ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

触媒と還元

ショートカット: 違い類似点ジャカード類似性係数参考文献

触媒と還元の違い

触媒 vs. 還元

触媒(しょくばい)とは、特定の化学反応の反応速度を速める物質で、自身は反応の前後で変化しないものをいう。また、反応によって消費されても、反応の完了と同時に再生し、変化していないように見えるものも触媒とされる。「触媒」という用語は明治の化学者が英語の catalyser、ドイツ語の Katalysator を翻訳したものである。今日では、触媒は英語では catalyst、触媒の作用を catalysis という。 今日では反応の種類に応じて多くの種類の触媒が開発されている。特に化学工業や有機化学では欠くことができない。また、生物にとっては酵素が重要な触媒としてはたらいている。. 還元(かんげん、英:reduction)とは、対象とする物質が電子を受け取る化学反応のこと。または、原子の形式酸化数が小さくなる化学反応のこと。具体的には、物質から酸素が奪われる反応、あるいは、物質が水素と化合する反応等が相当する。 目的化学物質を還元する為に使用する試薬、原料を還元剤と呼ぶ。一般的に還元剤と呼ばれる物質はあるが、反応における還元と酸化との役割は物質間で相対的である為、実際に還元剤として働くかどうかは、反応させる相手の物質による。 還元反応が工業的に用いられる例としては、製鉄(原料の酸化鉄を還元して鉄にする)などを始めとする金属の製錬が挙げられる。また、有機合成においても、多くの種類の還元反応が工業規模で実施されている。.

触媒と還元間の類似点

触媒と還元は(ユニオンペディアに)共通で23ものを持っています: 化学反応ルテニウムロジウムパラジウムアルカンアンモニアキラリティーBINAP窒素白金過酸化水素配位子酸化鉄酸素酵素水素水素化活性炭溶媒有機合成化学

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

化学反応と触媒 · 化学反応と還元 · 続きを見る »

ルテニウム

ルテニウム(ruthenium)は原子番号44の元素。元素記号は Ru。漢字では釕(かねへんに了)と表記される。白金族元素の1つ。貴金属にも分類される。銀白色の硬くて脆い金属(遷移金属)で、比重は12.43、融点は2500 、沸点は4100 (融点、沸点とも異なる実験値あり)。常温、常圧で安定な結晶構造は、六方最密充填構造 (HCP)。酸化力のある酸に溶ける。王水とはゆっくり反応。希少金属である。.

ルテニウムと触媒 · ルテニウムと還元 · 続きを見る »

ロジウム

ウム(rhodium)は原子番号45の元素。元素記号は Rh。白金族元素の1つ。貴金属にも分類される。銀白色の金属(遷移金属)で、比重は12.5 (12.4)、融点は1966 、沸点は3960 (融点、沸点とも異なる実験値あり)。常温、常圧で安定な結晶構造は面心立方構造。加熱下において酸化力のある酸に溶ける。王水には難溶。高温でハロゲン元素と反応。高温で酸化されるが、更に高温になると再び単体へ分離する。酸化数は-1価から+6価までをとり得る。レアメタルである。.

ロジウムと触媒 · ロジウムと還元 · 続きを見る »

パラジウム

パラジウム(palladium)は原子番号46の元素。元素記号は Pd。白金族元素の1つ。貴金属にも分類される。 常温、常圧で安定な結晶構造は、面心立方構造 (FCC)。銀白色の金属(遷移金属)で、比重は12.0、融点は1555 (実験条件等により若干値が異なることあり)。酸化力のある酸(硝酸など)には溶ける。希少金属の1つ。.

パラジウムと触媒 · パラジウムと還元 · 続きを見る »

アルカン

アルカン(、)とは、一般式 で表される鎖式飽和炭化水素である。メタン系炭化水素、パラフィン系炭化水素や脂肪族化合物McMurry(2004)、p.39。とも呼ばれる。炭素数が大きいものはパラフィンとも呼ばれる。アルカンが置換基となった場合、一価の置換基をアルキル基、二価の置換基をアルキレン基と呼ぶ。環状の飽和炭化水素はシクロアルカンと呼ばれる。 IUPACの定義によれば、正式には、環状のもの(シクロアルカン)はアルカンに含まれない。しかし両者の性質がよく似ていることや言葉の逐語訳から、シクロアルカンを「環状アルカン」と称し、本来の意味でのアルカンを「非環状アルカン」と呼ぶことがある。結果的に、あたかも飽和炭化水素全体の別称であるかのように「アルカン」の語が用いられることもあるが、不適切である。 主に石油に含まれ、分留によって取り出される。個別の物理的性質などについてはデータページを参照。生物由来の脂肪油に対して、石油由来のアルカン類を鉱油(mineral oil)と呼ぶ。.

アルカンと触媒 · アルカンと還元 · 続きを見る »

アンモニア

アンモニア (ammonia) は分子式が NH_3 で表される無機化合物。常温常圧では無色の気体で、特有の強い刺激臭を持つ。 水に良く溶けるため、水溶液(アンモニア水)として使用されることも多く、化学工業では基礎的な窒素源として重要である。また生体において有毒であるため、重要視される物質である。塩基の程度は水酸化ナトリウムより弱い。 窒素原子上の孤立電子対のはたらきにより、金属錯体の配位子となり、その場合はアンミンと呼ばれる。 名称の由来は、古代エジプトのアモン神殿の近くからアンモニウム塩が産出した事による。ラテン語の sol ammoniacum(アモンの塩)を語源とする。「アモンの塩」が意味する化合物は食塩と尿から合成されていた塩化アンモニウムである。アンモニアを初めて合成したのはジョゼフ・プリーストリー(1774年)である。 共役酸 (NH4+) はアンモニウムイオン、共役塩基 (NH2-) はアミドイオンである。.

アンモニアと触媒 · アンモニアと還元 · 続きを見る »

キラリティー

ラリティー (chirality) は、3次元の図形や物体や現象が、その鏡像と重ね合わすことができない性質。掌性。 キラリティがあることをキラル (chiral) という。英語風の発音でカイラリティ、カイラルともいう。これらの語はギリシャ語で「手」を意味するχειρ (cheir) が語源である。手はキラルなものの一例で、右手とその鏡像である左手は互いに重ね合わせられない(右手の掌と左手の甲を向かい合わせたときに重なり合わないということである)。一方でキラリティがない、つまり鏡像と重ね合わせられることをアキラル (achiral) という。キラルな図形とその鏡像を互いに(たとえば右手に対する左手を)enantiomorphsと言い、ギリシャ語で「反対」を意味するεναντιος (enantios) が語源である。 対掌性(たいしょうせい)ともいう。対掌とは右と左の手のひらの対を意味している。対称性と紛らわしいが、キラリティとは鏡像対称性の欠如であり、むしろ逆の意味になる。 幾何学的な図形のほか、分子、結晶、スピン構造などについて使われる。以下では分子のキラリティを中心に述べる。.

キラリティーと触媒 · キラリティーと還元 · 続きを見る »

BINAP

BINAPの球棒モデル。 BINAP(バイナップ、IUPAC名: 2,2'-ビス(ジフェニルホスフィノ)-1,1'-ビナフチル; (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl)は不斉合成において広く利用されている重要な不斉配位子である。BINAPはその構造中に不斉中心原子を持たないが、ナフチル基が2個単結合で繋がれた1,1'-ビナフチル構造に由来した軸不斉を持つ。2個のナフチル基のπ平面は剛直なので、ジフェニルホスフィノ基とペリ位の水素の立体障害が効いてナフチル基間の単結合の回転が制限されるためである。BINAPでは2個のナフチル基のπ平面が成す角度は約90°に固定され、2種のエナンチオマー、アトロプ異性体が存在する。 有機合成においてBINAPのキラルな構造は高いエナンチオ選択的な反応を可能にする。ルテニウムやロジウム、またパラジウムのような遷移金属を中心とするBINAP錯体によるエナンチオ選択的な触媒反応が報告されている。例えばRh-BINAPやRu-BINAPによって触媒された不斉水素化(野依不斉水素化反応)は野依良治らによって開発され、彼はこの功績により2001年のノーベル化学賞を受賞した。最も重要でよく知られている野依らの研究はRh-BINAPを用いた (−)-メントールの不斉合成である。(−)-メントールは広く使われている香料・医薬品であるが、その立体選択的な化学合成が高砂香料工業により工業化された。 BINAPはBINOL(1,1'-ビ(2-ナフトール))からトリフルオロメタンスルホン酸エステルを経て合成される。(R),(S)-エナンチオマー共に市販品が入手可能である。.

BINAPと触媒 · BINAPと還元 · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

窒素と触媒 · 窒素と還元 · 続きを見る »

白金

白金(はっきん、platinum)は原子番号78の元素。元素記号は Pt。白金族元素の一つ。 学術用語としては白金が正しいが、現代日本の日常語においてはプラチナと呼ばれることもある。白金という言葉はオランダ語の witgoud(wit.

白金と触媒 · 白金と還元 · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

触媒と銅 · 還元と銅 · 続きを見る »

過酸化水素

過酸化水素(かさんかすいそ、Hydrogen peroxide)は、化学式 HO で表される化合物。しばしば過水(かすい)と略称される。主に水溶液で扱われる。対象により強力な酸化剤にも還元剤にもなり、殺菌剤、漂白剤として利用される。発見者はフランスのルイ・テナール。.

触媒と過酸化水素 · 過酸化水素と還元 · 続きを見る »

配位子

配位子(はいいし、リガンド、ligand)とは、金属に配位する化合物をいう。.

触媒と配位子 · 還元と配位子 · 続きを見る »

酸化鉄

酸化鉄(さんかてつ)は鉄の酸化物の総称。酸化数に応じて酸化鉄(II) (FeO) や酸化鉄(III) (Fe2O3) など組成が異なるものが知られる。いずれも鉄の酸化物であり、水酸化鉄と並んで錆を構成する成分である。 酸化鉄は自然界では鉱物として見いだされ、代表的なものは赤鉄鉱(ヘマタイト)、褐鉄鉱(リモナイト)、磁鉄鉱(マグネタイト)、 ウスタイト、磁赤鉄鉱(マグヘマイト)長倉三郎、「酸化鉄」、『岩波理化学辞典』、第5版CD-ROM版、岩波書店、1999年である。.

触媒と酸化鉄 · 還元と酸化鉄 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

触媒と酸素 · 還元と酸素 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

触媒と酵素 · 還元と酵素 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

触媒と鉄 · 還元と鉄 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

水と触媒 · 水と還元 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

水素と触媒 · 水素と還元 · 続きを見る »

水素化

水素化(すいそか、hydrogenation)とは、水素ガスを還元剤として化合物に対して水素原子を付加する還元反応のことである。水素添加反応(すいそてんかはんのう)、略して水添(すいてん)と呼ばれることもある。この反応は触媒を必要とするため、接触水素化(せっしょくすいそか、catalytic hydrogenation)とも呼ばれる。文脈によっては水素化反応を使用した実験手法・技術のことを指す場合もある。 より広義には還元剤が何であるかを問わず、化合物に水素原子を付加する還元反応全般のことを指す場合もある。.

水素化と触媒 · 水素化と還元 · 続きを見る »

活性炭

活性炭(かっせいたん、英語 activated carbon)とは、特定の物質を選択的に分離、除去、精製するなどの目的で吸着効率を高めるために化学的または物理的な処理(活性化、賦活)を施した多孔質の炭素を主な成分とする物質である。.

活性炭と触媒 · 活性炭と還元 · 続きを見る »

溶媒

水は最も身近で代表的な溶媒である。 溶媒(ようばい、solvent)は、他の物質を溶かす物質の呼称。工業分野では溶剤(ようざい)と呼ばれることも多い。最も一般的に使用される水のほか、アルコールやアセトン、ヘキサンのような有機物も多く用いられ、これらは特に有機溶媒(有機溶剤)と呼ばれる。 溶媒に溶かされるものを溶質(solute)といい、溶媒と溶質を合わせて溶液(solution)という。溶媒としては、目的とする物質を良く溶かすこと(溶解度が高い)、化学的に安定で溶質と化学反応しないことが最も重要である。目的によっては沸点が低く除去しやすいことや、可燃性や毒性、環境への影響などを含めた安全性も重視される。水以外の多くの溶媒は、きわめて燃えやすく、毒性の強い蒸気を出す。また、化学反応では、溶媒の種類によって反応の進み方が著しく異なることが知られている(溶媒和効果)。 一般的に溶媒として扱われる物質は常温常圧では無色の液体であり、独特の臭気を持つものも多い。有機溶媒は一般用途としてドライクリーニング(テトラクロロエチレン)、シンナー(トルエン、テルピン油)、マニキュア除去液や接着剤(アセトン、酢酸メチル、酢酸エチル)、染み抜き(ヘキサン、石油エーテル)、合成洗剤(オレンジオイル)、香水(エタノール)あるいは化学合成や樹脂製品の加工に使用される。また抽出に用いる。.

溶媒と触媒 · 溶媒と還元 · 続きを見る »

有機合成化学

有機合成化学(ゆうきごうせいかがく、英語:organic synthetic chemistry)とは、有機化合物の新規な合成方法を研究する学問であり、有機化学の一大分野である。時として合成有機化学(synthetic organic chemistry)、あるいは「有機」の語が略されて単に合成化学と呼ばれる場合もある。.

有機合成化学と触媒 · 有機合成化学と還元 · 続きを見る »

上記のリストは以下の質問に答えます

触媒と還元の間の比較

還元が101を有している触媒は、113の関係を有しています。 彼らは一般的な23で持っているように、ジャカード指数は10.75%です = 23 / (113 + 101)。

参考文献

この記事では、触媒と還元との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »