により死亡している。発展途上国では主な死因の1つとなっている。 軟骨魚類・両生類・爬虫類・鳥類および一部の原始的な哺乳類は、下痢とよく似た軟らかい便を排泄するが、それらの排泄を指して「下痢」とは呼ばない。それらの生物は、消化器官の作りが原始的であったり、全排泄(出産や産卵をも含む)を総排泄腔で行うことから、便の柔らかいことが常態である。.

新しい!!: 亜鉛と下痢 · 続きを見る »

人工放射性元素

人工放射性元素(じんこうほうしゃせいげんそ, Synthetic element)は、人工的に合成された元素(同位体)の総称である。 天然には存在しない4つの元素(テクネチウム、プロメチウム、アスタチン、フランシウム)と、超ウラン元素(アメリシウム、キュリウムなど)はほぼすべて人工放射性元素であり、広義では人工の放射性同位体も含む。これらは半減期の短い放射性元素であるため、自然界には極めて僅かしか存在が確認されない。通常は、原子核に高いエネルギーを持たせた荷電粒子や、γ線、中性子などをぶつけて合成する。 人工の放射性同位体としては1934年にフレデリック・ジョリオ=キュリーとイレーヌ・ジョリオ=キュリーの夫妻が放射性リン (30P) を得たのが最初で、元素としては1937年に得られたテクネチウムが最初である。.

新しい!!: 亜鉛と人工放射性元素 · 続きを見る »

二元化合物

二元化合物(にげんかごうぶつ、binary compound)とは、全く異なる2種類の元素を含む化合物である。共有結合性二元化合物には、水 (H2O)、一酸化炭素 (CO)、六フッ化硫黄 (SF6) などがある。イオン結合性二元化合物には、塩化カルシウム (CaCl2)、フッ化ナトリウム (NaF)、酸化マグネシウム (MgO) などがある。.

新しい!!: 亜鉛と二元化合物 · 続きを見る »

二酸化マンガン

二酸化マンガン(にさんかマンガン、manganese dioxide)または酸化マンガン(IV)(さんかマンガン(IV)、manganese(IV) oxide)は、化学式が MnO2 と表されるマンガンの酸化物である。酸化剤や乾電池、無機触媒として利用されている。「二酸化マンガン」と一般には呼ばれるが、実際には不定比化合物であり、MnOx (x.

新しい!!: 亜鉛と二酸化マンガン · 続きを見る »

亜酸化窒素

亜酸化窒素(あさんかちっそ。英語、nitrous oxide)とは、窒素酸化物の1種である。化学式ではN2Oと表されるため、一酸化二窒素(いっさんかにちっそ)とも呼ばれる。 ヒトが吸入すると陶酔させる作用があることから笑気ガス(しょうきガス。英語、laughing gas)とも言い、笑気と略されることもある。また麻酔作用もあるため、全身麻酔など医療用途で用いることもあり、世界保健機関においては必須医薬品の一覧にも載せられている。この他にも、工業用途では燃料の発火促進のために使われる。また、調理用途では食材をムース状に加工するエスプーマと呼ばれる調理法に使用される。 しかし、陶酔感を得るために亜酸化窒素を乱用する者が後を絶たないことから、日本では、2016年2月18日に医薬品医療機器法に基づき「亜酸化窒素」が指定薬物に指定された。そして、日本では同月28日から、医療などの目的以外に亜酸化窒素を製造・販売・所持・使用することなどが禁止されるに至った。なお、乱用以外にも、亜酸化窒素が大気中へと放出されると、 紫外線によって分解されるなどして一酸化窒素を生成し、この一酸化窒素にはオゾン層を破壊する作用がある。したがって、亜酸化窒素の使用もオゾン層の破壊につながるという地球環境への問題も抱えている。.

新しい!!: 亜鉛と亜酸化窒素 · 続きを見る »

二酸化炭素

二酸化炭素(にさんかたんそ、carbon dioxide)は、化学式が CO2 と表される無機化合物である。化学式から「シーオーツー」と呼ばれる事もある。 地球上で最も代表的な炭素の酸化物であり、炭素単体や有機化合物の燃焼によって容易に生じる。気体は炭酸ガス、固体はドライアイス、液体は液体二酸化炭素、水溶液は炭酸・炭酸水と呼ばれる。 多方面の産業で幅広く使われる(後述)。日本では高圧ガス保安法容器保安規則第十条により、二酸化炭素(液化炭酸ガス)の容器(ボンベ)の色は緑色と定められている。 温室効果ガスの排出量を示すための換算指標でもあり、メタンや亜酸化窒素、フロンガスなどが変換される。日本では2014年度で13.6億トンが総排出量として算出された。.

新しい!!: 亜鉛と二酸化炭素 · 続きを見る »

亜鉛めっき鋼板

亜鉛めっき鋼板(あえんめっきこうはん)は、亜鉛めっき加工された鋼板である。亜鉛鉄板またはトタン板もこれに該当する。.

新しい!!: 亜鉛と亜鉛めっき鋼板 · 続きを見る »

亜鉛欠乏症

亜鉛欠乏症(あえんけつぼうしょう)は、「亜鉛欠乏の臨床症状」と「血清亜鉛値」によって診断される疾患である。味覚障害、貧血、皮膚炎、口内炎、脱毛症、難治性の褥瘡(じょくそう、床ずれ)、食欲低下、発育障害(小児で体重増加不良、低身長)、性腺機能不全、不妊症、易感染性のうち1つ以上の症状を示し、血清亜鉛値が60μg/dL未満で亜鉛欠乏症と診断される。.

新しい!!: 亜鉛と亜鉛欠乏症 · 続きを見る »

強磁性

強磁性 (きょうじせい、ferromagnetism) とは、隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを持つ物質の磁性を指す。そのため、物質は外部磁場が無くても自発磁化を持つことが出来る。 室温で強磁性を示す単体の物質は少なく、鉄、コバルト、ニッケル、ガドリニウム(18℃以下)である。 単に強磁性と言うとフェリ磁性を含めることもあるが、日本語ではフェリ磁性を含まない狭義の強磁性をフェロ磁性と呼んで区別することがある。なおフェロ (ferro) は鉄を意味する。.

新しい!!: 亜鉛と強磁性 · 続きを見る »

体液

体液(たいえき)は、動物がなんらかの形で体内に持っている液体である。生物学的には、動物の体内にあって、組織間や体腔内、あるいは全身に広がった管や循環系の中を満たしているものだけを指す。 一般的には、唾液・汗・精液・尿など、体内外に分泌・排泄される様々な液体も体液と呼ばれることがある。.

新しい!!: 亜鉛と体液 · 続きを見る »

微量元素

この記事では、微量元素(びりょうげんそ)について説明する。.

新しい!!: 亜鉛と微量元素 · 続きを見る »

地球の大気

上空から見た地球の大気の層と雲 国際宇宙ステーション(ISS)から見た日没時の地球の大気。対流圏は夕焼けのため黄色やオレンジ色に見えるが、高度とともに青色に近くなり、さらに上では黒色に近くなっていく。 MODISで可視化した地球と大気の衛星映像 大気の各層の模式図(縮尺は正しくない) 地球の大気(ちきゅうのたいき、)とは、地球の表面を層状に覆っている気体のことYahoo! Japan辞書(大辞泉) 。地球科学の諸分野で「地表を覆う気体」としての大気を扱う場合は「大気」と呼ぶが、一般的に「身近に存在する大気」や「一定量の大気のまとまり」等としての大気を扱う場合は「空気()」と呼ぶ。 大気が存在する範囲を大気圏(たいきけん)Yahoo! Japan辞書(大辞泉) 、その外側を宇宙空間という。大気圏と宇宙空間との境界は、何を基準に考えるかによって幅があるが、便宜的に地表から概ね500km以下が地球大気圏であるとされる。.

新しい!!: 亜鉛と地球の大気 · 続きを見る »

地金

地金(じがね、じきん)とは、金属を貯蔵しやすいような形で固めたもの。金属塊。インゴット、バーともいう。例外として、水銀は液状であることから、アマルガムを生じない鉄製フラスコやボンベ、または樹脂製ボトルやガラス瓶に注入されて取引される。また、半金属であるアンチモンやビスマスも地金として流通させることが多い。.

新しい!!: 亜鉛と地金 · 続きを見る »

地殻

1.

新しい!!: 亜鉛と地殻 · 続きを見る »

化合物

化合物(かごうぶつ、chemical compound)とは、化学反応を経て2種類以上の元素の単体に生成することができる物質であり岩波理化学辞典(4版)、p.227、【化合物】、言い換えると2種類以上の元素が化学結合で結びついた純物質とも言える。例えば、水 (H2O) は水素原子 (H) 2個と酸素原子 (O) 1個からなる化合物である。水が水素や酸素とは全く異なる性質を持っているように、一般的に、化合物の性質は、含まれている元素の単体の性質とは全く別のものである。 同じ化合物であれば、成分元素の質量比はつねに一定であり、これを定比例の法則と言い株式会社 Z会 理科アドバンスト 考える理科 化学入門、混合物と区別される。ただし中には結晶の不完全性から生じる岩波理化学辞典(4版)、p.1109、【不定比化合物】不定比化合物のように各元素の比が自然数にならないが安定した物質もあり、これらも化合物のひとつに含める。 化合物は有機化合物か無機化合物のいずれかに分類されるが、その領域は不明瞭な部分がある。.

新しい!!: 亜鉛と化合物 · 続きを見る »

化粧品

化粧品(けしょうひん、cosmetics)とは、体を清潔にしたり、見た目を美しくしたりする目的で、皮膚等に塗布等するもので、作用の緩和なものをいう。いわゆる基礎化粧品、メーキャップ化粧品、シャンプーなどである。 日本で薬用化粧品といわれる化粧品は、医薬品医療機器等法上、化粧品ではなく医薬部外品に分類されるが、医薬部外品の概念は日本、韓国等一部の国にのみあるもので、多くの地域にはそのような概念がないため、日本で医薬部外品にあたるようなものが化粧品として販売されていることがある。 日本標準商品分類では、香水及びオーデコロン、仕上用化粧品、皮膚用化粧品、頭髪用化粧品、特殊用途化粧品、その他の化粧品に大きく分類される。 以下では断り書きがない限り、日本での事例について取り扱う。.

新しい!!: 亜鉛と化粧品 · 続きを見る »

ペルー

ペルー共和国(ペルーきょうわこく、、、)、通称ペルーは、南アメリカ西部に位置する共和制国家である。北にコロンビア、北西にエクアドル、東にブラジル、南東にボリビア、南にチリと国境を接し、西は太平洋に面する。首都はリマ。 紀元前から多くの古代文明が栄えており、16世紀までは当時の世界で最大級の帝国だったインカ帝国(タワンティン・スウユ)の中心地だった。その後スペインに征服された植民地時代にペルー副王領の中心地となり、独立後は大統領制の共和国となっている。.

新しい!!: 亜鉛とペルー · 続きを見る »

ナトリウム

ナトリウム(Natrium 、Natrium)は原子番号 11、原子量 22.99 の元素、またその単体金属である。元素記号は Na。アルカリ金属元素の一つで、典型元素である。医薬学や栄養学などの分野ではソジウム(ソディウム、sodium )とも言い、日本の工業分野では(特に化合物中において)曹達(ソーダ)と呼ばれる炭酸水素ナトリウムを重炭酸ソーダ(重曹)と呼んだり、水酸化ナトリウムを苛性ソーダと呼ぶ。また、ナトリウム化合物を作ることから日本曹達や東洋曹達(現東ソー)などの名前の由来となっている。。毒物及び劇物取締法により劇物に指定されている。.

新しい!!: 亜鉛とナトリウム · 続きを見る »

マンガン乾電池

単1から単5の円筒型、及び9V角形のマンガン電池(PU型) マンガン乾電池(マンガンかんでんち)は一次電池の一種で、正極の減極剤(復極剤)として二酸化マンガンを用いたものである。別名、ルクランシェ電池。 英語では「Zinc-carbon battery:亜鉛-炭素電池)」と呼称され、「Zinc-carbon battery(or "heavy duty"):亜鉛-炭素電池(高耐久型)」とも呼称される。.

新しい!!: 亜鉛とマンガン乾電池 · 続きを見る »

マトリックスメタロプロテアーゼ

マトリックスメタロプロテアーゼ(英:Matrix metalloproteinase、MMP)はメタロプロテアーゼ(活性中心に金属イオンが配座しているタンパク質分解酵素の総称)の一群でありMMPの活性中心には亜鉛イオン(Zn2+)やカルシウムイオン(Ca2+)が含まれる。コラーゲンやプロテオグリカン、エラスチンなどから成る細胞外マトリックスの分解をはじめとし、細胞表面に発現するタンパク質の分解、生理活性物質のプロセシングなどその作用は多岐にわたる。1962年にジェロム・グロスとチャールズ・ラピエールによりオタマジャクシの変態において尾が吸収される過程に関与する酵素として発見され、1968年にはヒトの皮膚に存在することが示された。MMPファミリーに属する酵素は分泌型と膜結合型の二種類に分類される。分泌型MMPは産生後、分泌細胞から離れたところにおいても働くが、膜結合型は細胞表面に発現しているので活動範囲は狭い。.

新しい!!: 亜鉛とマトリックスメタロプロテアーゼ · 続きを見る »

マグネシウム

マグネシウム(magnesium )は原子番号 12、原子量 24.305 の金属元素である。元素記号は Mg。マグネシュームと転訛することがある。中国語は金へんに美と記する。 周期表第2族元素の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)であり、とりわけ植物の光合成に必要なクロロフィルで配位結合の中心として不可欠である。また、有機化学においてはグリニャール試薬の構成元素として重要である。 酸化マグネシウムおよびオキソ酸塩の成分としての酸化マグネシウムを、苦い味に由来して苦土(くど、bitter salts)とも呼称する。.

新しい!!: 亜鉛とマグネシウム · 続きを見る »

チーズ

チーズ()とは、牛・水牛・羊・山羊・ヤクなど鯨偶蹄目の反芻をする家畜から得られる乳を原料とし、乳酸発酵や柑橘果汁の添加で酸乳化した後に加熱や酵素(レンネット)添加によりカゼインを主成分とする固形成分(カード)と液体成分(ホエー)に分離して脱水した食品(乳製品)の一種。伝統的に乳脂肪を分離したバターと並んで家畜の乳の保存食として牧畜文化圏で重要な位置を占めてきた。日本語や中国語での漢語表記は、北魏時代に編纂された斉民要術に記されているモンゴル高原型の乳製品加工の記述を出典とする乾酪(かんらく)である。.

新しい!!: 亜鉛とチーズ · 続きを見る »

ポルトガル

ポルトガル共和国(ポルトガルきょうわこく、República Portuguesa、República Pertuesa)、通称ポルトガルは、南ヨーロッパのイベリア半島に位置する共和制国家である。北と東にスペインと国境を接し、国境線の総延長は1,214kmに及ぶ。西と南は大西洋に面している。ヨーロッパ大陸部以外にも、大西洋上にアソーレス諸島とマデイラ諸島を領有している。首都はリスボン。 ポルトガルはユーラシア大陸最西端の国家である。ヨーロッパで最初に海路で中国や日本など東アジアとの接触を持った。.

新しい!!: 亜鉛とポルトガル · 続きを見る »

ポルトガル人

ポルトガル人(ポルトガルじん、os portugueses)は、主にユーラシア大陸の西端、イベリア半島西部のポルトガルやその旧植民地に居住する民族。言語はポルトガル語を使用し、カトリック教徒が多い。.

新しい!!: 亜鉛とポルトガル人 · 続きを見る »

メキシコ

メキシコ合衆国(メキシコがっしゅうこく、)、通称メキシコは、北アメリカ南部に位置する連邦共和制国家。北にアメリカ合衆国と南東にグアテマラ、ベリーズと国境を接し、西は太平洋、東はメキシコ湾とカリブ海に面する。首都はメキシコシティ。メキシコの総人口は約1億3千万人(2016年時点)で、スペイン語圏においては最も人口の多い国で、GDPは中南米2位である。しかし、人口の40%が貧困層である。.

新しい!!: 亜鉛とメキシコ · 続きを見る »

メタロセン

メタロセン (metallocene) とは、シクロペンタジエニルアニオン (C5H5&minus) 2個をη5-配位子として有する有機金属化合物の総称である。金属は必ずしも2配位である必要はなく、他の配位子が配位していてもよい。代表例としてフェロセンが挙げられる。金属名の語幹に語尾-オセン (-ocene) を添えて命名する。サンドイッチ化合物に含まれる。 同様の配位形態の可能な インデニル配位子、ペンタメチルシクロペンタジエニル配位子のような、置換シクロペンタジエニル配位子を持つ化合物もメタロセンと呼ばれる。 1950年代、フェロセンについて合成と構造決定がなされたのが最初のメタロセンの例である。ジルコノセンやチタノセン、ハフノセンなどには重合によるポリエチレン合成の触媒として知られるものがあり、カミンスキー触媒 (Kaminsky catalyst) と呼ばれる。.

新しい!!: 亜鉛とメタロセン · 続きを見る »

モリブデン酸亜鉛

モリブデン酸亜鉛(モリブデンさんあえん、zinc molybdate)は、化学式が ZnMoO4 と表される無機化合物である。白色の色素で、防錆剤として用いられる。例えばモリブデン酸ナトリウムのような溶解度の高いモリブデン酸塩は多量では毒性を持つのに対し、モリブデン酸亜鉛は水に不溶のため、基本的に毒性はない。モリブデン酸の毒性は、クロム酸や鉛の塩よりも低く、そのため防錆剤としてこれらの塩の代替として利用される。製法は、モリブデン酸ナトリウムの水溶液と塩化亜鉛を混合することで、不溶性のモリブデン酸亜鉛が結晶として生成する。.

新しい!!: 亜鉛とモリブデン酸亜鉛 · 続きを見る »

ヨーロッパ

ヨーロッパ日本語の「ヨーロッパ」の直接の原語は、『広辞苑』第5版「ヨーロッパ」によるとポルトガル語・オランダ語、『デジタル大辞泉』goo辞書版「」によるとポルトガル語。(、)又は欧州は、地球上の七つの大州の一つ。漢字表記は欧羅巴。 地理的には、ユーラシア大陸北西の半島部を包括し、ウラル山脈およびコーカサス山脈の分水嶺とウラル川・カスピ海・黒海、そして黒海とエーゲ海を繋ぐボスポラス海峡-マルマラ海-ダーダネルス海峡が、アジアと区分される東の境界となる増田 (1967)、pp.38–39、Ⅲ.地理的にみたヨーロッパの構造 ヨーロッパの地理的範囲 "Europe" (pp. 68-9); "Asia" (pp. 90-1): "A commonly accepted division between Asia and Europe...

新しい!!: 亜鉛とヨーロッパ · 続きを見る »

ヨウ化亜鉛

ヨウ化亜鉛(ようかあえん、英 Zinc iodide)は亜鉛のヨウ化物で、化学式ZnI2で表される。.

新しい!!: 亜鉛とヨウ化亜鉛 · 続きを見る »

ヨウ化エチル

ヨウ化エチル(ヨウかエチル、英ethyl iodide)は化学式C2H5IまたはCH3CH2Iで表される有機ヨウ素化合物。ヨードエチル、ヨードエタンとも呼ばれる。無色の油状液体で、無水エタノール、ヨウ素、黄リンを加熱・蒸留して得られる。引火性であり、61℃以上で空気との爆発性混合気体を生じる。空気との接触や光線により分解し、褐色を帯びる。エタノール・ジエチルエーテルに完全に溶解し、ベンゼン・エーテル・四塩化炭素にも溶ける。アルキル化反応が良好で、エーテル中でマグネシウムと反応するとヨウ化エチルマグネシウムを生成する。.

新しい!!: 亜鉛とヨウ化エチル · 続きを見る »

リン化亜鉛

リン化亜鉛(燐化亜鉛、リンかあえん、英文名称 Zinc phosphide)は、リンと亜鉛からなり、組成式Zn3P2 (三リン化二亜鉛、Trizinc diphosphide)で表される無機化合物。殺鼠剤や殺虫剤の成分として用いられる。.

新しい!!: 亜鉛とリン化亜鉛 · 続きを見る »

リン酸

リン酸(リンさん、燐酸、phosphoric acid)は、リンのオキソ酸の一種で、化学式 H3PO4 の無機酸である。オルトリン酸(おるとりんさん、orthophosphoric acid)とも呼ばれる。リン酸骨格をもつ他の類似化合物群(ピロリン酸など)はリン酸類(リンさんるい、phosphoric acids)と呼ばれている。リン酸類に属する化合物を「リン酸」と略することがある。リン酸化物に水を反応させることで生成する。生化学の領域では、リン酸イオン溶液は無機リン酸 (Pi) と呼ばれ、ATP や DNA あるいは RNA の官能基として結合しているものを指す。.

新しい!!: 亜鉛とリン酸 · 続きを見る »

リン酸亜鉛

リン酸亜鉛(英Zinc phosphate)は亜鉛のリン酸塩で、化学式Zn3(PO4)2で表される。無水物と四水和物とがあり、一般には四水和物が流通している。毒劇法上の劇物に指定されている。.

新しい!!: 亜鉛とリン酸亜鉛 · 続きを見る »

リボ核酸

リボ核酸(リボかくさん、ribonucleic acid, RNA)は、リボヌクレオチドがホスホジエステル結合でつながった核酸である。RNAと略されることが多い。RNAのヌクレオチドはリボース、リン酸、塩基から構成される。基本的に核酸塩基としてアデニン (A)、グアニン (G)、シトシン (C)、ウラシル (U) を有する。RNAポリメラーゼによりDNAを鋳型にして転写(合成)される。各塩基はDNAのそれと対応しているが、ウラシルはチミンに対応する。RNAは生体内でタンパク質合成を行う際に必要なリボソームの活性中心部位を構成している。 生体内での挙動や構造により、伝令RNA(メッセンジャーRNA、mRNA)、運搬RNA(トランスファーRNA、tRNA)、リボソームRNA (rRNA)、ノンコーディングRNA (ncRNA)、リボザイム、二重鎖RNA (dsRNA) などさまざまな分類がなされる。.

新しい!!: 亜鉛とリボ核酸 · 続きを見る »

ルーマニア

ルーマニアは、東ヨーロッパに位置する共和制国家。南西にセルビア、北西にハンガリー、北にウクライナ、北東にモルドバ、南にブルガリアと国境を接し、東は黒海に面している。首都はブカレスト。 国の中央をほぼ逆L字のようにカルパティア山脈が通り、山脈に囲まれた北西部の平原をトランシルヴァニア、ブルガリアに接するワラキア、モルドバに接するモルダヴィア、黒海に面するドブロジャの4つの地方に分かれる。 東欧では数少ないロマンス系の言語であるルーマニア語を公用語として採用している国家であるが、宗教的には東方教会系のルーマニア正教会が多数派である。いっぽう北西のポーランドはスラヴ語派のうち西スラヴ語群に属するポーランド語が主に話されているが、宗教的にはカトリック教会が支配的であり、ルーマニアとは好対照をなしている。.

新しい!!: 亜鉛とルーマニア · 続きを見る »

レバー (食材)

レバー&オニオン レバー(、)とは、肝臓のことである。肝(きも)と呼ばれることもある。日本でレバーというと、食用の、家畜や家禽の肝臓を指すことが多い。日本で主に食用にされているレバーは、ほ乳類、鳥類、魚貝類のものである。ビタミンA、ビタミンB群、鉄分、葉酸を多く含むとされる。 食中毒などの懸念があり、日本では2012年に生の牛レバーの提供が禁止された。.

新しい!!: 亜鉛とレバー (食材) · 続きを見る »

トタン

トタンを使った倉庫 トタン(葡:tutanaga、英:corrugated galvanised iron)は、亜鉛めっき鋼板のうち、主に建築資材として使われているものを指す。亜鉛鉄板、亜鉛鍍鉄板(あえんとてっぱん)などと呼ばれることもある。 語源はポルトガル語の Tutanaga(亜鉛)といわれている。 波板のトタンを切断する際には波板が変形してしまうことを防ぐために専用のはさみが用いられることが多い。簡易な建造物の屋根や外壁、塀に用いられたり雨どいなどに使われる。またバケツ、じょうろ、ちりとり等の日用品の材料にも用いられる。.

新しい!!: 亜鉛とトタン · 続きを見る »

ブリストル

ブリストル(; )は、イギリス西部の港湾都市。サウス・ウェスト・イングランドの典礼カウンティにあるユニタリー(単一自治体)であり、ロンドンの西169キロで、カーディフの東71キロの位置である。 2007年中頃にブリストルだけで416,400人の人口と推計され、近隣の居住者も一緒にすると約561,500人と推計される。これは、イングランドで6番目、イギリス全体で見ても8番目に人口が多く、サウス・ウェスト・イングランドで最も人口の多い都市である。サマセットとグロスタシャーのカウンティに接し、南東には歴史的な都市バースがあり、北にはグロスターが位置する。エイボン川に沿って形勢されており、それが流入するブリストル海峡にも接している。.

新しい!!: 亜鉛とブリストル · 続きを見る »

ブルックヘブン国立研究所

ブルックヘブン国立研究所(ブルックヘブンこくりつけんきゅうじょ、、略: )は、アメリカ合衆国の国立研究所である。.

新しい!!: 亜鉛とブルックヘブン国立研究所 · 続きを見る »

ヒドロキシルアミン

ヒドロキシルアミン (hydroxylamine) は示性式が NH2OH と表される無機化合物である。水とアンモニアが互いに一部分を共有したような構造を持っているので、それらの混成体と見ることもできる。純粋なヒドロキシルアミンは室温で不安定な結晶性の固体であり、吸湿性を持つ。潮解性がある。一般的に水溶液、または塩酸塩などの塩として取り扱われる。 ヒドロキシルアミンは生合成的硝化の中間体である。アンモニアの酸化はヒドロキシルアミン酸化還元酵素によって媒介される。.

新しい!!: 亜鉛とヒドロキシルアミン · 続きを見る »

ヒ素

ヒ素(砒素、ヒそ、arsenic、arsenicum)は、原子番号33の元素。元素記号は As。第15族元素(窒素族元素)の一つ。 最も安定で金属光沢があるため金属ヒ素とも呼ばれる「灰色ヒ素」、ニンニク臭があり透明なロウ状の柔らかい「黄色ヒ素」、黒リンと同じ構造を持つ「黒色ヒ素」の3つの同素体が存在する。灰色ヒ素は1気圧下において615 で昇華する。 ファンデルワールス半径や電気陰性度等さまざまな点でリンに似た物理化学的性質を示し、それが生物への毒性の由来になっている。.

新しい!!: 亜鉛とヒ素 · 続きを見る »

ビスマス

ビスマス(bismuth)は原子番号83の元素。元素記号は Bi。第15族元素の一つ。日本名は蒼鉛。.

新しい!!: 亜鉛とビスマス · 続きを見る »

ビタミンA

ビタミンA (Vitamin A) とは、レチノール(Retinol、ビタミンAアルコールとも呼ばれる)、レチナール(Retinal、ビタミンAアルデヒドとも)、レチノイン酸(Retinoic Acid、ビタミンA酸とも)(これらをビタミンA1と呼ぶ)およびこれらの3-デヒドロ体(ビタミンA2と呼ぶ)と、その誘導体の総称で、ビタミンの中の脂溶性ビタミンに分類される。化学的にはレチノイドと呼ばれる。狭義にはレチノールのみを指してビタミンAと呼ぶこともある。ビタミンAは動物にのみに見られる。なお、β-カロテンなど、動物体内においてビタミンAに変換されるものを総称してプロビタミンAと呼ぶ。プロビタミンAは動植物ともに見られる。.

新しい!!: 亜鉛とビタミンA · 続きを見る »

ピコメートル

ピコメートル(Picometre、記号 pm)は、国際単位系の長さの単位で、10−12メートル (m)。.

新しい!!: 亜鉛とピコメートル · 続きを見る »

テルル

テルル(tellurium)は原子番号52の元素。元素記号は Te。第16族元素の一つ。.

新しい!!: 亜鉛とテルル · 続きを見る »

デンドライト

デンドライト(dendrite, 樹枝状晶)、忍石(しのぶいし)とは複数に枝分かれした樹枝状の結晶。樹枝状結晶一般を指す用語で特定の成分の結晶を指さない。この形で成長する結晶は多く、冬の窓に付く霜の雪片もこの一種。自然現象でできるフラクタルである。 デンドライトの語源はギリシア語で樹を意味するデンドロン(dendron)。.

新しい!!: 亜鉛とデンドライト · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: 亜鉛とデオキシリボ核酸 · 続きを見る »

フランス

フランス共和国(フランスきょうわこく、République française)、通称フランス(France)は、西ヨーロッパの領土並びに複数の海外地域および領土から成る単一主権国家である。フランス・メトロポリテーヌ(本土)は地中海からイギリス海峡および北海へ、ライン川から大西洋へと広がる。 2、人口は6,6600000人である。-->.

新しい!!: 亜鉛とフランス · 続きを見る »

フッ化亜鉛

フッ化亜鉛(フッかあえん、英 Zinc fluoride)は亜鉛のフッ化物で、化学式ZnF2で表される。無水物と四水和物とがある。.

新しい!!: 亜鉛とフッ化亜鉛 · 続きを見る »

フィチン酸

フィチン酸(フィチンさん、phytic acid)は生体物質の1種で、myo-イノシトールの六リン酸エステル。myo-イノシトール-1,2,3,4,5,6-六リン酸(myo-inositol-1,2,3,4,5,6-hexaphosphate または hexakisphosphate または hexakis(dihydrogenphosphate))とも言う。略称は IP。組成式は CHOP 、分子量は 660.08、CAS登録番号は 。種子など多くの植物組織に存在する主要なリンの貯蔵形態であり、特にフィチン(Phytin: フィチン酸のカルシウム・マグネシウム混合塩で、水不溶性)の形が多く存在する早川利郎、伊賀上郁夫、「」 『日本食品工業学会誌』 Vol.

新しい!!: 亜鉛とフィチン酸 · 続きを見る »

ドイツ人

ドイツ人(ドイツじん、)は、ドイツを中心としてヨーロッパに分布する住民の定義である。文脈により以下の三つの定義を有する。.

新しい!!: 亜鉛とドイツ人 · 続きを見る »

ニュルンベルク

ニュルンベルク(標準ドイツ語:Nürnberg 、バイエルン語:Niamberg、上部フランケン語(東フランケン語):Nämberch)は、ドイツ連邦共和国バイエルン州のミッテルフランケン行政管区に属する郡独立市。 人口50万人を超えるバイエルン州第2の都市(ドイツ全体では14番目)である。隣接するフュルト、エアランゲン、シュヴァーバッハと共にフランケン地方の経済的・文化的中心をなしている。中世からの伝統ある都市であり、ドイツ統一を主導したホーエンツォレルン家がニュルンベルク城伯を世襲した都市である。また、ナチス政権が最初の大会を開催した都市であり、それゆえナチス政権要人を裁く「ニュルンベルク裁判」が行われたことでも知られる。リヒャルト・ワーグナーの楽劇『ニュルンベルクのマイスタージンガー』の舞台としても知られる。現在も旧市街は中世の城壁で囲まれている。.

新しい!!: 亜鉛とニュルンベルク · 続きを見る »

ニッケル

ニッケル (nikkel, nickel, niccolum) は、原子番号28の金属元素である。元素記号は Ni。 地殻中の存在比は約105 ppmと推定されそれほど多いわけではないが、鉄隕石中には数%含まれる。特に 62Ni の1核子当たりの結合エネルギーが全原子中で最大であるなどの点から、鉄と共に最も安定な元素である。岩石惑星を構成する元素として比較的多量に存在し、地球中心部の核にも数%含まれると推定されている。.

新しい!!: 亜鉛とニッケル · 続きを見る »

ダンベリー (コネチカット州)

ダンベリー(Danbury)は、アメリカ合衆国コネチカット州フェアフィールド郡北部に位置する都市である。ニューヨーク市からは約70マイル (112 km) にあり、ニューヨーク大都市圏に属している。2010年の国勢調査では人口80,893人であり、州内では第7位、郡内では第4位の都市である。 ダンベリー市は、初期開拓者の多くがイングランドのエセックスにあるダンベリー出身だったことから名付けられた。帽子を製造していた歴史があり、国内の帽子のほぼ25%を製作していたこともあったので、「帽子の都市」という綽名がある。.

新しい!!: 亜鉛とダンベリー (コネチカット州) · 続きを見る »

ダイカスト

ダイカスト (die casting) とは、金型鋳造法のひとつで、金型に溶融した金属を圧入することにより、高い寸法精度の鋳物を短時間に大量に生産する鋳造方式のことである。ダイキャストとも言われる。またこの鋳造法だけでなくダイカストによる製品をもいう。ダイカストをとらえて「鋳物の産業革命」と称す向きもある。.

新しい!!: 亜鉛とダイカスト · 続きを見る »

ダキア

ダキア(ラテン語:Dacia)は、古代中央ヨーロッパの一地域で、ダキア人とゲタエ人が居住していた地域を指す。ほぼ現在のルーマニアの国土(より正確には「大ルーマニア」と呼ばれた時代の国土)にあたり、東はティサ川、西はハンガリー、南はドナウ川、北はカルパチア山脈の森林地帯までの地域となる。ルーマニアでは同様の表記で「ダチア」と読む。.

新しい!!: 亜鉛とダキア · 続きを見る »

ダキア人

ダキア人(dacică)は、紀元前1000年頃から、ダキア地方(現在のルーマニア)に住んでいたトラキア系の民族のこと。 現在のルーマニアでは、このダキア人とローマ人の混血した人々がルーマニア人の祖先であるとされている。.

新しい!!: 亜鉛とダキア人 · 続きを見る »

ベータ崩壊

ベータ崩壊(ベータほうかい、beta decay)とは、放射線としてベータ線(電子)を放出する放射性崩壊の一種である。 後にベータ線のみを放出するとするとベータ線のエネルギーレベルの連続性を説明できないことから、電子(ベータ線)と同時にニュートリノと呼ばれる粒子も放出する弱い相互作用の理論として整理された。.

新しい!!: 亜鉛とベータ崩壊 · 続きを見る »

周期表

周期表(しゅうきひょう、)は、物質を構成する基本単位である元素を、それぞれが持つ物理的または化学的性質が似たもの同士が並ぶように決められた規則(周期律)に従って配列した表である。日本では1980年頃までは「周期律表」と表記されている場合も有った。.

新しい!!: 亜鉛と周期表 · 続きを見る »

味覚

味覚(みかく)は、動物の五感の一つであり、食する物質に応じて認識される感覚である。生理学的には、甘味、酸味、塩味、苦味、うま味の5つが基本味に位置づけられる。基本味の受容器はヒトの場合おもに舌にある。基本味が他の要素(嗅覚、視覚、記憶など)で拡張された知覚心理学的な感覚としての味は、風味(ふうみ)と呼ばれることが多い。また、認識の過程を味わう(あじわう)と言う。.

新しい!!: 亜鉛と味覚 · 続きを見る »

味蕾

味蕾 味蕾(みらい、Taste buds)は、舌や軟口蓋にある食べ物の味を感じる小さな器官である。 人間の舌には約10,000個の味蕾がある。.

新しい!!: 亜鉛と味蕾 · 続きを見る »

和漢三才図会

アシカ(右)とオットセイ、38巻72頁明治17年翻刻の中近堂版 『和漢三才図会』(わかんさんさいずえ)は、寺島良安により江戸時代中期に編纂された日本の類書(百科事典)。正徳2年(1712年)成立。.

新しい!!: 亜鉛と和漢三才図会 · 続きを見る »

めまい

めまいは、目が回るようなくらくらとした感覚の総称である。眩暈・目眩・眩冒などと書く。眩は目がかすみ目の前が暗くなることで暈はぐるぐる物が回ってみえたり、物が揺れ動いて見えること。目眩は目がかすみ頭がくらくらすること。眩冒はひどく頭がくらくらして目の前が暗くなることとなる。単にめまいと言われたとき、人によって表現したい現象が異なっていることがめまいの特徴である(=様々な症候を示している)。医学的には視覚、平衡感覚と固有感覚の不統合によって感じる感覚と言われている。運動失調とは区別が必要である。.

新しい!!: 亜鉛とめまい · 続きを見る »

アノード

アノード (Anode) とは、外部回路から電流が流れ込む電極のこと。外部回路へ電子が流れ出す電極とも言える。 電気分解や電池においては、アノードは電気化学的に酸化が起こる電極である。真空管では構造上プレートと呼ばれることが多い。 アノードという語はマイケル・ファラデーにより命名され、ギリシア語で上り口を意味するAnodosに由来する。 アノードと逆の電極はカソードである。アノードとカソードの区別は、電流(電子)の向きによって決まるのであり、電位の高低によらないことに注意を要する。陽極と陰極の区別は電位の高低によるとする流儀(電圧の方向による区別)と、アノード・カソードの直訳とする流儀(電流の方向による区別)があり、用語として混乱している。正極・負極という用語は、電位の高い側・低い側という意味で定着しているので、電位の高い低いの区別には正極・負極を、電流の向きの区別にはアノード・カソードを用いるのが望ましい。 正極・負極で表現すると、アノードは、真空管や電気分解では正極、電池の場合は負極である。.

新しい!!: 亜鉛とアノード · 続きを見る »

アメリカ合衆国

アメリカ合衆国(アメリカがっしゅうこく、)、通称アメリカ、米国(べいこく)は、50の州および連邦区から成る連邦共和国である。アメリカ本土の48州およびワシントンD.C.は、カナダとメキシコの間の北アメリカ中央に位置する。アラスカ州は北アメリカ北西部の角に位置し、東ではカナダと、西ではベーリング海峡をはさんでロシアと国境を接している。ハワイ州は中部太平洋における島嶼群である。同国は、太平洋およびカリブに5つの有人の海外領土および9つの無人の海外領土を有する。985万平方キロメートル (km2) の総面積は世界第3位または第4位、3億1千7百万人の人口は世界第3位である。同国は世界で最も民族的に多様かつ多文化な国の1つであり、これは多くの国からの大規模な移住の産物とされているAdams, J.Q.;Strother-Adams, Pearlie (2001).

新しい!!: 亜鉛とアメリカ合衆国 · 続きを見る »

アメリカ地質調査所

アメリカ地質調査所(アメリカちしつちょうさしょ、United States Geological Survey、略称: USGS)は、アメリカ合衆国政府の科学的研究機関の一つ。USGSの科学者らは、水文学、生物学、地質学、地理学の4つの主要な科学分野について、アメリカ合衆国のランドスケープ(景観)、天然資源、および同国を脅かし得るナチュラル・ハザード(危機的な自然現象)を対象とする調査・研究を行う。また、同国の地形図および地質図の作成業務も担っている。USGSは規制上の監督責任を伴わない事実調査研究機関である。 USGSはアメリカ合衆国内務省が所管する、同省で唯一の科学的研究機関である。本部は首都ワシントンD.C.郊外のバージニア州レストンに所在し、約9,000人の職員が雇用されている。また、コロラド州レイクウッドとカリフォルニア州メンローパークにも主要拠点がある。 USGSの現在の標語は、1997年8月より使用されているもので、 "science for a changing world" である。以前のスローガンは、創立100周年の際に採用されたもので、 "Earth Science in the Public Service" であった。.

新しい!!: 亜鉛とアメリカ地質調査所 · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

新しい!!: 亜鉛とアメリカ航空宇宙局 · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

新しい!!: 亜鉛とアルミニウム · 続きを見る »

アルカリマンガン乾電池

記載なし。

新しい!!: 亜鉛とアルカリマンガン乾電池 · 続きを見る »

アルゴン

アルゴン(argon)は原子番号 18 の元素で、元素記号は Ar である。原子量は 39.95。周期表において第18族元素(希ガス)かつ第3周期元素に属す。.

新しい!!: 亜鉛とアルゴン · 続きを見る »

アンチモン

アンチモン(Antimon 、antimony 、stibium)は原子番号51の元素。元素記号は Sb。常温、常圧で安定なのは灰色アンチモンで、銀白色の金属光沢のある硬くて脆い半金属の固体。炎色反応は淡青色(淡紫色)である。レアメタルの一種。古い資料や文献によっては英語の読み方を採用してアンチモニー(安質母尼)と表記されている事もある。 元素記号の Sb は輝安鉱(三硫化二アンチモン、Sb2S3)を意味するラテン語 Stibium から取られている。.

新しい!!: 亜鉛とアンチモン · 続きを見る »

インド

インドは、南アジアに位置し、インド洋の大半とインド亜大陸を領有する連邦共和制国家である。ヒンディー語の正式名称भारत गणराज्य(ラテン文字転写: Bhārat Gaṇarājya、バーラト・ガナラージヤ、Republic of India)を日本語訳したインド共和国とも呼ばれる。 西から時計回りにパキスタン、中華人民共和国、ネパール、ブータン、バングラデシュ、ミャンマー、スリランカ、モルディブ、インドネシアに接しており、アラビア海とベンガル湾の二つの海湾に挟まれて、国内にガンジス川が流れている。首都はニューデリー、最大都市はムンバイ。 1947年にイギリスから独立。インダス文明に遡る古い歴史、世界第二位の人口を持つ。国花は蓮、国樹は印度菩提樹、国獣はベンガルトラ、国鳥はインドクジャク、国の遺産動物はインドゾウである。.

新しい!!: 亜鉛とインド · 続きを見る »

インスリン

インスリンの分子構造 インスリン(インシュリン、insulin)は、膵臓に存在するランゲルハンス島(膵島)のβ細胞から分泌されるペプチドホルモンの一種。名前はラテン語の insula (島)に由来する。21アミノ酸残基のA鎖と、30アミノ酸残基のB鎖が2つのジスルフィド結合を介してつながったもの。C-ペプチドは、インスリン生成の際、プロインスリンから切り放された部分を指す。 生理作用としては、主として血糖を抑制する作用を有する。インスリンは脂肪組織や骨格筋を中心に存在するグルコーストランスポーターの一種であるGLUT4に作用し、そこから血中のグルコースを取り込ませることによって血糖値を下げる重要な役割を持つ。また骨格筋におけるアミノ酸、カリウムの取り込み促進とタンパク質合成の促進、肝臓における糖新生の抑制、グリコーゲンの合成促進・分解抑制、脂肪組織における糖の取り込みと利用促進、脂肪の合成促進・分解抑制などの作用により血糖を抑制し、グリコーゲンや脂肪などの各種貯蔵物質の新生を促進する。腎尿細管におけるNa再吸収促進作用もある。炭水化物を摂取すると小腸でグルコースに分解され、大量のグルコースが体内に吸収される。体内でのグルコースは、エネルギー源として重要である反面、高濃度のグルコースはそのアルデヒド基の反応性の高さのため生体内のタンパク質と反応して糖化反応を起こし、生体に有害な作用(糖尿病性神経障害・糖尿病性網膜症・糖尿病性腎症の微小血管障害)をもたらすため、インスリンの分泌によりその濃度(血糖)が常に一定範囲に保たれている。 インスリンは血糖値の恒常性維持に重要なホルモンである。血糖値を低下させるため、糖尿病の治療にも用いられている。逆にインスリンの分泌は血糖値の上昇に依存する。 従前は「インシュリン」という表記が医学や生物学などの専門分野でも正式なものとして採用されていたが、2006年現在はこれらの専門分野においては「インスリン」という表記が用いられている。一般にはインスリンとインシュリンの両方の表記がともに頻用されている。.

新しい!!: 亜鉛とインスリン · 続きを見る »

イオン半径

NaClの結晶格子 イオン半径(イオンはんけい、ionic radius)とはイオン結晶の結晶格子中においてイオンを剛体球と仮定した場合の半径である。 イオン半径はオングストローム(Å)あるいはピコメートル(pm)という単位で表示されるが、後者がSI単位である。.

新しい!!: 亜鉛とイオン半径 · 続きを見る »

イオン化傾向

イオン化傾向(イオンかけいこう、)とは、溶液中(おもに水溶液中)における元素(主に金属)のイオンへのなりやすさを表す。電気化学列あるいはイオン化列とも呼ばれる。.

新しい!!: 亜鉛とイオン化傾向 · 続きを見る »

イギリス

レートブリテン及び北アイルランド連合王国(グレートブリテンおよびきたアイルランドれんごうおうこく、United Kingdom of Great Britain and Northern Ireland)、通称の一例としてイギリス、あるいは英国(えいこく)は、ヨーロッパ大陸の北西岸に位置するグレートブリテン島・アイルランド島北東部・その他多くの島々から成る同君連合型の主権国家である。イングランド、ウェールズ、スコットランド、北アイルランドの4つの国で構成されている。 また、イギリスの擬人化にジョン・ブル、ブリタニアがある。.

新しい!!: 亜鉛とイギリス · 続きを見る »

ウール

刈り取られたウール ウール (wool) とは、羊の毛(=羊毛、ようもう)のことで、動物繊維の一種である。羊毛を用いた糸や(=毛糸)や織った布(=毛織物)もウールと呼ばれる。一般的には羊の毛を指すが、広義ではアンゴラ・アルパカ・ラクダの毛も含まれる。.

新しい!!: 亜鉛とウール · 続きを見る »

ウィスカー

ウィスカー (Whisker) は、結晶表面からその外側に向けて髭状に成長した結晶である。ホイスカと表記することもある。 結晶の表面付近に圧縮応力が発生すると、その応力を緩和しようとして新たな結晶がもとの結晶の外側に向けて成長する。結晶成長の起点が小さく、連続的に成長し続ける傾向を持つことから非常に細長い髭状の単結晶が形成される。1 μm 程度の直径に対して 1 mm 以上の長さに達したものはウィスカー繊維と呼ばれ、アスベスト代替繊稚として断熱材などに用いられる人造結晶質繊維となる。 1940年代、電子機器における絶縁不良の原因として細長い髭状の金属が発見された。これは配線の表面に施されていたスズのめっき層からスズが髭状に成長したウィスカーであった。その後、スズに鉛を添加するとウィスカーの発生を抑制できることが見いだされ、このため2000年代前半まで多くの電子部品にはスズ鉛合金のめっきが施されていた。 2000年代に入り、RoHSなど電子機器の環境対応により、鉛フリーはんだをはじめとする鉛フリーの素材が使用されるようになると、再びウィスカーによる短絡が問題となってきた。2006年現在、鉛を使用しないウィスカー対策が研究されている。 ウィスカーは単結晶であるため、多結晶体から成る一般的な材料とは異なり結晶粒界などの構造的な欠陥が少なく、また不純物をほとんど含んでいないために強度が大きい。このため樹脂、金属、セラミックスなどの強度を大きくする添加剤として利用される。.

新しい!!: 亜鉛とウィスカー · 続きを見る »

エビ

ビ(海老・蝦・魵)は、節足動物門・甲殻亜門・軟甲綱・十脚目(エビ目)のうち、カニ下目(短尾類)とヤドカリ下目(異尾類)以外の全ての種の総称である。すなわち、かつての長尾類(長尾亜目 )にあたる。現在、長尾亜目という分類群は廃止されており、学術的な分類ではなく便宜上の区分である。 十脚目(エビ目)から、カニ・ヤドカリという腹部が特殊化した2つの系統を除いた残りの側系統であり、単系統ではない。この定義では、ザリガニもエビに含まれる。.

新しい!!: 亜鉛とエビ · 続きを見る »

エステル

ルボン酸エステルの基本構造。RおよびR'は任意のアルキル基またはアリール基。 エステル (ester) は、有機酸または無機酸のオキソ酸とアルコールまたはフェノールのようなヒドロキシ基を含む化合物との縮合反応で得られる化合物である。単にエステルと呼ぶときはカルボン酸とアルコールから成るカルボン酸エステル (carboxylate ester) を指すことが多く、カルボン酸エステルの特性基 (R−COO−R') をエステル結合 (ester bond) と呼ぶ事が多い。エステル結合による重合体はポリエステル (polyester) と呼ばれる。また、低分子量のカルボン酸エステルは果実臭をもち、バナナやマンゴーなどに含まれている。 エステルとして、カルボン酸エステルのほかに以下のような種の例が挙げられる。.

新しい!!: 亜鉛とエステル · 続きを見る »

オランダ

ランダ(Nederland 、; Nederlân; Hulanda)は、西ヨーロッパに位置する立憲君主制国家。東はドイツ、南はベルギーおよびルクセンブルクと国境を接し、北と西は北海に面する。ベルギー、ルクセンブルクと合わせてベネルクスと呼ばれる。憲法上の首都はアムステルダム(事実上の首都はデン・ハーグ)。 カリブ海のアルバ、キュラソー、シント・マールテンと共にオランダ王国を構成している。他、カリブ海に海外特別自治領としてボネール島、シント・ユースタティウス島、サバ島(BES諸島)がある。.

新しい!!: 亜鉛とオランダ · 続きを見る »

カドミウム

ドミウム(cadmium)は原子番号48の金属元素である。元素記号は Cd で、いわゆる亜鉛族元素の一つ。安定な六方最密充填構造 (HCP) をとる。融点は320.9 。化学的挙動は亜鉛と非常に良く似ており、常に亜鉛鉱と一緒に産出する(亜鉛鉱に含まれている)ため亜鉛精錬の際回収されている。軟金属である。 カドミウムは人体にとって有害(腎臓機能に障害が生じ、それにより骨が侵される)で、日本ではカドミウムによる環境汚染で発生したイタイイタイ病が問題となった。またカドミウムとその化合物はWHOの下部機関IARCよりヒトに対して発癌性があると (Group1) 勧告されている。 ホタテガイの中腸腺(ウロ)にはカドミウムが蓄積することが知られている。.

新しい!!: 亜鉛とカドミウム · 続きを見る »

カキ (貝)

イワガキの殻の例 イワガキ(三重県志摩産)非養殖物 殻を開いたところ カキ(牡蛎、蛎、牡蠣、蠣、牡蠇、蠇)は、ウグイスガイ目イタボガキ科とベッコウガキ科に属する二枚貝の総称、あるいはカキ目もしくはカキ上科に属する種の総称。海の岩から「かきおとす」ことから「カキ」と言う名がついたといわれる。古くから、世界各地の沿岸地域で食用、薬品や化粧品、建材(貝殻)として利用されている。 なお英語でカキを指す“oyster”という語は、日本語の「カキ」よりも広義に使われ、岩などに着生する二枚貝のうち形がやや不定形で表面が滑らかでないものであれば全てが含まれる。日本ではカキとは呼ばないアコヤガイ類を pearl oyster と言うほか、ウミギク科やかなり縁遠いキクザル科の貝類も oyster と呼ばれることがあるため、必ずしも oyster=カキではない。.

新しい!!: 亜鉛とカキ (貝) · 続きを見る »

カソード

ード(Cathode、Kathode)は、外部回路へ電流が流れ出す電極のこと。外部回路から電子が流れ込む電極とも言える。 電気分解や電池においては、カソードは電気化学的に還元が起こる電極である。 カソードという語はマイケル・ファラデーにより命名され、ギリシア語で下り口を意味するCathodosに由来する。 カソードと逆の電極はアノードである。カソードとアノードの区別は、電流(電子)の向きによって決まるのであり、電位の高低によらないことに注意を要する。.

新しい!!: 亜鉛とカソード · 続きを見る »

ガリウム

リウム (gallium) は原子番号31の元素で、元素記号は Ga である。ホウ素、アルミニウムなどと同じ第13族元素に属する。圧力、温度によっていくつかの安定な結晶構造がある。常温、常圧では斜方晶系が安定(比重 5.9)で、青みがかった金属光沢がある金属結晶である。融点は 29.8 と低いが、一方、沸点は 2403 村上 (2004) 124頁。(異なる実験値あり)と非常に高い。酸やアルカリに溶ける両性である。価電子は3個 (4s, 4p) だが、3d軌道も比較的浅いところにある。 また、水と同じように、液体の方が固体よりも体積が小さい異常液体である。ガリウムは固体から液体になると、その体積が約3.4%減少する。そのため金属のガリウムをガラス容器に保管すると相転移に伴う体積変化によって容器が破損するため、通常はポリ容器に保管される。.

新しい!!: 亜鉛とガリウム · 続きを見る »

ガンマ崩壊

ンマ崩壊(ガンマほうかい、)、γ崩壊は、励起された原子核がガンマ線を放出して崩壊する放射性崩壊。ガンマ崩壊は、アルファ崩壊やベータ崩壊と違い、核種が変わらない、つまり、原子番号や質量数が変わらない崩壊である。 具体的には、エネルギーをもらうなどして励起された原子核、アルファ崩壊やベータ崩壊などで崩壊した娘核種がすでに励起した状態であった場合は、高いエネルギー準位から低いエネルギー準位に遷移する際に、その準位間のエネルギー差に等しいエネルギーを持つガンマ線を放出して安定な原子核へと移行する。励起状態の核がγ線を放出するまでの時間は極めて短く、おおむね10-10秒以下である。 ガンマ崩壊はその崩壊において、角運動量とパリティの違いから.

新しい!!: 亜鉛とガンマ崩壊 · 続きを見る »

キロワット時

ワット時(キロワットじ)は、エネルギー、仕事、熱量、電力量の単位(物理単位)である。英語ではキロワットアワー (kilowatt hour) という。単位記号はkWh。英国の古い表記では Board of Trade Unit (B.O.T.U.) である。 キロワット時という単位は、仕事率、電力の単位であるキロワット (kW) と、時間の単位である時 (h) から組み立てた単位である。すなわち1キロワット時とは、1キロワットの仕事率で1時間続けたときの仕事、あるいは1キロワットの電力を1時間消費もしくは発電したときの電力量ということになる。 ワットがエネルギーの単位であるジュールを秒で除したものであるので(ワット=ジュール毎秒)、これに時間を乗ずれば再びエネルギーの単位となる。1時間は3,600秒であるから、1キロワット時は3,600秒×1キロジュール(1,000ジュール)、すなわち3.6メガジュール(メガワット秒)となる。 キロワット時は、電気エネルギーの単位としてよく用いられる。電力の単位としてワットを用いることから、ジュールで表すよりも理解しやすい。時がSI併用単位であるため、キロワット時もSI併用単位ということになる。SIの「1物理量1単位」という理念からすれば、エネルギーの単位にはジュール(またはワット秒)を用いるべきとの考え方もある。日本の計量法では仕事、電力量の単位としてジュール(ワット秒)と共にワット時の使用を認めている。 1ワット時は1キロワット時の1,000分の1ということになるが、ワット時という単位が用いられる場面はほとんどなかった。しかし、電気自動車の一般化に伴い、効率の目安として、「Wh/km」という単位が諸元表やカタログに表記されるようになっている。1 km 走行したとき、消費電力の少ない車両のほうが Wh の数値が小さくなる。内燃機関自動車で言う「燃費」に相当する概念で、「電費」と呼ばれることもある。 また、本来ならば1,000キロワット時以上は「メガワット時」「ギガワット時」などとすべきであるが、日本の電力会社では電気使用量の単位としてキロワット時を用いており、大規模な発電所の累計発生電力量は「億キロワット時」を用いて表している。.

新しい!!: 亜鉛とキロワット時 · 続きを見る »

キプロス

プロス共和国(キプロスきょうわこく、Κυπριακή Δημοκρατία、Kıbrıs Cumhuriyeti)、通称キプロスは、トルコの南の東地中海上に位置するキプロス島の大部分を占める共和制国家で、イギリス連邦加盟国である。首都はニコシア。ヨーロッパ連合加盟国。公用語はギリシア語。 キプロス島の一部は、イギリス海外領土のアクロティリおよびデケリアであり、往来は容易であるものの共和国領ではない。さらに1974年以来、南北に分断されており、島の北部約37%を、国際的にはトルコ共和国のみが承認する「独立国家」であるトルコ系住民による北キプロス・トルコ共和国が占めている。一方のキプロス共和国は国際連合加盟国193か国のうち、192か国(トルコを除く)が国家承認をしている。 キプロスは元来はギリシャ系住民とトルコ系住民の混住する複合民族国家だったが、分断後は事実上、ギリシャ系によるほぼ単一民族国家となっている。.

新しい!!: 亜鉛とキプロス · 続きを見る »

グレーチング

レーチング(grating)とは、鋼材を格子状に組んだ溝蓋である。素材は鉄(亜鉛メッキ)、ステンレス、アルミニウム、FRP製などがある。 鉄製(SS製)グレーチン.

新しい!!: 亜鉛とグレーチング · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: 亜鉛とケルビン · 続きを見る »

コネチカット州

ネチカット州(State of Connecticut、, )は、アメリカ合衆国北東部にあるニューイングランド地方では最南の州である。州の北はマサチューセッツ州に接し、東はロードアイランド州に、西はニューヨーク州、南は大西洋に続くロングアイランド湾に接している。イギリスから最初に独立した13州のうちの一つである。日本語ではコネティカット州と書く場合もある。.

新しい!!: 亜鉛とコネチカット州 · 続きを見る »

コバルト

バルト (cobalt、cobaltum) は、原子番号27の元素。元素記号は Co。鉄族元素の1つ。安定な結晶構造は六方最密充填構造 (hcp) で、強磁性体。純粋なものは銀白色の金属である。722 K以上で面心立方構造 (fcc) に転移する。 鉄より酸化されにくく、酸や塩基にも強い。.

新しい!!: 亜鉛とコバルト · 続きを見る »

コムギ

ムギ(小麦)はイネ科コムギ属に属する一年草の植物。一般的にはパンコムギ(学名: Triticum aestivum)を指すが、広義にはクラブコムギ(学名: Triticum compactum)やデュラムコムギ(学名: Triticum durum)などコムギ属(学名: Triticum)の植物全般を指す。世界三大穀物の一つ。古くから栽培され、世界で最も生産量の多い穀物のひとつである。年間生産量は約7.3億トンであり、これはトウモロコシの約10.4億トンには及ばないが、米の約7.4億トンにほぼ近い(2014年)。 他の三大穀物と同じく基礎食料であり、各国で生産された小麦はまずは国内で消費され、剰余が輸出される。 日本国内において、麦(小麦・大麦・はだか麦)は食糧法により価格統制が存在する。.

新しい!!: 亜鉛とコムギ · 続きを見る »

コークス

ークス(ドイツ語:Koks、英語:coke)とは、石炭を乾留(蒸し焼き)して炭素部分だけを残した燃料のことである。漢字では骸炭と書く。.

新しい!!: 亜鉛とコークス · 続きを見る »

ジルコニウム

ルコニウム(zirconium)は原子番号40の元素。元素記号は Zr。チタン族元素の1つ、遷移金属でもある。常温で安定な結晶構造は、六方最密充填構造 (HCP) のα型。862 ℃以上で体心立方構造 (BCC) のβ型へ転移する。比重は6.5、融点は1852 ℃。銀白色の金属で、常温で酸、アルカリに対して安定。耐食性があり、空気中では酸化被膜ができ内部が侵されにくくなる。高温では、酸素、窒素、水素、ハロゲンなどと反応して、多様な化合物を形成する。.

新しい!!: 亜鉛とジルコニウム · 続きを見る »

ジンクホワイト

ンクホワイト (Zinc White) は酸化亜鉛を主成分とする白色顔料、及び、それからなる絵具。顔料は特に、亜鉛華と呼称する。.

新しい!!: 亜鉛とジンクホワイト · 続きを見る »

ジンククロメート

ンククロメート(Zinc Chromate)は、亜鉛とクロム酸イオンを主成分とする化合物のこと。.

新しい!!: 亜鉛とジンククロメート · 続きを見る »

ジェフリー・ウィルキンソン

ェフリー・ウィルキンソン(Geoffrey Wilkinson, 1921年7月14日 – 1996年9月26日)は、イギリスの化学者。1973年、有機金属錯体に関する研究の功績で、エルンスト・オットー・フィッシャーと共にノーベル化学賞を受賞した。.

新しい!!: 亜鉛とジェフリー・ウィルキンソン · 続きを見る »

ジエチル亜鉛

チル亜鉛(ジエチルあえん、)は化学式(C2H5)2Znで表される有機亜鉛化合物。亜鉛にエチル基が2つ付いた構造で、自然発火性がある。.

新しい!!: 亜鉛とジエチル亜鉛 · 続きを見る »

スウェーデン人

ウェーデン人(スウェーデンじん、svenskar)は、スウェーデンの国民、または、北欧スカンディナヴィア半島に分布するゲルマン民族の総称。以下、後者についてここで解説する。 主にスウェーデンをはじめ、ノルウェー、フィンランドに住んでいる。 98年、タキトゥスの記した「ゲルマニア」によると、強勢な種族 "Suiones"()の存在が確認出来る。北欧神話によれば、スヴェーア人は古代の紀元前1世紀頃の王にまで遡ることが出来、2世紀にはルーン文字を使用していた。スヴェーア人たちは、ヴァイキング活動の最中に纏まりを見せ、10世紀までにスウェーデン王国を形成した。なお、東方及び東欧に進出したヴァイキングの中には、ルーシ族などがヴァリャーグを構成し、ルーシ諸国家(キエフ・ルーシ等)の建設を担ったとされるが、これもスヴェーア人を含んだゲルマン人だとされている。 これらのスヴェーア人によってスウェーデン人が形成されたものと思われるが、民族としてのスウェーデン人は16世紀のデンマークを盟主としたカルマル同盟からの独立によって成立したと言える。フィンランドにいるスウェーデン人は、北方十字軍以降に移住したスウェーデン系フィンランド人を指す。また19世紀から20世紀にかけてアメリカ合衆国に移住したスウェーデン人は、スウェーデン系アメリカ人と言い、主に北部に移住している(アメリカ移民と同時期にカナダに移住したスウェーデン人は、スウェーデン系カナダ人を形成した)。 スウェーデン語を母語とするスウェーデン人は、現在、本国スウェーデンの他、フィンランドとフィンランドの自治領オーランド諸島に住む。南部のスコーネ県はデーン人に由来し、現在もデンマーク語に近い方言を話すが、一般的にはスウェーデン人に含まれる。なお、スウェーデン国内には、サーミ人やフィンランド人も少数おり、近年は移民も受け入れている。宗教はプロテスタント系のルター派(ルーテル教会)が多数を占めており、国教(スウェーデン国教会)となっている。近年の世論調査では、90%がスウェーデン人を自認している。.

新しい!!: 亜鉛とスウェーデン人 · 続きを見る »

スズ

(錫、Tin、Zinn)とは、典型元素の中の炭素族元素に分類される金属で、原子番号50の元素である。元素記号は Sn。.

新しい!!: 亜鉛とスズ · 続きを見る »

セレン化亜鉛

レン化亜鉛(セレンかあえん、zinc selenide、ジンクセレナイド)は、淡黄色の不溶性の固体である。25 で2.7 eVのバンドギャップを持つ真性半導体である。標準生成エンタルピーは25 で177.6 kJ/molである。結晶は閃亜鉛鉱の形をとり、格子定数はa.

新しい!!: 亜鉛とセレン化亜鉛 · 続きを見る »

サーバ

ウィキメディア財団のサーバ サーバあるいはサーバー(server)は、サービスを提供するコンピュータである。コンピュータ分野のクライアントサーバモデルでは、クライアントからの要求に対して情報や処理結果を提供する機能を果たす側のコンピュータやソフトウェアを指す。本稿ではこの意味で記載する。 サーバにはファイルサーバ、メールサーバ、Webサーバなど多数の用途や種類がある。更にサーバ用のコンピュータ機器(ハードウェア)などもサーバと呼ぶ場合がある。.

新しい!!: 亜鉛とサーバ · 続きを見る »

サプリメント

プリメント(supplement)とは、栄養補助食品(えいようほじょしょくひん)とも呼ばれ、ビタミンやミネラル、アミノ酸など栄養摂取を補助することや、ハーブなどの成分による薬効が目的である食品である。略称はサプリ。ダイエタリー・サプリメント(dietary supplement)は、アメリカ合衆国での食品の区分の一つである。ほかにも生薬、酵素、ダイエット食品など様々な種類のサプリメントがある。健康補助食品(けんこうほじょしょくひん)とも呼ばれる。 またその市場拡大につれ議論も起こっている。.

新しい!!: 亜鉛とサプリメント · 続きを見る »

免疫系

免疫系(めんえきけい、immune system)とは、生体内で病原体などの非自己物質やがん細胞などの異常な細胞を認識して殺滅することにより、生体を病気から保護する多数の機構が集積した機構である。精密かつダイナミックな情報伝達を用いて、細胞、組織、器官が複雑に連係している。この機構はウイルスから寄生虫まで広い範囲の病原体を感知し、作用が正しく行われるために、生体自身の健常細胞や組織と区別しなければならない。 この困難な課題を克服して生き延びるために、病原体を認識して中和する機構が一つならず進化した。細菌のような簡単な単細胞生物でもウイルス感染を防御する酵素系をもっている。その他の基本的な免疫機構は古代の真核生物において進化し、植物、魚類、ハ虫類、昆虫に残存している。これらの機構はディフェンシンと呼ばれる抗微生物ペプチドが関与する機構であり、貪食機構であり、 補体系である。ヒトのような脊椎動物はもっと複雑な防御機構を進化させた。脊椎動物の免疫系は多数のタイプのタンパク質、細胞、器官、組織からなり、それらは互いに入り組んだダイナミックなネットワークで相互作用している。このようないっそう複雑な免疫応答の中で、ヒトの免疫系は特定の病原体に対してより効果的に認識できるよう長い間に適応してきた。この適応プロセスは適応免疫あるいは獲得免疫(あるいは後天性免疫)と呼ばれ、免疫記憶を作り出す。特定の病原体への初回応答から作られた免疫記憶は、同じ特定の病原体への2回目の遭遇に対し増強された応答をもたらす。獲得免疫のこのプロセスがワクチン接種の基礎である。 免疫系が異常を起こすと病気になる場合がある。免疫系の活動性が正常より低いと、免疫不全病が起こり感染の繰り返しや生命を脅かす感染が起こされる。免疫不全病は、重症複合免疫不全症のような遺伝病の結果であったり、レトロウイルスの感染によって起こされる後天性免疫不全症候群 (AIDS) や医薬品が原因であったりする。反対に自己免疫病は、正常組織に対しあたかも外来生物に対するように攻撃を加える、免疫系の活性亢進からもたらされる。ありふれた自己免疫病として、関節リウマチ、I型糖尿病、紅斑性狼瘡がある。免疫学は免疫系のあらゆる領域の研究をカバーし、ヒトの健康や病気に深く関係している。この分野での研究をさらに推し進めることは健康増進および病気の治療にも期待できる。.

新しい!!: 亜鉛と免疫系 · 続きを見る »

六方最密充填構造

六方最密充填構造(ろっぽうさいみつじゅうてんこうぞう、hexagonal close-packed, hcp)とは、結晶構造の一種である。学術用語では、稠密六方格子構造(ちゅうみつろっぽうこうしこうぞう)、または単に六方格子構造などと呼ばれる。 六方最密充填構造は一般に正六角柱で表し、この正六角柱の上面および底面の各角および中心と、六角柱の内部で高さ 1/2 のところに 3 つの原子が存在する。底面の中心に位置する原子は、底面の角の 6 原子および上下の各 3 原子(計 12 原子)と接しており、最密充填構造となっている。また、原子の最稠密面をABAB…(A, Bは原子の位置の種類を示す)の順に重ねた構造と表現することもできる。充填率は立方最密充填構造(面心立方格子構造)と等しいが、別の構造である。.

新しい!!: 亜鉛と六方最密充填構造 · 続きを見る »

共有結合

H2(右)を形成している共有結合。2つの水素原子が2つの電子を共有している。 共有結合(きょうゆうけつごう、covalent bond)は、原子間での電子対の共有をともなう化学結合である。結合は非常に強い。ほとんどの分子は共有結合によって形成される。また、共有結合によって形成される結晶が共有結合結晶である。配位結合も共有結合の一種である。 この結合は非金属元素間で生じる場合が多いが、金属錯体中の配位結合の場合など例外もある。 共有結合はσ結合性、π結合性、金属-金属結合性、アゴスティック相互作用、曲がった結合、三中心二電子結合を含む多くの種類の相互作用を含む。英語のcovalent bondという用語は1939年に遡る。接頭辞のco- は「共同」「共通」などを意味する。ゆえに、「co-valent bond」は本質的に、原子価結合法において議論されているような「原子価」(valence)を原子が共有していることを意味する。 分子中で、水素原子は共有結合を介して2つの電子を共有している。共有結合性は似た電気陰性度の原子間で最大となる。ゆえに、共有結合は必ずしも同種元素の原子の間だけに生じるわけではなく、電気陰性度が同程度であればよい。3つ以上の原子にわたる電子の共有を伴う共有結合は非局在化している、と言われる。.

新しい!!: 亜鉛と共有結合 · 続きを見る »

元素記号

在の元素記号(硫黄) ドルトンの元素記号(硫黄) 元素記号(げんそきごう)とは、元素、あるいは原子を表記するために用いられる記号のことであり、原子記号(げんしきごう)とも呼ばれる。現在は、1、2、ないし3文字のアルファベットが用いられる。 なお、現在正式な元素記号が決定している最大の元素は原子番号118のOg(オガネソン)である。 分子の組成をあらわす化学式や、分子の変化を記述する化学反応式などで利用される。 現在使用されている元素記号は1814年にベルセリウスが考案したものに基づいており、ラテン語などから1文字または2文字をとってつくられている。 全ての元素記号がラテン語名と一致しているが、ギリシア語、英語、ドイツ語(その他スペイン語やスウェーデンの地名からの採用もある)などからの採用も多く、ラテン語名との一致は偶然または語源を通した間接的なものである。元素名が確定されていない超ウラン元素については、3文字の系統名が用いられる。 物質の構成要素を記号であらわすことはかつての錬金術においてもおこなわれていた。 化学者ジョン・ドルトンも独自の記号を開発して化学反応を記述していたが、現在はアルファベットでの表記が国際的に使われている。 原子番号16番で質量数35の放射性硫黄原子1つと酸素原子4つからなる2価の陰イオンの硫酸イオンのイオン式。 原子番号や質量数を付記する場合、原子番号は左下に (13Al)、質量数は左上に (27Al)、イオン価は右肩に (Al3+)、原子数は右下に (N2) 付記する。.

新しい!!: 亜鉛と元素記号 · 続きを見る »

光沢

光沢(こうたく、、)は、物体表面の物理的性質で、対応する心理的属性を「つや(艶)」や「光沢感」などと呼ぶ。光沢は主として光を反射する程度によって決まるが、実際には、正反射光と散乱反射光の強さの比、正反射像の鮮明さ、表面のざらつき模様などが強く影響する。 光沢は表面反射光が強い金属光沢と透明物質に伴う非金属光沢との2種類に大別され、非金属光沢はさらに細分される。 紙や塗料などでは光沢の規格が定められており、工業的に規格化されている光沢の測定方法としては、ISO 2813 (JIS Z 8741:1997) において規格されている鏡面光沢度がある。.

新しい!!: 亜鉛と光沢 · 続きを見る »

前立腺

前立腺 前立腺(ぜんりつせん)(prostate)は、器官の一つで、男性のみに存在する生殖器。膀胱の真下にあり、尿道を取り囲むかたちで存在、精嚢が隣接。クルミほどの大きさで、重さは数十グラム。女性器におけるスキーン腺に相同である。また、前立腺小室(男性子宮)は同様に子宮に相同である。.

新しい!!: 亜鉛と前立腺 · 続きを見る »

創傷

創傷(そうしょう、trauma, wounds, burns)は、外的、内的要因によって起こる体表組織の物理的な損傷を指す。創(そう)と傷(しょう)という異なるタイプの損傷をまとめて指す総称である。日常語では傷(きず)と呼ばれる。 その形状や原因(機転)などによって擦過傷、切創、裂創、刺創 等々に分類している。 応急処置の止血は圧迫による。創傷からの回復を促すために創傷環境調整が提唱されており、壊死組織の除去(デブリードマン)、感染や炎症への対処、乾燥の防止、滲出液の管理などがある。軽い傷は水道水や、生理食塩水によって洗浄され、外用薬、適切な湿潤環境を維持するための薄い創傷被覆材(ドレッシング材)が用いられる。目的なく漫然と消毒などは行わず、感染しつつある段階から消毒や抗生物質などによる対処が考慮され、壊死組織がある場合には除去され、滲出液を吸収するためのドレッシング材が選択される。.

新しい!!: 亜鉛と創傷 · 続きを見る »

国立健康・栄養研究所

国立健康・栄養研究所(2007年3月) 国立健康・栄養研究所(こくりつけんこうえいようけんきゅうじょ、National Institute of Health and Nutrition)は、栄養と健康に関する調査研究を行っている日本の研究機関である。前身は1914年に佐伯矩によって設立された、世界初の栄養学研究機関である営養研究所である(当時は栄養を「営養」と表記することが多かった)。1919年に内務省の栄養研究所として設置され、変遷を経て2001年より独立行政法人となったが、2015年に医薬基盤研究所と統合し、医薬基盤・健康・栄養研究所の傘下機関となった。.

新しい!!: 亜鉛と国立健康・栄養研究所 · 続きを見る »

皮膚炎

膚炎(ひふえん)とは、皮膚に起こる炎症のこと。別名湿疹()ともいう。湿疹の特徴として「外見上、多様性に富む固疹が、時間的にも状態的にもみられる」「病理学的にリンパ球などの炎症細胞浸潤がみられること」などがあげられるが、統一した定義をつけることが困難な概念である。外見の変化を専門的には湿疹の三角形と言われ別項に記す。 湿疹とは病態(動き)を示す言葉であり、ある湿疹を診た時に、発疹が起こっているとは言うことができるが、発疹を診てこれは湿疹だと言うことはできない(同じことが蕁麻疹でもいうことができる)。皮膚に起こる形態的徴候は皮膚科学の言葉で発疹として別に定義されている。.

新しい!!: 亜鉛と皮膚炎 · 続きを見る »

石炭

石炭(せきたん、英:coal)とは、古代(数億年前)の植物が完全に腐敗分解する前に地中に埋もれ、そこで長い期間地熱や地圧を受けて変質(石炭化)したことにより生成した物質の総称。見方を変えれば植物化石でもある。 石炭は古くから、産業革命以後20世紀初頭まで最重要の燃料として、また化学工業や都市ガスの原料として使われてきた。第一次世界大戦前後から、艦船の燃料が石炭の2倍のエネルギーを持つ石油に切り替わり始めた。戦間期から中東での油田開発が進み、第二次世界大戦後に大量の石油が採掘されて1バレル1ドルの時代を迎えると産業分野でも石油の導入が進み(エネルギー革命)、西側先進国で採掘条件の悪い坑内掘り炭鉱は廃れた。 しかし1970年代に二度の石油危機で石油がバレルあたり12ドルになると、産業燃料や発電燃料は再び石炭に戻ったが、日本国内で炭鉱が復活することは無かった。豪州の露天掘りなど、採掘条件の良い海外鉱山で機械化採炭された、安価な海外炭に切り替わっていたからである。海上荷動きも原油に次いで石炭と鉄鉱石が多く、30万トンの大型石炭船も就役している。 他の化石燃料である石油や天然ガスに比べて、燃焼した際の二酸化炭素 (CO2) 排出量が多く、地球温暖化の主な原因の一つとなっている。また、硫黄酸化物の排出も多い。.

新しい!!: 亜鉛と石炭 · 続きを見る »

理化学研究所

国立研究開発法人理化学研究所(こくりつけんきゅうかいはつほうじんりかがくけんきゅうしょ、RIKEN、Institute of Physical and Chemical Research)は、埼玉県和光市に本部を持つ自然科学系総合研究所。略称は「理研」。.

新しい!!: 亜鉛と理化学研究所 · 続きを見る »

硝酸

硝酸(しょうさん、nitric acid)は窒素のオキソ酸で、化学式 HNO3 で表される。代表的な強酸の1つで、様々な金属と反応して塩を形成する。有機化合物のニトロ化に用いられる。硝酸は消防法第2条第7項及び別表第一第6類3号により危険物第6類に指定され、硝酸を 10 % 以上含有する溶液は医薬用外劇物にも指定されている。 濃硝酸に二酸化窒素、四酸化二窒素を溶かしたものは発煙硝酸、赤煙硝酸と呼ばれ、さらに強力な酸化力を持つ。その強力な酸化力を利用してロケットの酸化剤や推進剤として用いられる。.

新しい!!: 亜鉛と硝酸 · 続きを見る »

硝酸亜鉛

硝酸亜鉛(しょうさんあえん、zinc nitrate)は化学式 Zn(NO3)2 で表される亜鉛の硝酸塩である。.

新しい!!: 亜鉛と硝酸亜鉛 · 続きを見る »

硫化亜鉛

硫化亜鉛(りゅうかあえん、Zinc sulfide)は組成式 ZnS で表される共有結合性の化合物で、白または黄色の粉末または結晶である。普通はより安定な立方晶系型として存在し、これは閃亜鉛鉱として産出する。六方晶系型は合成によって得られるが、ウルツ鉱としても天然に存在する。閃亜鉛鉱とウルツ鉱はそれぞれ固有の大きなバンドギャップを持つ半導体である。300 ケルビンにおけるバンドギャップの値は、ウルツ鉱が3.91電子ボルト、閃亜鉛鉱が3.54電子ボルトである。 閃亜鉛鉱型からウルツ鉱型への結晶構造の転移は約1293.15ケルビンで起こる。閃亜鉛鉱型 ZnS の融点は1991ケルビンで、その298ケルビンにおける標準生成エンタルピーは −204.6 KJ/mol である。.

新しい!!: 亜鉛と硫化亜鉛 · 続きを見る »

硫黄

硫黄(いおう、sulfur, sulphur)は原子番号 16、原子量 32.1 の元素である。元素記号は S。酸素族元素の一つ。多くの同素体や結晶多形が存在し、融点、密度はそれぞれ異なる。沸点 444.674 ℃。大昔から自然界において存在が知られており、発見者は不明になっている。硫黄の英名 sulfur は、ラテン語で「燃える石」を意味する言葉に語源を持っている。.

新しい!!: 亜鉛と硫黄 · 続きを見る »

硫酸

硫酸(りゅうさん、sulfuric acid)は、化学式 H2SO4 で示される無色、酸性の液体で硫黄のオキソ酸の一種である。古くは緑礬油(りょくばんゆ)とも呼ばれた。化学薬品として最も大量に生産されている。.

新しい!!: 亜鉛と硫酸 · 続きを見る »

硫酸亜鉛

硫酸亜鉛(りゅうさんあえん Zinc sulfate)は、硫酸と亜鉛の塩である。水溶液から結晶化させると、温度によって7、6、または1水和物が得られる。皓礬(こうばん)とも呼ばれる斜方晶で水によく溶け、繊維工業、医薬品、また条件付きで食品添加物にも使用される。 粗製亜鉛から湿式精錬によって亜鉛を精錬するときの中間生成物である。 7水和物では、H2O6分子が亜鉛に、1分子が硫酸イオンの酸素に配位している。 加熱すると約250°Cで無水物(密度3.74g/cm3)となり、600°CでZn3O(SO4)2に、930°Cで酸化亜鉛ZnOに分解する。.

新しい!!: 亜鉛と硫酸亜鉛 · 続きを見る »

神岡鉱山

岡鉱業亜鉛製錬工場 神岡鉱山(かみおかこうざん)は、岐阜県飛騨市(旧吉城郡神岡町)にあった亜鉛・鉛・銀鉱山。2001年6月に鉱石の採掘を中止した。.

新しい!!: 亜鉛と神岡鉱山 · 続きを見る »

神経症

経症(しんけいしょう、英:Neurosis、独:Neurose)とは、精神医学の伝統的な用語で、不安などの不適応行動を特徴とし、入院するほど重篤ではない場合が多い状態である。1980年のDSM-III(第3版)では神経症という語を廃止し、神経症性うつ病(抑うつ神経症)の多くは気分変調性障害に含められた。またDSM-IIIは不安神経症を、パニック障害と全般性不安障害に分離した。強迫神経症は強迫性障害となったように、現在では神経症の語は用いられない。 神経症に対するかつての用語は、精神病であり、行動や思考過程の障害が激しくより重篤な状態を指した。 これは主に精神分裂病や躁うつ病であり、原因が器質的(身体的)なものによらない精神障害のことをさす。このような神経症と精神病の分類は不正確な診断をもたらしたため、後の『精神障害の診断と統計マニュアル』(DSM)は、より厳密な分類によって、より正確な診断を可能とした。 ジークムント・フロイトが最終的な神経症の概念を確立した。このようにかつて、心因性であることが神経症の診断に必要であったが、後に抗うつ薬などの登場によって生物学的な要因が仮定されたことも、この概念が陰りを見せてきた理由である。.

新しい!!: 亜鉛と神経症 · 続きを見る »

空気亜鉛電池

気亜鉛電池(くうきあえんでんち、英語:zinc–air battery)は、燃料電池の一種で単に空気電池とも呼ばれる。現在では主にボタン型電池として利用され、使用時には電極に張られているシールを剥がして用いる。一度剥がしたシールを貼り直して保存することはできない。正極に空気中の酸素、負極に亜鉛を使用するものを言う。電解液にはアルカリ金属水酸化物が使われるが、現在では水酸化カリウムを用いるものが主流。ドライタイプとウェットタイプ(現在はドライタイプのみ)がある。 化学反応としては、.

新しい!!: 亜鉛と空気亜鉛電池 · 続きを見る »

窒化亜鉛

化亜鉛(ちっかあえん、)は、亜鉛の窒化物。化学式はZn3N2。純粋なものは立方晶型の結晶構造をとる 。1940年に、Juzaらにより初めて合成された - patentjp.com。.

新しい!!: 亜鉛と窒化亜鉛 · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: 亜鉛と窒素 · 続きを見る »

第12族元素

12族元素(だいじゅうにぞくげんそ)は亜鉛・カドミウム・水銀・コペルニシウムの総称。亜鉛族元素(あえんぞくげんそ)とも呼ばれる。 最外殻にns2電子配置を持つ。内部のd殻は満たされているため、一般に亜鉛族元素はDブロック元素であるが遷移金属の性質は示さず典型元素の金属としての性質を示す。 かつて短周期表では遷移元素に分類されていたが、第12族元素は閉殻していないd軌道を持たないため、現在のIUPACの定義に従えば遷移元素とは分類されない。.

新しい!!: 亜鉛と第12族元素 · 続きを見る »

第15族元素

15族元素(だいじゅうごぞくげんそ)は、周期表において第15族に属する窒素・リン・ヒ素・アンチモン・ビスマス・モスコビウムのこと。窒素族元素、V族元素(ごぞくげんそ)、プニクトゲン (またはニクトゲン、pnictogen)とよばれることもある。プニクトゲンの名はギリシャ語のπνίγειν(pnigein)が語源で、窒素の特性である「窒息する」を意味する。 15族は窒素族とも呼ばれるが、特にプニクトゲンと呼ぶ場合は窒素(N)を除外する。これは窒素が非金属であるのに対し、他の元素(P、As、Sb、Bi)は半金属元素であり特性が異なるためである。 これらの単体は古くから知られており、ヒ素、アンチモン、ビスマスは近代以前に知られていた。リンが17世紀、窒素は18世紀の発見である。.

新しい!!: 亜鉛と第15族元素 · 続きを見る »

第16族元素

16族元素(だいじゅうろくぞくげんそ)は周期表において第16族に属する元素の総称。酸素・硫黄・セレン・テルル・ポロニウム・リバモリウムがこれに分類される。酸素族元素、カルコゲン(chalcogen)とも呼ばれる。 硫黄 、セレン、テルルは性質が似ているのに対し、酸素はいささか性質が異なり、ポロニウムは放射性元素で天然における存在量が少ない。この硫黄 、セレン、テルルは金属元素と化合物を形成し種々の鉱石の主成分となっている。それ故、この三種の元素からなる元素族をギリシャ語で「石を作るもの」という意味のカルコゲンと命名された。また、3種の元素を硫黄族元素と呼ぶ場合もある。その後、周期表が充実されると、第16族をカルコゲンと呼び表す場面が見られるようになった。それ故、性質の異なる酸素はカルコゲンに含めない場合もある。.

新しい!!: 亜鉛と第16族元素 · 続きを見る »

第17族元素

17族元素(だいじゅうななぞくげんそ、halogèneアロジェーヌ、halogen ハロゲン)は周期表において第17族に属する元素の総称。フッ素・塩素・臭素・ヨウ素・アスタチン・テネシンがこれに分類される。ただしアスタチンは半減期の長いものでも数時間であるため、その化学的性質はヨウ素よりやや陽性が高いことがわかっている程度である。またテネシンは2009年にはじめて合成されており、わかっていることはさらに少ない。 フッ素、塩素、臭素、ヨウ素は性質がよく似ており、アルカリ金属あるいはアルカリ土類金属と典型的な塩を形成するので、これら元素からなる元素族をギリシャ語の 塩 alos と、作る gennao を合わせ「塩を作るもの」という意味の「halogen ハロゲン」と、18世紀フランスで命名された。これらの任意の元素を表すために化学式中ではしばしば X と表記される。任意のハロゲン単体を X2 と表す。.

新しい!!: 亜鉛と第17族元素 · 続きを見る »

第18族元素

18族元素(だいじゅうはちぞくげんそ)とは、長周期表における第18族に属する元素、すなわち、ヘリウム・ネオン・アルゴン・クリプトン・キセノン・ラドン・オガネソンをいう。なお、これらのうちで安定核種を持つのは、第1周期元素のヘリウムから第5周期元素のキセノンまでである。貴ガス (noble gas) のほか希ガス・稀ガス(rare gas)と呼ばれる。.

新しい!!: 亜鉛と第18族元素 · 続きを見る »

筋肉

'''骨格筋の構造''' 筋肉は複数の筋束からなる(中央上)。筋束は筋繊維(筋細胞)の集まりである(右上)。複数の筋原繊維が束ねられて筋繊維を形作る(右中央)。筋原繊維はアクチンタンパク質とミオシンタンパク質が入れ子状になった構造を取る(右下)。 Cardiac muscle) 筋肉(きんにく、羅: musculus; 独: Muskel; 仏, 英: muscle)は、動物の持つ組織のひとつで、収縮することにより力を発生させる、代表的な運動器官である生化学辞典第2版、p.357 【筋肉】。 動物の運動は、主として筋肉によってもたらされる。ただし、細部に於ける繊毛や鞭毛による運動等、若干の例外はある。 なお、筋肉が収縮することにより発生する力を筋力と呼び、これは収縮する筋肉の断面積に比例する。つまり筋力は、筋肉の太さに比例している。 また、食用に供する食肉は主に筋肉であり、脊髄動物の骨格筋は湿重量の約20%をタンパク質が占め、主にこれを栄養として摂取するために食される生化学辞典第2版、p.357 【筋(肉)タンパク質】。(ただし、食料品店で肉と表示されているものは筋肉だけでなく脂身(脂肪分の塊)も一緒になった状態で、タンパク質ばかりでなく、かなりの高脂肪の状態で販売されていることが多い。) 中医学では肌肉とも言われる。.

新しい!!: 亜鉛と筋肉 · 続きを見る »

精子

精子(せいし)とは、雄性の生殖細胞の一つ。動物、藻類やコケ植物、シダ植物、一部の裸子植物(イチョウなど)にみられる。 卵子(右下)に到達した精子 頭部と尾部が見分けられる '''精子の構造''' 細胞核からなる頭部(青)、ミトコンドリアを含みエネルギーを生成する中片部、推進運動を行う尾部からなる。.

新しい!!: 亜鉛と精子 · 続きを見る »

精液

精液(せいえき)とは、動物にみられるオスの生殖器官から分泌される精子を含む液体。交尾や産卵の際、メスの卵細胞と受精するために、オスの生殖器から放出される。メスの体内で精液を放出し体内受精をする動物の射出は「射精」、水中に精液を放出し体外受精する、魚類や両生類などの水棲動物の射出は「放精」と呼ばれる。.

新しい!!: 亜鉛と精液 · 続きを見る »

糖(とう)とは、多価アルコールの最初の酸化生成物であり、アルデヒド基 (−CHO) またはケトン基 (>C.

新しい!!: 亜鉛と糖 · 続きを見る »

納豆

納豆(なっとう)は、大豆を納豆菌によって発酵させた日本の発酵食品。各種が存在するが、現在では一般的に「糸引き納豆」を指す伊藤寛記、 日本釀造協會雜誌 Vol.71 (1976) No.3 P.173-176, 。菓子の一種である甘納豆とは別物である。 骨にカルシウムを与えて強固にするビタミンK2などのビタミン類やミネラル(マグネシウムなど)、食物繊維、腸に良い乳酸菌、蛋白質が含有されている。骨にも良く、免疫力を高める健康食である。長寿国日本の長生きの秘訣として、各国の健康志向の高まりに伴い、国外でも臭いを弱めたものなども含めて人気を博している。.

新しい!!: 亜鉛と納豆 · 続きを見る »

細胞分裂

細胞分裂(さいぼうぶんれつ)とは、1つの細胞が2個以上の娘細胞に分かれる生命現象。核分裂とそれに引き続く細胞質分裂に分けてそれぞれ研究が進む。単細胞生物では細胞分裂が個体の増殖となる。多細胞生物では、受精卵以後の発生に伴う細胞分裂によって細胞数が増える。それらは厳密な制御機構に裏打ちされており、その異常はたとえばガン化を引き起こす。ウィルヒョウは「細胞は細胞から生ず」と言ったと伝えられているが、これこそが細胞分裂を示している。.

新しい!!: 亜鉛と細胞分裂 · 続きを見る »

紀元前40世紀

山西博物院所蔵の彩陶。 ミケランジェロ・ブオナローティがシスティーナ礼拝堂に描いた創世記の天井画。 紀元前40世紀(きげんぜんよんじゅうせいき)は、西暦による紀元前4000年から紀元前3901年までの100年間を指す世紀。.

新しい!!: 亜鉛と紀元前40世紀 · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

新しい!!: 亜鉛と結晶 · 続きを見る »

結晶構造

結晶構造(けっしょうこうぞう) とは、結晶中の原子の配置構造のことをいう。.

新しい!!: 亜鉛と結晶構造 · 続きを見る »

痙攣

痙攣(けいれん、convulsion)とは、不随意に筋肉が激しく収縮することによって起こる発作。痙攣のパターンは多種多様であるが、大きく全身性の場合と体の一部分である場合とに分けることができる。 痙攣を新規に発症した場合には、医療機関を受診することが重要である。.

新しい!!: 亜鉛と痙攣 · 続きを見る »

炎色反応

色反応(えんしょくはんのう)(焔色反応とも)とは、アルカリ金属やアルカリ土類金属、銅などの金属や塩を炎の中に入れると各金属元素特有の色を示す反応のこと。金属の定性分析や、花火の着色に利用されている。.

新しい!!: 亜鉛と炎色反応 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

新しい!!: 亜鉛と炭素 · 続きを見る »

炭酸亜鉛

炭酸亜鉛(zinc carbonate)は、塩基性炭酸亜鉛または炭酸・水酸化亜鉛の略語として使われる、亜鉛の炭酸塩である。化学式はZnCO3だが、組成は安定しておらず工業分野では一般的に代表的な化学式2ZnCO3・3Zn(OH)2・H2Oで表される。一般には塩基性炭酸亜鉛を指す。天然には菱亜鉛鉱として存在する。.

新しい!!: 亜鉛と炭酸亜鉛 · 続きを見る »

炭酸脱水酵素

炭酸脱水酵素(たんさんだっすいこうそ、Carbonic anhydrase、carbonate dehydratase; 略号: CA)あるいは炭酸デヒドラターゼとは金属プロテイン酵素に属する酵素で二酸化炭素と水を炭酸水素イオンと水素イオンとに迅速に変換する酵素である。この反応は触媒が存在しないときわめて遅い 。炭酸脱水酵素はこの反応速度を非常に増大させる。反応速度はこの酵素の形態により異なり、104から106反応毎秒である.

新しい!!: 亜鉛と炭酸脱水酵素 · 続きを見る »

産業革命

ワットの改良蒸気機関。ワット式蒸気機関の開発は動力源の開発における大きな画期であり、産業革命を象徴するものである 産業革命(さんぎょうかくめい、Industrial Revolution)は、18世紀半ばから19世紀にかけて起こった一連の産業の変革と、それに伴う社会構造の変革のことである。 産業革命において特に重要な変革とみなされるものには、綿織物の生産過程における様々な技術革新、製鉄業の成長、そしてなによりも蒸気機関の開発による動力源の刷新が挙げられる。これによって工場制機械工業が成立し、また蒸気機関の交通機関への応用によって蒸気船や鉄道が発明されたことにより交通革命が起こったことも重要である。 経済史において、それまで安定していた一人あたりのGDP(国内総生産)が産業革命以降増加を始めたことから、経済成長は資本主義経済の中で始まったとも言え、産業革命は市民革命とともに近代の幕開けを告げる出来事であったとされる。また産業革命を「工業化」という見方をする事もあり、それを踏まえて工業革命とも訳される。ただしイギリスの事例については、従来の社会的変化に加え、最初の工業化であることと世界史的な意義がある点を踏まえ、一般に産業革命という用語が用いられている。.

新しい!!: 亜鉛と産業革命 · 続きを見る »

甲状腺

腺(こうじょうせん、Thyroid gland)とは、頚部前面に位置する内分泌器官。甲状腺ホルモン(トリヨードサイロニン、サイロキシン、カルシトニンなど)を分泌する。.

新しい!!: 亜鉛と甲状腺 · 続きを見る »

無煙炭

無煙炭(むえんたん)とは最も炭化度の進んだ石炭。炭素含有量90%以上。石炭化度が高く、他の石炭類と比較し燃焼時の煤煙や臭いが非常に少ない。比重は1.32-1.7。硬度は2-2.5。.

新しい!!: 亜鉛と無煙炭 · 続きを見る »

無月経

無月経(むげっけい)とは、女性に月経が3か月以上ない状態をいう。ここでは病的な意味をもつ無月経を主に取り扱い、初経前、閉経後、妊娠、産褥による生理的無月経に関しては取り扱わない。.

新しい!!: 亜鉛と無月経 · 続きを見る »

熱膨張率

熱膨張率(ねつぼうちょうりつ、、略: )は、温度の上昇によって物体の長さ・体積が膨張(熱膨張)する割合を、温度当たりで示したものである。熱膨張係数(ねつぼうちょうけいすう)とも呼ばれる。温度の逆数の次元を持ち、単位は毎ケルビン(記号: )である。.

新しい!!: 亜鉛と熱膨張率 · 続きを見る »

燃料電池

燃料電池(直接メタノール形燃料電池) 燃料電池(ねんりょうでんち、fuel cell)は、電気化学反応によって燃料の化学エネルギーから電力を取り出す(=発電する)電池を指す。燃料には方式によって、水素、炭化水素、アルコールなどを用いる。.

新しい!!: 亜鉛と燃料電池 · 続きを見る »

異極鉱

極鉱(いきょくこう、hemimorphite、ヘミモルファイト)は鉱物(ケイ酸塩鉱物)の一種。世界中に広く分布している。酸化帯に形成される。化学組成は Zn4Si2O7(OH)2・H2O。斜方晶系。 菱亜鉛鉱と間違われることがあるが、希塩酸の中に入れるか、ブラックライトをあてると見分けられる。希塩酸の中に入れると異極鉱は泡を出さずに溶け、それに対して菱亜鉛鉱は炭酸ガスを出し、シューシューと音を立て、泡立ちながら溶ける。また、ブラックライトを当てると、異極鉱は変化がないが、菱亜鉛鉱はピンク色に変化する。.

新しい!!: 亜鉛と異極鉱 · 続きを見る »

牛乳

ップに入れられた牛乳 牛乳(ぎゅうにゅう、)とは、ウシの乳汁である。日本の#法律による定義は、成分を調整していない生乳が牛乳と定義され、脂肪分を調整したものが低脂肪牛乳などとされ、また商品に「牛乳」の名をつけることができる。牛乳成分を増減したり乳糖を分解すれば加工乳であり、乳飲料は牛乳由来成分以外を加えた栄養添加やコーヒーミルクなどである。牛乳の加工製品は乳製品であり、脱脂粉乳、バター、生クリーム、チーズ、ヨーグルト、アイスクリームなどが作られる。 牛乳はカルシウムが豊富な食品として知られる。脂肪分は飽和脂肪酸の比率が高く、健康上の懸念のため低脂肪牛乳などが製造されている。タンパク質のアミノ酸スコアは100だが、牛乳たんぱく質のカゼインは、特に子供にとって鶏卵に次ぐ主な食物アレルギーの原因となりうる。炭水化物は乳糖が豊富で、離乳期を過ぎたヒトでは多かれ少なかれ乳糖不耐症として消化不良となる。 牛乳の利用の歴史は古く、チーズやバターなどと共にヨーロッパ、アフリカ、インドで用いられてきた。利用のはっきりとした証拠としては、5500年から6千年前の現在のイギリスにあたる地域の陶器から牛乳の脂肪分が発見されている。そのまま飲まれた牛乳が大きく産業化されて普及するのは、19世紀に低温殺菌法が開発され、保存技術が向上してからである。そうした時代に日本や中国では牛乳は普及しておらず、日本では戦後にアメリカ合衆国からの脱脂粉乳を含む食糧支援のララ物資を経て、1954年に学校給食法が制定され、牛乳の提供を規則としてから大きく普及してきたが、50年を経た2005年には、中央酪農会議が日本人の牛乳離れを期に「牛乳に相談だ。」のキャンペーンを実施した。 栄養学者達は、牛乳がカルシウムを摂取するために適切な食品であるかに疑問を投げかけ続けている。牛乳を多く飲用すればその分だけ骨折を予防できるという主張にはデータが乏しいことに疑問を持ち、疫学研究が実施された結果、確固とした因果関係は見られていない。.

新しい!!: 亜鉛と牛乳 · 続きを見る »

牛肉

牛肉 牛肉(ぎゅうにく)は、ウシの肉である。 ビーフ(Beef欧米ではBeefは仔牛肉(Veal)とは別の概念である。)ともいう。.

新しい!!: 亜鉛と牛肉 · 続きを見る »

(眼、め)は、光を受容する感覚器である。光の情報は眼で受容され、中枢神経系の働きによって視覚が生じる。 ヒトの眼は感覚器系に当たる眼球と附属器解剖学第2版、p.148、第9章 感覚器系 1.視覚器、神経系に当たる視神経と動眼神経からなる解剖学第2版、p.135-146、第8章 神経系 4.末端神経系。眼球は光受容に関連する。角膜、瞳孔、水晶体などの構造は、光学的役割を果たす。網膜において光は神経信号に符号化される。視神経は、網膜からの神経情報を脳へと伝達する。付属器のうち眼瞼や涙器は眼球を保護する。外眼筋は眼球運動に寄与する。多くの動物が眼に相当する器官を持つ。動物の眼には、人間の眼と構造や機能が大きく異なるものがある。 以下では、まず前半でヒトの眼について、後半では動物全体の眼についてそれぞれ記述する。.

新しい!!: 亜鉛と目 · 続きを見る »

白(しろ)は、全ての色の可視光線が乱反射されたときに、その物体の表面を見た人間が知覚する色である。無彩色で、膨張色である。白色(ハクショク、しろいろ)は同義語。「無色」の意味に含まれることもある。.

新しい!!: 亜鉛と白 · 続きを見る »

D軌道

配位子場によるd軌道の分裂 d軌道(ディーきどう)とは、原子を構成している電子軌道の1種である。 方位量子数は2であり、M殻以降の電子殻(3以上の主量子数)についてdxy軌道、dyz軌道、dzx軌道、dx2-y2軌道、dz2軌道という5つの異なる配位の軌道が存在する。各電子殻(主量子数)のd軌道は主量子数の大きさから「3d軌道」(M殻)、「4d軌道」(N殻)、、、のように呼ばれ、ひとつの電子殻(主量子数)のd軌道にはスピン角運動量の自由度と合わせて最大で10個の電子が存在する。 d軌道のdは「diffuse」に由来し、電子配置や軌道の変化分裂によるスペクトルの放散、広がりを持つことから意味づけられた。.

新しい!!: 亜鉛とD軌道 · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

新しい!!: 亜鉛と銅 · 続きを見る »

銅欠乏症

銅欠乏()は、ヒトやその他の動物に貧血・汎血球減少・神経変性を引き起こすことがある。銅欠乏による神経変性は、反芻類において脊柱湾曲症として以前から知られていた。影響を受けた動物は運動失調や痙性(en:spasticity)を呈するようになる。.

新しい!!: 亜鉛と銅欠乏症 · 続きを見る »

銀(ぎん、silver、argentum)は原子番号47の元素。元素記号は Ag。貴金属の一種。.

新しい!!: 亜鉛と銀 · 続きを見る »

融点

融点(ゆうてん、Schmelzpunkt、point de fusion、melting point)とは、固体が融解し液体になる時の温度のことをいう。ヒステリシスが無い場合には凝固点(液体が固体になる時の温度)と一致する。また、三重点すなわち平衡蒸気圧下の融点は物質固有の値を取り、不純物が含まれている場合は凝固点降下により融点が低下することから物質を同定したり、純度を確認したりする手段として用いられる。 熱的に不安定な物質は溶融と共に分解反応が生じる場合もある。その場合の温度は分解点と呼ばれる場合があり、融点に(分解)と併記されることがある。.

新しい!!: 亜鉛と融点 · 続きを見る »

過電圧

過電圧(かでんあつ、overpotential、overvoltage)とは、化学用語の1つで、電気化学反応において、熱力学的に求められる反応の理論電位(平衡電極電位)と、実際に反応が進行するときの電極の電位との差のことである。電気技術では、単に電池内部で生じる電圧降下のことである。 同様の概念として電気化学的分極があるが、過電圧は、電極での反応が1種類の場合、単純電極における電気化学的分極の大きさと言うことができる。 例えば、水と酸素の酸化還元反応(O2 + 4e- + 4H+←→2H2O)は、電極の電位が+1.23V(vs.

新しい!!: 亜鉛と過電圧 · 続きを見る »

遷移元素

遷移元素(せんいげんそ、transition element)とは、周期表で第3族元素から第11族元素の間に存在する元素の総称である IUPAC.

新しい!!: 亜鉛と遷移元素 · 続きを見る »

菱亜鉛鉱

菱亜鉛鉱(りょうあえんこう、、スミソナイト)は、鉱物(炭酸塩鉱物)の一種。化学組成は ZnCO3(炭酸亜鉛)、結晶系は三方晶系。方解石グループの鉱物。 の名前は、1832年に鉱物学者の François Sulpice Beudant によって、菱亜鉛鉱を最初に見分けたジェームズ・スミソンにちなんで命名された。.

新しい!!: 亜鉛と菱亜鉛鉱 · 続きを見る »

非金属元素

非金属元素(ひきんぞくげんそ、nonmetal)とは、金属元素以外の元素のこと。 元素のうち特定の性質(単体が光沢、導電性、延性・展性に富む、いわゆる金属結晶をつくる)を持つものを「金属(元素)」と呼んでおり、非金属元素とはそれ以外の元素である。 金属以外という定義上、非金属そのものを特徴づける性質は一概には言えないが、非金属元素は金属元素に比べて電子親和力が高い。このため、自由電子を放出して金属結晶を形作ることができない。.

新しい!!: 亜鉛と非金属元素 · 続きを見る »

顔料

粉末状の天然ウルトラマリン顔料 合成ウルトラマリン顔料は、化学組成が天然ウルトラマリンと同様であるが、純度などが異なる。 顔料(がんりょう、pigment)は、着色に用いる粉末で水や油に不溶のものの総称。着色に用いる粉末で水や油に溶けるものは染料と呼ばれる。 特定の波長の光を選択的に吸収することで、反射または透過する色を変化させる。蛍光顔料を除く、ほぼ全ての顔料の呈色プロセスは、自ら光を発する蛍光や燐光などのルミネセンスとは物理的に異なるプロセスである。 顔料は、塗料、インク、合成樹脂、織物、化粧品、食品などの着色に使われている。多くの場合粉末状にして使う。バインダー、ビークルあるいは展色剤と呼ばれる、接着剤や溶剤を主成分とする比較的無色の原料と混合するなどして、塗料やインクといった製品となる。実用的な分類であり、分野・領域によって、顔料として認知されている物質が異なる。 顔料の世界市場規模は2006年時点で740万トンだった。2006年の生産額は176億USドル(130億ユーロ)で、ヨーロッパが首位であり、それに北米とアジアが続いている。生産および需要の中心はアジア(中国とインド)に移りつつある。.

新しい!!: 亜鉛と顔料 · 続きを見る »

風化

化(ふうか、)または風化作用(ふうかさよう、英: )とは、地殻の表層にある岩石が太陽光や風雨などにさらされることによって破砕・分解され、物理的、化学的に変質する作用のこと。。地形の侵食作用や運搬作用の前提に風化作用があり、地形形成や地形変化にも影響を及ぼしているほか、また土壌形成の過程にも風化作用が関与する。なお、風化作用の要因には外的要因(気候など)と内的要因(岩石の性質など)の2つがある。 。 。.

新しい!!: 亜鉛と風化 · 続きを見る »

食事

食事(しょくじ、meal)とは、栄養をとるために毎日習慣的に何かを食べることである。また転じて、その時食べるものを指すこともある。.

新しい!!: 亜鉛と食事 · 続きを見る »

食物繊維

食物繊維(しょくもつせんい)とは、人の消化酵素によって消化されない、食物に含まれている難消化性成分の総称である。その多くは植物性、藻類性、菌類性食物の細胞壁を構成する成分であるが、植物の貯蔵炭水化物の中にはグルコマンナンやイヌリンの様に栄養学的には食物繊維としてふるまうものも少なくない。化学的には炭水化物のうちの多糖類であることが多い。.

新しい!!: 亜鉛と食物繊維 · 続きを見る »

計算化学

計算化学(けいさんかがく、computational chemistry)とは、計算によって理論化学の問題を取り扱う、化学の一分野である。複雑系である化学の問題は計算機の力を利用しなければ解けない問題が多いため、計算機化学と呼ばれることもあるが、両者はその言葉の適用範囲が異なっている。 近年のコンピュータの処理能力の発達に伴い、実験、理論と並ぶ第三の研究手段と考えられるまでに発展した。主に以下の手法を用いて化学の問題を取り扱う。.

新しい!!: 亜鉛と計算化学 · 続きを見る »

(ほね、英:bone)は、脊椎動物において骨格を構成する、リン酸カルシウムを多分に含んだ硬い組織。特に軟骨(cartilage)などと明確に区別する場合には硬骨とも呼ばれる。 動物体内での骨の機能は多岐に亘り、体の保護や姿勢の維持、筋肉を用いた運動のほかに、栄養の貯蔵や、血球を産生する場としての役割も持っている。ヒトの大人の体には、大小約206の骨があり(幼児で約270個)、それぞれに固有の名称が与えられている。ヒトの体で最も大きな骨は大腿骨である。 またこの意味の他にも、口語的には骨格そのものを指し示す場合もあり、生物に留まらず広く用いられる(例:傘の骨、鉄骨など)。本項目では、特に断りのない限り、最初に示した通り脊椎動物の骨を説明する。.

新しい!!: 亜鉛と骨 · 続きを見る »

読売新聞

読売新聞東京本社(千代田区大手町) 読売新聞旧東京本社(千代田区大手町、現存せず) 2010年10月から2014年1月まで読売新聞東京本社の仮社屋として使用されていた旧日産自動車本社ビル(中央区銀座) 読売新聞中部支社新社屋 読売新聞中部支社(旧中部本社)旧社屋 読売新聞大阪本社 読売新聞西部本社 読売新聞(よみうりしんぶん、新聞の題字および漢字制限前の表記は讀賣新聞、英語:Yomiuri Shimbun)は、株式会社読売新聞東京本社、株式会社読売新聞大阪本社および株式会社読売新聞西部本社が発行する新聞である。 題号は、江戸時代に瓦版を読みながら売っていた「読売」に由来する。.

新しい!!: 亜鉛と読売新聞 · 続きを見る »

貧血

貧血(ひんけつ)とは血液が薄くなった状態である。医学的には、血液(末梢血)中のヘモグロビン(Hb)濃度、赤血球数、赤血球容積率(Ht)が減少し基準値未満になった状態として定義されるが浅野『三輪血液病学』p952、一般にはヘモグロビン濃度が基準値を下回った場合に貧血とされる小川『内科学書』 p64。 医療業界では、アネミー、アネミ、アニーミア(Anemia)ということもある。.

新しい!!: 亜鉛と貧血 · 続きを見る »

貧金属

貧金属(ひんきんぞく、poor metal)は、周期表上でPブロック元素内にある金属元素である。したがって、Pブロック金属()とも呼ばれる。遷移金属と比べ、一般的に融点や沸点は低く、電気陰性度は高く、軟らかい。金属と非金属の境界に近く、結晶構造は共有結合的な傾向を示し、他の金属元素と比べて一般的に複雑さが増すか、隣り合う原子の数が少なくなる。半金属とは、電気伝導性が非常に高いことと密度が大きいことで区別される。.

新しい!!: 亜鉛と貧金属 · 続きを見る »

質量数

質量数(しつりょうすう、mass number)は、原子核を構成する陽子と中性子の数を合わせたものを言う長倉三郎ほか編、『』、岩波書店、1998年、項目「質量数」より。ISBN 4-00-080090-6。通常、Aで表す。 同位体や核種を区別するときに用いられることが多い。元素記号の左肩に示す。たとえば、質量数12の炭素の場合は、 と表す。 同じ原子番号であるが質量数(すなわち中性子数)が異なる原子は同位体である。これに対して同じ質量数であるが原子番号(すなわち陽子数)が異なる原子を同重体、中性子数が同じであるが原子番号が異なるものを同中性子体(同調体)という。 質量数は原子核自体の質量とは別物である為、実際の数値はほとんど変わらないもののごく僅か異なる。実際の計算では質量数を質量として用いる事も多い。核子一つ一つの質量と電子の質量の総和より、実際の原子の質量の方が僅かに少なくこの差が質量欠損である。 またある中性原子の質量を原子質量単位を用いて表した質量をM、質量数をAとしたとき、その差の核子1個あたりの値 をパッキングフラクション(packing fraction)という。繰り返すがこれらは全て実際の質量とはほとんど等しいが正確には僅かに異なる。.

新しい!!: 亜鉛と質量数 · 続きを見る »

黒鉱

日本の黒鉱ベルトの分布 黒鉱(くろこう、kuroko、black ore)とは、日本海側の鉱山で採掘される外見の黒い鉱石の総称である。黒い鉱石の正体は、閃亜鉛鉱(ZnS)、方鉛鉱(PbS)、黄銅鉱(CuFeS2)などであり、それぞれ亜鉛や鉛、銅などの鉱石として広く採掘された。 黒鉱は海底へ噴出した熱水から沈殿した硫化物などが起源であると考えられている。日本国内に見られる黒鉱の大半は、新生代第三紀のグリーンタフ変動に伴って生成されている。黒鉱の周囲には金や銀などが濃集することから、江戸時代には主にそれら貴金属が、明治時代に入り精錬技術が向上するにつれて黒鉱自体が注目されるようになった。また、黒鉱は金属鉱物のみでなく、大量の沸石類や石膏、重晶石などを伴う。.

新しい!!: 亜鉛と黒鉱 · 続きを見る »

黄銅

五円硬貨。銅60-70%、亜鉛40-30%の黄銅製。 黄銅(こうどう、おうどう、)は、銅と亜鉛の合金で、特に亜鉛が20%以上のものをいう。真鍮(しんちゅう)と呼ばれることも多い。.

新しい!!: 亜鉛と黄銅 · 続きを見る »

黄色

色い花。自然界におけるフィボナッチ数の例として使われる、ヒマワリ。 黄色(黃色、きいろ、オウショク)は、基本色名の一つであり、色の三原色の一つである。ヒマワリの花弁のような色。英語では yellow と言う。暖色の一つ。波長 570〜585 nm の単色光は黄色であり、長波長側は橙色に、短波長側は黄緑色に近付く。RGBで示すと赤と緑の中間の色。黄(き、オウ、コウ)は同義語。 現代日本語では一般に「黄色」(名詞)、「黄色い」(形容詞)と呼ぶ。これは小学校学習指導要領で使われ、母語として最初に学ぶ色名の一つである。しかし JIS 基本色名やマンセル色体系における公式名称は一般に黄色ではなく黄(黃、き)である。複合語内の形態素としては、黄緑、黄身、黄信号など、「黄」が少なくない。.

新しい!!: 亜鉛と黄色 · 続きを見る »

錯体

錯体(さくたい、英語:complex)もしくは錯塩(さくえん、英語:complex salt)とは、広義には、配位結合や水素結合によって形成された分子の総称である。狭義には、金属と非金属の原子が結合した構造を持つ化合物(金属錯体)を指す。この非金属原子は配位子である。ヘモグロビンやクロロフィルなど生理的に重要な金属キレート化合物も錯体である。また、中心金属の酸化数と配位子の電荷が打ち消しあっていないイオン性の錯体は錯イオンと呼ばれよ 金属錯体は、有機化合物・無機化合物のどちらとも異なる多くの特徴的性質を示すため、現在でも非常に盛んな研究が行われている物質群である。.

新しい!!: 亜鉛と錯体 · 続きを見る »

閃亜鉛鉱

閃亜鉛鉱(せんあえんこう、sphalerite、スファレライトまたはzincblende)は亜鉛の硫化鉱物である。.

新しい!!: 亜鉛と閃亜鉛鉱 · 続きを見る »

蒸留

実験室レベルにおける典型的な蒸留装置の模式図。1,熱源(ガスバーナー)、2,蒸留用フラスコ(丸底フラスコ)、3,ト字管、4,温度計、5,冷却器、6,冷却水(入)、7,冷却水(出)8,蒸留液を溜めるフラスコ、9,真空ポンプ、10,真空用アダプター 蒸留(じょうりゅう、Distillation)とは、混合物を一度蒸発させ、後で再び凝縮させることで、沸点の異なる成分を分離・濃縮する操作をいう。通常、目的成分が常温で液体であるか、融点が高々100℃程度の固体の場合に用いられる。共沸しない混合物であれば、蒸留によりほぼ完全に単離・精製することが可能であり、この操作を特に分留という。.

新しい!!: 亜鉛と蒸留 · 続きを見る »

蒸気

蒸気(じょうき、vapor, vapour)は、物質が液体から蒸発して、あるいは固体から昇華して、気体になった状態のもの。特に臨界温度以下の物質の気相を指すこともある。日本語においてしばしば水蒸気 (steam)の略語として用いられる。蒸気機関の蒸気も水蒸気の意味である。液相・固相と平衡を保って共存している状態の圧力を蒸気圧という。 Category:気体 Category:物質 Category:和製漢語.

新しい!!: 亜鉛と蒸気 · 続きを見る »

肝臓

肝臓(かんぞう、ἧπαρ (hepar)、iecur、Leber、Liver)は、哺乳類・鳥類・齧歯類・両生類・爬虫類・魚類等の脊椎動物に存在する臓器の一つ。 ヒトの場合は腹部の右上に位置する内臓である。ヒトにおいては最大の内臓であり、体内維持に必須の機能も多く、特に生体の内部環境の維持に大きな役割を果たしている。 本稿では主にヒトについて記載する。.

新しい!!: 亜鉛と肝臓 · 続きを見る »

還元

還元(かんげん、英:reduction)とは、対象とする物質が電子を受け取る化学反応のこと。または、原子の形式酸化数が小さくなる化学反応のこと。具体的には、物質から酸素が奪われる反応、あるいは、物質が水素と化合する反応等が相当する。 目的化学物質を還元する為に使用する試薬、原料を還元剤と呼ぶ。一般的に還元剤と呼ばれる物質はあるが、反応における還元と酸化との役割は物質間で相対的である為、実際に還元剤として働くかどうかは、反応させる相手の物質による。 還元反応が工業的に用いられる例としては、製鉄(原料の酸化鉄を還元して鉄にする)などを始めとする金属の製錬が挙げられる。また、有機合成においても、多くの種類の還元反応が工業規模で実施されている。.

新しい!!: 亜鉛と還元 · 続きを見る »

還元剤

還元剤(かんげんざい、reducing agent、reductant、reducer)とは、酸化還元反応において他の化学種を還元させる元素または分子のことである。この際、還元剤は酸化される。したがって、還元剤は電子供与体である。 例えば、以下の反応では還元剤はヘキサシアノ鉄(II)酸(ferrocyanide)であり、これが電子供与体となってヘキサシアノ鉄(III)酸(ferricyanide)に酸化され、塩素は塩化物イオンに還元している。 有機化学においても先述の定義が当てはまるが、特に分子への水素の付加を還元と呼んでいる。例えばベンゼンは白金触媒によってシクロヘキサンに還元される。 無機化学では、最も優れた還元剤は水素(H2)である。.

新しい!!: 亜鉛と還元剤 · 続きを見る »

脾臓

脾臓(ひぞう)は、循環器系内に組み込まれた臓器である生化学辞典第2版、p.1042 【脾臓】。以下の記述は特に断りがない限りヒトの脾臓について記述する。.

新しい!!: 亜鉛と脾臓 · 続きを見る »

脆性

脆性(ぜいせい、brittleness)は、物質の脆さを表す技術用語。破壊に要するエネルギーの小さいことをいう。対語としては靱性(じんせい:壊れにくいこと)と展延性(壊れずに変形すること)がある。 「脆」の文字が常用漢字に含まれていないことからぜい性と表記されることもある。本記事では学術用語集に準じて「脆性」の表記で統一する。.

新しい!!: 亜鉛と脆性 · 続きを見る »

膵液

膵液(すいえき)は、膵臓で分泌される体液(消化液)である。三大栄養素の全てを消化できる。 食後、膵管から十二指腸へと出る。.

新しい!!: 亜鉛と膵液 · 続きを見る »

臭化亜鉛

臭化亜鉛(しゅうかあえん、Zinc bromide)は、亜鉛の臭化物で、化学式はZnBr2で表される。.

新しい!!: 亜鉛と臭化亜鉛 · 続きを見る »

自然金 金(きん、gold, aurum)は原子番号79の元素。第11族元素に属する金属元素。常温常圧下の単体では人類が古くから知る固体金属である。 元素記号Auは、ラテン語で金を意味する aurum に由来する。大和言葉で「こがね/くがね(黄金: 黄色い金属)」とも呼ばれる。。 見かけは光沢のある黄色すなわち金色に輝く。日本語では、金を「かね」と読めば通貨・貨幣・金銭と同義(お金)である。金属としての金は「黄金」(おうごん)とも呼ばれ、「黄金時代」は物事の全盛期の比喩表現として使われる。金の字を含む「金属」や「金物」(かなもの)は金属全体やそれを使った道具の総称でもある。 金属としては重く、軟らかく、可鍛性がある。展性と延性に富み、非常に薄く延ばしたり、広げたりすることができる。同族の銅と銀が比較的反応性に富むこととは対照的に、標準酸化還元電位に基くイオン化傾向は全金属中で最小であり、反応性が低い。熱水鉱床として生成され、そのまま採掘されるか、風化の結果生まれた金塊や沖積鉱床(砂金)として採集される。 これらの性質から、金は多くの時代と地域で貴金属として価値を認められてきた。化合物ではなく単体で産出されるため精錬の必要がなく、装飾品として人類に利用された最古の金属で、美術工芸品にも多く用いられた。銀や銅と共に交換・貨幣用金属の一つであり、現代に至るまで蓄財や投資の手段となったり、金貨として加工・使用されたりしている。ISO通貨コードでは XAU と表す。また、医療やエレクトロニクスなどの分野で利用されている。.

新しい!!: 亜鉛と金 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: 亜鉛と金属 · 続きを見る »

金属元素

金属元素(きんぞくげんそ)は、金属の性質を示す元素のグループである。非典型元素という意味で使われる場合と、典型元素であっても金属の物性を示すものも含めて金属元素と呼称する場合とがある。前者は周期表の第1族~第12族元素がこれに当る。言い換えると、典型元素の金属も存在する。正式な取り決めは無いがMという略号で表される事が多い。 周期表の族により とも呼ばれている。 金属元素は金属としての物性を有する他に、非典型金属元素について言えば.

新しい!!: 亜鉛と金属元素 · 続きを見る »

長さの比較

本項では、長さの比較(ながさのひかく)ができるよう、長さを昇順に表にする。.

新しい!!: 亜鉛と長さの比較 · 続きを見る »

腎臓

腎臓(じんぞう、ren、kidney)は、泌尿器系の器官の一つ。血液からの老廃物や余分な水分の濾過及び排出を行って尿を生成するという、体液の恒常性の維持を主な役割とする。.

新しい!!: 亜鉛と腎臓 · 続きを見る »

腐食

腐食(ふしょく、腐蝕とも。corrosion)とは、化学・生物学的作用により外見や機能が損なわれた物体やその状態をいう。 金属の腐食とは、周囲の環境(隣接している金属・気体など)と化学反応を起こし、溶けたり腐食生成物(いわゆる「さび」)を生成することを指す。これは、一般的に言われる、表面的に「さび」が発生することにとどまらず、腐食により厚さが減少したり、孔が開いたりすることも含む。;金属以外の腐食;生物学的な腐食 以下、金属の腐食を中心に述べる。.

新しい!!: 亜鉛と腐食 · 続きを見る »

酢酸亜鉛

酢酸亜鉛(Zinc acetate)は、化学式Zn(O2CCH3)2の塩である。通常、二水和物Zn(O2CCH3)2(H2O)2として存在する。水和物も無水物も無色の固体で、化学合成や食品添加物に用いられる。酢酸と炭酸亜鉛または金属亜鉛の反応により生成される。食品添加物として用いる時のE番号は、E650である。.

新しい!!: 亜鉛と酢酸亜鉛 · 続きを見る »

酸(さん、acid)は化学において、塩基と対になってはたらく物質のこと。酸の一般的な使用例としては、酢酸(酢に3〜5%程度含有)、硫酸(自動車のバッテリーの電解液に使用)、酒石酸(ベーキングに使用する)などがある。これら三つの例が示すように、酸は溶液、液体、固体であることができる。さらに塩化水素などのように、気体の状態でも酸であることができる。 一般に、プロトン (H+) を与える、または電子対を受け取る化学種。化学の歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの酸の定義が存在する。 酸としてはたらく性質を酸性(さんせい)という。一般に酸の強さは酸性度定数 Ka またはその負の常用対数 によって定量的に表される。 酸や塩基の定義は相対的な概念であるため、ある系で酸である物質が、別の系では塩基としてはたらくことも珍しくはない。例えば水は、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用するが、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞う。 酸解離定数の大きい酸を強酸、小さい酸を弱酸と呼ぶ。さらに、100%硫酸より酸性の強い酸性媒体のことを、特に超酸(超強酸)と呼ぶことがある。 「—酸」と呼ばれる化合物には、酸味を呈し、その水溶液のpHは7より小さいものが多い。.

新しい!!: 亜鉛と酸 · 続きを見る »

酸化亜鉛

酸化亜鉛(さんかあえん、Zinc oxide)は化学式 ZnO で表される亜鉛の酸化物である。亜鉛華とも呼ばれる。.

新しい!!: 亜鉛と酸化亜鉛 · 続きを見る »

酸化インジウムスズ

酸化インジウムスズ(さんかインジウムスズ、Indium Tin Oxide、ITO)は酸化インジウム(III) (In2O3) と酸化スズ(IV) (SnO2) の無機混合物である。粉末は黄色~灰色であるが、可視光領域の透過率が高いため、薄膜ではほぼ無色透明である。実用上、重量比9:1程度で用いられることが多い。 ITOの特徴は電気伝導性と透明性である。蒸着成膜することで電荷密度が向上し導電性も向上する傾向にあるが、その一方で透明性が低下してしまう。ITOの薄膜は主に電子ビーム蒸着法、物理気相成長法、スパッタ蒸着法などを用いて製造されている。.

新しい!!: 亜鉛と酸化インジウムスズ · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 亜鉛と酸素 · 続きを見る »

酸解離定数

酸解離定数(さんかいりていすう、acidity constant)は、酸の強さを定量的に表すための指標のひとつ。酸性度定数ともいう。酸から水素イオンが放出される解離反応を考え、その平衡定数 Ka またはその負の常用対数 によって表す。 が小さいほど強い酸であることを示す(Ka が大きいことになる)。 同様に、塩基に対しては塩基解離定数 pKb が使用される。共役酸・塩基の関係では、酸解離定数と塩基解離定数のどちらかが分かれば、溶媒の自己解離定数を用いることで、互いに数値を変換することができる。 酸解離定数は、通常は電離すると考えない有機化合物の水素に対しても使用することができる。アルドール反応など、水素の引き抜きを伴う有機化学反応を考える際に有効となる。.

新しい!!: 亜鉛と酸解離定数 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

新しい!!: 亜鉛と酵素 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

新しい!!: 亜鉛と鉄 · 続きを見る »

鉛(なまり、lead、plumbum、Blei)とは、典型元素の中の金属元素に分類される、原子番号が82番の元素である。なお、元素記号は Pb である。.

新しい!!: 亜鉛と鉛 · 続きを見る »

難燃剤

難燃剤(なんねんざい、英語: flame retardant)とは、プラスチック・ゴム・繊維・紙・木材などの可燃性の素材に添加してそれらを燃えにくくし、あるいは炎が広がらないようにする薬剤。主にハロゲン化合物が用いられる。.

新しい!!: 亜鉛と難燃剤 · 続きを見る »

電子配置

電子配置(でんしはいち、)とは、多電子系である原子や分子の電子状態が「一体近似で得られる原子軌道あるいは分子軌道に複数の電子が詰まった状態」として近似的に表すことができると考えた場合に、電子がどのような軌道に配置しているのか示したもので、これによって各元素固有の性質が決定される。.

新しい!!: 亜鉛と電子配置 · 続きを見る »

電子捕獲

電子捕獲(でんしほかく、electron capture、EC)とは、原子核の放射性崩壊の一種である。電子捕獲では、電子軌道の電子が原子核に取り込まれ、捕獲された電子は原子核内の陽子と反応し中性子となり、同時に電子ニュートリノが放出される。捕獲される電子は普通はK軌道の電子であるが、L軌道やM軌道の電子が捕獲される場合もある。.

新しい!!: 亜鉛と電子捕獲 · 続きを見る »

電子殻

電子殻(でんしかく、electron shell)は、原子構造の模型において、原子核を取り巻く電子軌道の集まりをいう。言わば電子の収容場所のことで、それにいかに電子が入っているかを示すのが電子配置である。.

新しい!!: 亜鉛と電子殻 · 続きを見る »

電解精錬

電解精錬(でんかいせいれん、英語:electrolysis refining、electrolytic refining)とは電気分解を利用する金属の精錬法である。純度を高める技術には違いないが、しかし不純物の溶液からも金属を抽出するので一つの選鉱法ともいえる。.

新しい!!: 亜鉛と電解精錬 · 続きを見る »

電気伝導体

電気伝導体(でんきでんどうたい)は移動可能な電荷を含み電気を通しやすい材料、すなわち電気伝導率(導電率)の高い材料である。良導体、単に導体とも呼ぶ。 電気伝導率は、物質によってとる値の範囲が広い物性値で、金属からセラミックまで20桁ほど幅がある。一般には伝導率がグラファイト(電気伝導率 106S/m)と同等以上のものが導体、106S/m以下のものを不導体(絶縁体)、その中間の値をとるものを半導体と分類する。106S/mという電気伝導率は、1mm2の断面積で1mの導体の抵抗が1Ωになる電気の通りやすさである。 銅やアルミニウムといった金属導体では、電子が移動可能な荷電粒子となっている(電流を参照)。移動可能な正の電荷としては、格子内の原子で電子が抜けている部分という形態(正孔)や電池の電解液などにイオンの形で存在する場合がある。不導体が電流を通さないのは移動可能な電荷が少ないためである。.

新しい!!: 亜鉛と電気伝導体 · 続きを見る »

電気めっき

電気めっき(electroplating)は電流を使うめっき法で、めっきしたい物質を含む溶液、溶融塩、または、固体電解質からその物質を還元させ、電導性のある物体にその物質(金属など)の薄い層を形成させる。電気めっきは、めっき対象の物体に欠けている特性(耐摩耗性、耐腐食性、潤滑性、見栄えなど)を補うことができる。また、小さすぎる物体の厚さを増加させる目的で行うこともある。 電気めっきで使っているプロセスを電着 (electrodeposition) と呼ぶ。ちょうどガルバニ電池を逆に作用させたものに似ている。めっき対象の物体を回路のカソードとする。.

新しい!!: 亜鉛と電気めっき · 続きを見る »

透明薄膜トランジスタ

透明薄膜トランジスタ(TTFT)(Transparent Thin Film Transistor, TTFT) は、近年になって活発に研究開発が行われるようになった薄膜トランジスタ(TFT)の1種。可視光(波長:360nm~830nm)を透過する(要は目で見るには透明)のが特徴。 通常の半導体はバンドギャップが狭いため(Siで1.12eV)、光子(photon)が原子の格子内に飛び込んだ場合、比較的長い波長のものであっても電子が吸収し、conduction bandに励起される。しかしZnO(Zinc oxide)、ITO(Indium Tin Oxide)等をはじめとした素材ではバンドギャップが広く(ZnOで3.35)、前述のSiでは吸収されてしまう波長の光子でも吸収されずに透過する(実際はZnOでは波長300nm~1300nmの範囲では80%以上が透過する)。このため、透明なトランジスターを構成する事が可能となった。 近年活発に開発が行われているのは有機素材を用いたもの、また非有機素材ではZnO等の簡単なバイナリー構成のものから、1996年に東京工業大学の研究グループによって発表されたHMC(Heavy Metal Cation)と呼ばれる重金属原子を用いた酸化物による構成のもの(2種以上、近年は3種類の重金属原子が用いられる)に至るまで様々である。一番簡単な構成のZnOを用いたTTFTはオレゴン州立大学(Oregon State University)の研究グループによって2003年に、2006年1月にはイリノイ大学アーバナ・シャンペン校(University of Illinois, Urbana-Champaign)の教授陣がカーボンナノチューブを用いたもの、同年10月にはノースウェスタン大学の研究フループが有機素材を絶縁膜に用いた非有機素材ベースのTTFTを発表している。 基本的に非有機素材ではその応用用途が曲げられるものに焦点を合わせているのと、基盤素材が通常のSi等に比べて低耐熱の素材(プラスチックなど)を使っているため、プロセス中で高温を必要とする結晶構造のものは用いられず、低温で構成可能なアモルファス状態のものが中心に研究されている。 非有機素材と有機素材ベースのTTFTを比較した場合、有機ベースはプロセスが簡単で素材が柔軟性に富んでいるのに対し、非有機ベースは柔軟性に欠けるものの電子の移動度が高いという特徴がある。 Category:トランジスタ Category:薄膜.

新しい!!: 亜鉛と透明薄膜トランジスタ · 続きを見る »

透明電極

透明電極とは電子機器に使用される電極。.

新しい!!: 亜鉛と透明電極 · 続きを見る »

Journal of the Chemical Society

Journal of the Chemical Society(略称:J.

新しい!!: 亜鉛とJournal of the Chemical Society · 続きを見る »

Parts-per表記

科学や工学で用いられるparts-per表記(パーツ・パーひょうき)とは、モル分率・体積分率・質量分率などの各種の無次元量について、非常に小さい数値を表すのに使われる疑似的な単位である。これらの量は、量を同じ次元の量で割ったもの(別の言い方をすれば、分子・分母が同じ量である分数)であるため、単位を伴わない純粋な「数」である。 parts-per表記の単位には、以下のような物がある。.

新しい!!: 亜鉛とParts-per表記 · 続きを見る »

Ppm

ppm(パーツ・パー・ミリオン)は、100万分のいくらであるかという割合を示すparts-per表記による数値。主に濃度を表すために用いられるが、不良品発生率などの確率を表すこともある。「parts per million」の頭文字をとったもので、100万分の1の意。百万分率とも。.

新しい!!: 亜鉛とPpm · 続きを見る »

核異性体

核異性体(かくいせいたい、Nuclear isomer)とは、原子核がある程度の時間、励起した状態を保っている原子核のことである培風館『物理学辞典』p 82丸善『物理学大辞典』p 175-176丸善『物理学大辞典』p 181。 ここで言う励起とは、通常よく言われる電子が受ける電磁気力に基づく原子が励起した状態のことではなく、原子核内の陽子や中性子の間に働く強い力(核力)に基づく原子核のエネルギー状態を意味する。 また原子核レベルのことなので、ある程度の時間というのは通常、10-6(100万分の1)秒から長くて秒単位である。ただし、まれには秒単位をはるかに超えて長いものもある。 核異性体は、あるいは異性核、核異性、準安定核とも言う。.

新しい!!: 亜鉛と核異性体 · 続きを見る »

格子定数

格子定数(こうしていすう、こうしじょうすう、lattice constant)とは、結晶軸の長さや軸間角度のこと。単位格子の各稜間の角度 α,β,γ と、各軸の長さ a,b,c を表す6個の定数である。格子の形状等によっては、aの値のみを表すこともある。 軸の長さの単位は普通オングストロームを用い、自明として単位を付けずに数値のみを書く場合が多い。.

新しい!!: 亜鉛と格子定数 · 続きを見る »

栄養素

栄養素(えいようそ、nutrient)とは、.

新しい!!: 亜鉛と栄養素 · 続きを見る »

標準電極電位

標準電極電位(ひょうじゅんでんきょくでんい、standard electrode potential)は、ある電気化学反応(電極反応)について、標準状態(反応に関与する全ての化学種の活量が1かつ平衡状態となっている時の電極電位である。標準電位(standard potential)、標準還元電位(standard reduction potential)とも呼ばれる。.

新しい!!: 亜鉛と標準電極電位 · 続きを見る »

櫛(くし)は、髪をといたり、髪を飾ったりする道具。英語でコーム (comb) と呼ぶこともある。.

新しい!!: 亜鉛と櫛 · 続きを見る »

正徳 (日本)

正徳(しょうとく)は日本の元号の一つ。宝永の後、享保の前。1711年から1716年までの期間を指す。この時代の天皇は中御門天皇。江戸幕府将軍は徳川家宣、徳川家継。.

新しい!!: 亜鉛と正徳 (日本) · 続きを見る »

水和

水和(すいわ、hydration)とは化学用語のひとつで、ある化学種へ水の分子が付加する現象。以下の2つに大別できる。.

新しい!!: 亜鉛と水和 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: 亜鉛と水素 · 続きを見る »

水銀

水銀(すいぎん、mercury、hydrargyrum)は原子番号80の元素。元素記号は Hg。汞(みずがね)とも書く。第12族元素に属す。常温、常圧で凝固しない唯一の金属元素で、銀のような白い光沢を放つことからこの名がついている。 硫化物である辰砂 (HgS) 及び単体である自然水銀 (Hg) として主に産出する。.

新しい!!: 亜鉛と水銀 · 続きを見る »

水酸化亜鉛

水酸化亜鉛(すいさんかあえん、Zinc hydroxide)は、化学式 で表される亜鉛の水酸化物である。.

新しい!!: 亜鉛と水酸化亜鉛 · 続きを見る »

汗(あせ)とは、哺乳類が皮膚の汗腺から分泌する液体である。およそ99%が水であるが、さまざまな溶解固形物(主に塩化物)も含む。。汗を分泌することを発汗という。 人間においては、汗は主として体温調節の手段であるが、男性の汗の成分はフェロモンとしても機能するという説もある。サウナ風呂などで汗をかくことには体から有害物質を取り除く作用があると広く信じられているが、これには科学的根拠はない。皮膚表面からの汗の蒸発には、気化熱による冷却効果がある。よって、気温の高い時や、運動により個体の筋肉が熱くなっている時には、より多くの汗が分泌される。緊張や吐き気によっても発汗は促進され、逆に寒さにより抑制される。.

新しい!!: 亜鉛と汗 · 続きを見る »

沸点

沸点(ふってん、)とは、液体の飽和蒸気圧が外圧液体の表面にかかる圧力のこと。と等しくなる温度であるアトキンス第8版 p.122.

新しい!!: 亜鉛と沸点 · 続きを見る »

沈殿

溶液中の物質に化学反応を起こし、沈殿する成分と溶けたままである成分に分ける。 沈殿(ちんでん、沈澱とも、precipitation、沈殿反応とも、precipitation reaction)は、溶液中の微粒子が集積することで、大きくなった集積体が重力に引かれて液の底に沈む現象である。底に沈んだ物質を沈殿物という。 沈殿を構成する固体の微粒子は微結晶の場合もあれば、固体と溶液とから構成された固体でゲル様の状態の時もある。 沈殿現象が発生する前の溶液は分散体であり、分散体となる固体微粒子が極く小さい場合はコロイド溶液として安定してしまい沈殿が発生しない場合もある。分散体が安定化するのに微粒子の表面エネルギーやその近傍に発生する電気二重層が大きく関与している。(記事 コロイドに詳しい).

新しい!!: 亜鉛と沈殿 · 続きを見る »

洋白

洋白(ようはく)とは、銅と亜鉛とニッケルから構成される合金である。その割合は用途の合わせて様々に調整されるものの、これらの元素のうち銅の含有率は50 %を超えている。洋銀(ようぎん)、ニッケルシルバー()、ジャーマンシルバー()などの別名を持つ。また、スペイン語ではアルパカ()と称される。.

新しい!!: 亜鉛と洋白 · 続きを見る »

液晶ディスプレイ

液晶ディスプレイ(えきしょうディスプレイ、liquid crystal display、LCD)は、液晶組成物を利用する平面状で薄型の視覚表示装置をいう。それ自体発光しない液晶組成物を利用して光を変調することにより表示が行われている。.

新しい!!: 亜鉛と液晶ディスプレイ · 続きを見る »

溶融亜鉛めっき

溶融亜鉛めっき(ようゆうあえんめっき:"hot dip galvanizing")とは、鋼材の防錆処理の一種である。現場では正式名称はあまり使われず、めっき槽に浸ける様子から、俗にドブづけやテンプラなどと呼ばれるのが一般的である。.

新しい!!: 亜鉛と溶融亜鉛めっき · 続きを見る »

木炭

白炭(備長炭) オガ炭 活性炭 木炭(もくたん)は、木材を蒸し焼きにし炭化させて作る炭である。冬の季語。広辞苑第5.

新しい!!: 亜鉛と木炭 · 続きを見る »

有機亜鉛化合物

有機亜鉛化合物(ゆうきあえんかごうぶつ)は炭素−亜鉛結合を持つ有機化合物であり、有機亜鉛化学においてその物理的性質・合成法・反応が研究される。 初めて作られたのは1849年のエドワード・フランクランドによるジエチル亜鉛であり、これは同時に金属−炭素間のσ結合を有する最初の化合物でもあった。有機亜鉛化合物の多くは自然発火しやすいため取り扱いが難しい。通常酸素に弱く、多くの溶媒に可溶だが、プロトン性溶媒では分解する。たいていの反応に用いる場合には系中で発生させ、単離せずにそのまま用いる。また、窒素やアルゴンなど不活性ガスの雰囲気下で操作しなければならない。 主に3つのグループ、オルガノ亜鉛ハライド R−Zn−X (Xはハロゲン)、ジオルガノ亜鉛 R−Zn−R (Rはアルキル基またはアリール基)、リチウムジンケート・マグネシウムジンケート M+R3Zn− (Mはリチウムまたはマグネシウム)に分類される。 炭素−亜鉛結合は電気陰性度の差(炭素 2.55、亜鉛 1.65)により炭素側に分極している。ジオルガノ亜鉛は常に単量体であるのに対して、オルガノ亜鉛ハライドはハロゲンの架橋によって会合体として存在し、グリニャール試薬と同様にシュレンク平衡を起こす。.

新しい!!: 亜鉛と有機亜鉛化合物 · 続きを見る »

明治

明治(めいじ)は日本の元号の一つ。慶応の後、大正の前。新暦1868年1月25日(旧暦慶応4年1月1日/明治元年1月1日)から1912年(明治45年)7月30日までの期間を指す。日本での一世一元の制による最初の元号。明治天皇在位期間とほぼ一致する。ただし、実際に改元の詔書が出されたのは新暦1868年10月23日(旧暦慶応4年9月8日)で慶応4年1月1日に遡って明治元年1月1日とすると定めた。これが、明治時代である。.

新しい!!: 亜鉛と明治 · 続きを見る »

昇華 (化学)

昇華(しょうか、sublimation)は元素や化合物が液体を経ずに固体から気体、または気体から固体へと相転移する現象。後者については凝華(ぎょうか)とも。温度と圧力の交点が三重点より下へ来た場合に起こる。 標準圧では、ほとんどの化合物と元素が温度変化により固体、液体、気体の三態間を相転移する性質を持つ。この状態においては、固体から気体へと相転移する場合、中間の状態である液体を経る必要がある。 しかし、一部の化合物と元素は一定の圧力下において、固体と気体間を直接に相転移する。相転移に影響する圧力は系全体の圧力ではなく、物質各々の蒸気圧である。 日本語においては、昇華という用語は主に固体から気体への変化を指すが、気体から固体への変化を指すこともある。また気体から固体への変化を特に凝固と呼ぶこともあるが、これは液体から固体への変化を指す用語として使われることが多い。英語では sublimation が使われるが、気体から固体への変化を特に deposition と呼ぶこともある。.

新しい!!: 亜鉛と昇華 (化学) · 続きを見る »

浮遊選鉱

浮遊選鉱(ふゆうせんこう、flotation method )とは、選鉱法の一種。.

新しい!!: 亜鉛と浮遊選鉱 · 続きを見る »

海水

海面上から見た海水(シンガポール) スクーバダイビング中に見る海水の深い青(タイのシミランにて) 海水(かいすい)とは、海の水のこと。水を主成分とし、3.5 %程度の塩(えん)、微量金属から構成される。 地球上の海水の量は約13.7億 km3で、地球上の水分の97 %を占める。密度は1.02 - 1.035 g/cm3。.

新しい!!: 亜鉛と海水 · 続きを見る »

文禄

文禄(ぶんろく)は日本の元号の一つ。天正の後、慶長の前。1593年から1596年までの期間を指す。この時代の天皇は後陽成天皇、将軍は不在。.

新しい!!: 亜鉛と文禄 · 続きを見る »

日本

日本国(にっぽんこく、にほんこく、ひのもとのくに)、または日本(にっぽん、にほん、ひのもと)は、東アジアに位置する日本列島(北海道・本州・四国・九州の主要四島およびそれに付随する島々)及び、南西諸島・伊豆諸島・小笠原諸島などから成る島国広辞苑第5版。.

新しい!!: 亜鉛と日本 · 続きを見る »

放射能

放射能(ほうしゃのう、radioactivity、activity)とは、放射性同位元素が放射性崩壊を起こして別の元素に変化する性質(能力)を言う。なお、放射性崩壊に際しては放射線の放出を伴う。 放射能は、単位時間に放射性崩壊する原子の個数(単位:ベクレル )で計量される。 なお、ある元素の同位体の中で放射能を持つ元素を表す場合は「放射性同位体」、それらを含む物質を表す場合は「放射性物質」と呼ぶのが適切である。.

新しい!!: 亜鉛と放射能 · 続きを見る »

放射性同位体

放射性同位体(ほうしゃせいどういたい、radioisotope、RI)とは、ある元素の同位体で、その核種の不安定性から放射線を放出して放射性崩壊を起こす能力(放射能)を持つ元素を言う。.

新しい!!: 亜鉛と放射性同位体 · 続きを見る »

1 E2 s

102 - 103 s(100秒 - 約16.7分)の時間のリスト.

新しい!!: 亜鉛と1 E2 s · 続きを見る »

1 E3 s

103 - 104 s(16.7分 - 2.78時間)の時間のリスト.

新しい!!: 亜鉛と1 E3 s · 続きを見る »

1 E4 s

104 - 105 s(2.78 時間 - 27.8 時間)の時間のリスト.

新しい!!: 亜鉛と1 E4 s · 続きを見る »

1 E5 s

105 - 106 s(27.8 時間 - 11.6 日)の時間のリスト.

新しい!!: 亜鉛と1 E5 s · 続きを見る »

1 E7 s

107 - 108 s(116 日 - 1160 日)の時間のリスト.

新しい!!: 亜鉛と1 E7 s · 続きを見る »

12世紀

アンコールの地にアンコール朝の王スーリヤヴァルマン2世はアンコール・ワットの建設を行い、続くジャヤーヴァルマン7世はアンコール・トムを築いた。画像はアンコール・トムのバイヨン四面像(観世菩薩像)。 12世紀(じゅうにせいき)とは、西暦1101年から西暦1200年までの100年間を指す世紀。.

新しい!!: 亜鉛と12世紀 · 続きを見る »

1509年

記載なし。

新しい!!: 亜鉛と1509年 · 続きを見る »

1620年

記載なし。

新しい!!: 亜鉛と1620年 · 続きを見る »

16世紀

16世紀(じゅうろくせいき)は、西暦1501年から西暦1600年までの100年間を指す世紀。 盛期ルネサンス。歴代ローマ教皇の庇護によりイタリア・ルネサンスの中心はローマに移動した。画像はこの時代に再建がなされたローマのサン・ピエトロ大聖堂の内部。 カール5世。スペイン王を兼ねイタリア各地やネーデルラントも支配したが周辺諸国との戦いにも明け暮れた。画像はティツィアーノによる騎馬像(プラド美術館蔵)。 「太陽の沈まない帝国」。カール5世の息子フェリペ2世の時代にスペインは目覚ましい発展を遂げ貿易網は地球全体に及んだ。画像はフェリペ2世によって建てられたエル・エスコリアル修道院。ここには王宮も併設されておりフェリペ2世はここで執務を行った。.

新しい!!: 亜鉛と16世紀 · 続きを見る »

1713年

記載なし。

新しい!!: 亜鉛と1713年 · 続きを見る »

1737年

記載なし。

新しい!!: 亜鉛と1737年 · 続きを見る »

1743年

記載なし。

新しい!!: 亜鉛と1743年 · 続きを見る »

1746年

記載なし。

新しい!!: 亜鉛と1746年 · 続きを見る »

1798年

記載なし。

新しい!!: 亜鉛と1798年 · 続きを見る »

1850年代

1850年代(せんはっぴゃくごじゅうねんだい)は、西暦(グレゴリオ暦)1850年から1859年までの10年間を指す十年紀。.

新しい!!: 亜鉛と1850年代 · 続きを見る »

1881年

記載なし。

新しい!!: 亜鉛と1881年 · 続きを見る »

1889年

記載なし。

新しい!!: 亜鉛と1889年 · 続きを見る »

1910年

記載なし。

新しい!!: 亜鉛と1910年 · 続きを見る »

1910年代

1910年代(せんきゅうひゃくじゅうねんだい)は、西暦(グレゴリオ暦)1910年から1919年までの10年間を指す十年紀。.

新しい!!: 亜鉛と1910年代 · 続きを見る »

ここにリダイレクトされます:

ISP法ZNZincZnジンク

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »