ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ロジウム

索引 ロジウム

ウム(rhodium)は原子番号45の元素。元素記号は Rh。白金族元素の1つ。貴金属にも分類される。銀白色の金属(遷移金属)で、比重は12.5 (12.4)、融点は1966 、沸点は3960 (融点、沸点とも異なる実験値あり)。常温、常圧で安定な結晶構造は面心立方構造。加熱下において酸化力のある酸に溶ける。王水には難溶。高温でハロゲン元素と反応。高温で酸化されるが、更に高温になると再び単体へ分離する。酸化数は-1価から+6価までをとり得る。レアメタルである。.

50 関係: 原子番号塩化ロジウム(III)両性 (化学)常磁性三元触媒京都大学人工放射性元素ルテニウムレアメタルパラジウムホワイトゴールドベータ崩壊めっきイリジウムインターネットアーカイブウィルキンソン触媒ウイリアム・ウォラストンガンマ崩壊ギリシア語クリプトンコバルト元素元素記号王水窒素酸化物第17族元素白金白金族元素融点面心立方格子構造触媒講談社貴金属薔薇色金属長さの比較酸化電子捕獲陽電子放出核異性体転移水素化沸点日本経済新聞1 E5 s1 E6 s1 E7 s1 E8 s1803年

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

新しい!!: ロジウムと原子番号 · 続きを見る »

塩化ロジウム(III)

塩化ロジウム(III)(えんかロジウム さん、Rhodium chloride)は、代表的なロジウムの塩化物であり、通常三水和物を単に塩化ロジウムと呼ぶことが多い。三水和物は各種ロジウム(III)錯体の合成出発物質として用いられる。 無水塩化ロジウム RhCl3 は塩化アルミニウム型の無限構造を持つ異なる化合物である。.

新しい!!: ロジウムと塩化ロジウム(III) · 続きを見る »

両性 (化学)

化学において両性物質(りょうせいぶっしつ、amphoteric substance)とは、酸とも塩基とも反応する物質のことである。多くの金属(亜鉛、スズ、鉛、アルミニウム、ベリリウムなど)と半金属は両性酸化物を作る。この他、アミノ基とカルボキシル基の両方を持つアミノ酸、自動イオン化(自己イオン化)化合物である水やアンモニアも両性物質に含まれる。.

新しい!!: ロジウムと両性 (化学) · 続きを見る »

常磁性

常磁性(じょうじせい、英語:paramagnetism)とは、外部磁場が無いときには磁化を持たず、磁場を印加するとその方向に弱く磁化する磁性を指す。熱ゆらぎによるスピンの乱れが強く、自発的な配向が無い状態である。 常磁性の物質の磁化率(帯磁率)χは温度Tに反比例する。これをキュリーの法則と呼ぶ。 比例定数Cはキュリー定数と呼ばれる。.

新しい!!: ロジウムと常磁性 · 続きを見る »

三元触媒

三元触媒(さんげんしょくばい、Three-Way Catalyst)は、ガソリン車・ディーゼル車の排出ガス中の3種類の有害成分を酸化・還元によって同時に浄化する装置である。三元触媒コンバータ(Three-Way Catalytic converter)とも呼ばれ、排気経路に取り付けられる。.

新しい!!: ロジウムと三元触媒 · 続きを見る »

京都大学

記載なし。

新しい!!: ロジウムと京都大学 · 続きを見る »

人工放射性元素

人工放射性元素(じんこうほうしゃせいげんそ, Synthetic element)は、人工的に合成された元素(同位体)の総称である。 天然には存在しない4つの元素(テクネチウム、プロメチウム、アスタチン、フランシウム)と、超ウラン元素(アメリシウム、キュリウムなど)はほぼすべて人工放射性元素であり、広義では人工の放射性同位体も含む。これらは半減期の短い放射性元素であるため、自然界には極めて僅かしか存在が確認されない。通常は、原子核に高いエネルギーを持たせた荷電粒子や、γ線、中性子などをぶつけて合成する。 人工の放射性同位体としては1934年にフレデリック・ジョリオ=キュリーとイレーヌ・ジョリオ=キュリーの夫妻が放射性リン (30P) を得たのが最初で、元素としては1937年に得られたテクネチウムが最初である。.

新しい!!: ロジウムと人工放射性元素 · 続きを見る »

ルテニウム

ルテニウム(ruthenium)は原子番号44の元素。元素記号は Ru。漢字では釕(かねへんに了)と表記される。白金族元素の1つ。貴金属にも分類される。銀白色の硬くて脆い金属(遷移金属)で、比重は12.43、融点は2500 、沸点は4100 (融点、沸点とも異なる実験値あり)。常温、常圧で安定な結晶構造は、六方最密充填構造 (HCP)。酸化力のある酸に溶ける。王水とはゆっくり反応。希少金属である。.

新しい!!: ロジウムとルテニウム · 続きを見る »

レアメタル

レアメタル「希少な金属」を意味する「レアメタル」は和製英語での用法で、英語におけるrare metalは希土類元素(rare earth)と同義である。、希少金属(きしょうきんぞく)は、非鉄金属のうち、様々な理由から産業界での流通量・使用量が少なく希少な金属。 レアメタルは非鉄金属全体を呼ぶ場合もあるが、狭義では、鉄、銅、亜鉛、アルミニウム等のベースメタル(コモンメタルやメジャーメタルとも呼ばれる)や金、銀などの貴金属以外で、産業に利用されている非鉄金属を指す中村繁夫『レアメタル資源争奪戦』日刊工業新聞社 2007年8月25日初版第4刷発行 ISBN 978-4-526-05813-4。「レアメタル」は、日本独自の用語であり、海外では「マイナーメタル」と呼ばれる。.

新しい!!: ロジウムとレアメタル · 続きを見る »

パラジウム

パラジウム(palladium)は原子番号46の元素。元素記号は Pd。白金族元素の1つ。貴金属にも分類される。 常温、常圧で安定な結晶構造は、面心立方構造 (FCC)。銀白色の金属(遷移金属)で、比重は12.0、融点は1555 (実験条件等により若干値が異なることあり)。酸化力のある酸(硝酸など)には溶ける。希少金属の1つ。.

新しい!!: ロジウムとパラジウム · 続きを見る »

ホワイトゴールド

ホワイトゴールド (White Gold、白色金) とは、主に宝飾品として利用される、金を主体とする白い合金である。宝飾品の分野では、頭文字をとってWGという略号が用いられる場合がある。金属体に刻まれる表記は(18金のもので)K18WG、もしくはK18のように省略される場合がある。.

新しい!!: ロジウムとホワイトゴールド · 続きを見る »

ベータ崩壊

ベータ崩壊(ベータほうかい、beta decay)とは、放射線としてベータ線(電子)を放出する放射性崩壊の一種である。 後にベータ線のみを放出するとするとベータ線のエネルギーレベルの連続性を説明できないことから、電子(ベータ線)と同時にニュートリノと呼ばれる粒子も放出する弱い相互作用の理論として整理された。.

新しい!!: ロジウムとベータ崩壊 · 続きを見る »

めっき

めっき(鍍、英語:Plating)は、表面処理の一種で、材料の表面に金属の薄膜を被覆すること、あるいはその方法を指す。狭義には液中でおこなう方法のみを言う。なお、各メディアや書籍において「メッキ」と片仮名で表記されることも少なくないため、外来語のように受け取られることもあるが、和製漢語とされる「滅金(めっきん)」に由来する語である。鍍金(ときん)ともいう。.

新しい!!: ロジウムとめっき · 続きを見る »

イリジウム

イリジウム(iridium )は原子番号77の元素。元素記号は Ir。 白金族元素の一つで、単体では白金に似た白い光沢(銀白色)を持つ金属(遷移金属)として存在する。.

新しい!!: ロジウムとイリジウム · 続きを見る »

インターネットアーカイブ

旧インターネットアーカイブ本部(1996年 - 2009年11月) インターネットアーカイブ (The Internet Archive) は、WWW・マルチメディア資料のアーカイブ閲覧サービスとして有名なウェイバックマシン (Wayback Machine)を運営している団体である。本部はカリフォルニア州サンフランシスコのリッチモンド地区に置かれている。 アーカイブにはプログラムが自動で、または利用者が手動で収集したウェブページのコピー(ウェブアーカイブ)が混在しており、これは「WWWのスナップショット」と呼ばれる。ほか、ソフトウェア・映画・本・録音データ(音楽バンドなどの許可によるライブ公演の録音も含む)などがある。アーカイブは、それらの資料を無償で提供している。.

新しい!!: ロジウムとインターネットアーカイブ · 続きを見る »

ウィルキンソン触媒

ウィルキンソン触媒(ウィルキンソンしょくばい、Wilkinson's catalyst)はクロロトリス(トリフェニルホスフィン)ロジウム(I)(chlorotris(triphenylphosphine)rhodium(I))の慣用名であり、その名は1973年にノーベル賞を受賞した有機金属化学者、ジェフリー・ウィルキンソン卿からとられている。この化合物は平面4配位、16電子の錯体で、普通赤または紫色の結晶性固体(融点245–250 ℃)として単離される。ウィルキンソン触媒は塩化ロジウム(III) 3水和物を過剰のトリフェニルホスフィン存在下、エタノールで還元して合成される。.

新しい!!: ロジウムとウィルキンソン触媒 · 続きを見る »

ウイリアム・ウォラストン

ウィリアム・ハイド・ウォラストン(William Hyde Wollaston 、1766年8月6日- 1828年12月22日)は、イギリスの化学者、物理学者、天文学者である。1803年にロジウム、パラジウムを発見した。他に、1802年太陽光のスペクトルのなかに、太陽の元素により吸収されてできる暗線(フラウンホーファー線)のあることを見出した。プラチナの精製法も開発した。.

新しい!!: ロジウムとウイリアム・ウォラストン · 続きを見る »

ガンマ崩壊

ンマ崩壊(ガンマほうかい、)、γ崩壊は、励起された原子核がガンマ線を放出して崩壊する放射性崩壊。ガンマ崩壊は、アルファ崩壊やベータ崩壊と違い、核種が変わらない、つまり、原子番号や質量数が変わらない崩壊である。 具体的には、エネルギーをもらうなどして励起された原子核、アルファ崩壊やベータ崩壊などで崩壊した娘核種がすでに励起した状態であった場合は、高いエネルギー準位から低いエネルギー準位に遷移する際に、その準位間のエネルギー差に等しいエネルギーを持つガンマ線を放出して安定な原子核へと移行する。励起状態の核がγ線を放出するまでの時間は極めて短く、おおむね10-10秒以下である。 ガンマ崩壊はその崩壊において、角運動量とパリティの違いから.

新しい!!: ロジウムとガンマ崩壊 · 続きを見る »

ギリシア語

リシア語(ギリシアご、現代ギリシア語: Ελληνικά, または Ελληνική γλώσσα )はインド・ヨーロッパ語族ヘレニック語派(ギリシア語派)に属する言語。単独でヘレニック語派(ギリシア語派)を形成する。ギリシア共和国やキプロス共和国、イスタンブールのギリシア人居住区などで使用されており、話者は約1200万人。また、ラテン語とともに学名や専門用語にも使用されている。省略形は希語。.

新しい!!: ロジウムとギリシア語 · 続きを見る »

クリプトン

リプトン(krypton)は原子番号36の元素。元素記号は Kr。希ガス元素の一つ。 常温、常圧で無色、無臭の気体。融点は-157.2 、沸点は-152.9 (-153.4)、比重は2.82 (-157)。重い気体であるため、吸引すると声が低くなる。空気中には1.14 ppmの割合で含まれている。空気を液化、分留することにより得られる。不活性であるがフッ素とは酸化数が+2の不安定な化合物を作る。また、水やヒドロキノンと包接化合物を作る。.

新しい!!: ロジウムとクリプトン · 続きを見る »

コバルト

バルト (cobalt、cobaltum) は、原子番号27の元素。元素記号は Co。鉄族元素の1つ。安定な結晶構造は六方最密充填構造 (hcp) で、強磁性体。純粋なものは銀白色の金属である。722 K以上で面心立方構造 (fcc) に転移する。 鉄より酸化されにくく、酸や塩基にも強い。.

新しい!!: ロジウムとコバルト · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

新しい!!: ロジウムと元素 · 続きを見る »

元素記号

在の元素記号(硫黄) ドルトンの元素記号(硫黄) 元素記号(げんそきごう)とは、元素、あるいは原子を表記するために用いられる記号のことであり、原子記号(げんしきごう)とも呼ばれる。現在は、1、2、ないし3文字のアルファベットが用いられる。 なお、現在正式な元素記号が決定している最大の元素は原子番号118のOg(オガネソン)である。 分子の組成をあらわす化学式や、分子の変化を記述する化学反応式などで利用される。 現在使用されている元素記号は1814年にベルセリウスが考案したものに基づいており、ラテン語などから1文字または2文字をとってつくられている。 全ての元素記号がラテン語名と一致しているが、ギリシア語、英語、ドイツ語(その他スペイン語やスウェーデンの地名からの採用もある)などからの採用も多く、ラテン語名との一致は偶然または語源を通した間接的なものである。元素名が確定されていない超ウラン元素については、3文字の系統名が用いられる。 物質の構成要素を記号であらわすことはかつての錬金術においてもおこなわれていた。 化学者ジョン・ドルトンも独自の記号を開発して化学反応を記述していたが、現在はアルファベットでの表記が国際的に使われている。 原子番号16番で質量数35の放射性硫黄原子1つと酸素原子4つからなる2価の陰イオンの硫酸イオンのイオン式。 原子番号や質量数を付記する場合、原子番号は左下に (13Al)、質量数は左上に (27Al)、イオン価は右肩に (Al3+)、原子数は右下に (N2) 付記する。.

新しい!!: ロジウムと元素記号 · 続きを見る »

王水

王水 ジャービル・イブン=ハイヤーン 王水(おうすい、aqua regia)は、濃塩酸と濃硝酸とを3:1の体積比で混合してできる橙赤色の液体。CAS登録番号は8007-56-5。 塩化アンモニウムと硝酸アンモニウムとを目分量1:3の混合比としたものは「固体王水」と呼称され、粉末試験法においてほとんどの金属酸化物を混合して加熱することにより、塩化することができる。また、濃塩酸と濃硝酸とを1:3の混合比としたものは「逆王水」と呼称され、分析化学において金属の溶解などに用いる。.

新しい!!: ロジウムと王水 · 続きを見る »

窒素酸化物

素酸化物(ちっそさんかぶつ、nitrogen oxides) は窒素の酸化物の総称。 一酸化窒素(NO)、二酸化窒素(NO2)、亜酸化窒素(一酸化二窒素)(N2O)、三酸化二窒素(N2O3)、四酸化二窒素(N2O4)、五酸化二窒素(N2O5)など。化学式の NOx から「ノックス」ともいう。.

新しい!!: ロジウムと窒素酸化物 · 続きを見る »

第17族元素

17族元素(だいじゅうななぞくげんそ、halogèneアロジェーヌ、halogen ハロゲン)は周期表において第17族に属する元素の総称。フッ素・塩素・臭素・ヨウ素・アスタチン・テネシンがこれに分類される。ただしアスタチンは半減期の長いものでも数時間であるため、その化学的性質はヨウ素よりやや陽性が高いことがわかっている程度である。またテネシンは2009年にはじめて合成されており、わかっていることはさらに少ない。 フッ素、塩素、臭素、ヨウ素は性質がよく似ており、アルカリ金属あるいはアルカリ土類金属と典型的な塩を形成するので、これら元素からなる元素族をギリシャ語の 塩 alos と、作る gennao を合わせ「塩を作るもの」という意味の「halogen ハロゲン」と、18世紀フランスで命名された。これらの任意の元素を表すために化学式中ではしばしば X と表記される。任意のハロゲン単体を X2 と表す。.

新しい!!: ロジウムと第17族元素 · 続きを見る »

白金

白金(はっきん、platinum)は原子番号78の元素。元素記号は Pt。白金族元素の一つ。 学術用語としては白金が正しいが、現代日本の日常語においてはプラチナと呼ばれることもある。白金という言葉はオランダ語の witgoud(wit.

新しい!!: ロジウムと白金 · 続きを見る »

白金族元素

白金族元素(はっきんぞくげんそ、Platinum Group Metal、略称PGM)とは、元素のうち周期表において第5および第6周期、第8、9、10族に位置する元素、すなわちルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金の総称。物理的性質や化学的性質が互いによく似ているため、同じ族として扱われる。 いずれも貴金属で、水とは反応せず酸や塩基に侵されにくい。周期が異なる元素同士でも原子半径や電子分布が近いのはランタノイド収縮によるところが大きい。金属そのものまたは錯体に、触媒として有用なものが数多い。.

新しい!!: ロジウムと白金族元素 · 続きを見る »

銀(ぎん、silver、argentum)は原子番号47の元素。元素記号は Ag。貴金属の一種。.

新しい!!: ロジウムと銀 · 続きを見る »

融点

融点(ゆうてん、Schmelzpunkt、point de fusion、melting point)とは、固体が融解し液体になる時の温度のことをいう。ヒステリシスが無い場合には凝固点(液体が固体になる時の温度)と一致する。また、三重点すなわち平衡蒸気圧下の融点は物質固有の値を取り、不純物が含まれている場合は凝固点降下により融点が低下することから物質を同定したり、純度を確認したりする手段として用いられる。 熱的に不安定な物質は溶融と共に分解反応が生じる場合もある。その場合の温度は分解点と呼ばれる場合があり、融点に(分解)と併記されることがある。.

新しい!!: ロジウムと融点 · 続きを見る »

面心立方格子構造

面心立方格子構造(めんしんりっぽうこうしこうぞう、face-centered cubic, fcc)は、ブラベー格子の一種。単位格子の各頂点および各面の中心に原子が位置する。立方最密充填構造(りっぽうさいみつじゅうてんこうぞう、cubic close-packed, ccp)とは見る角度が違うだけで同じ配列である。面心立方格子構造を持つ単体金属は多い。.

新しい!!: ロジウムと面心立方格子構造 · 続きを見る »

触媒

触媒(しょくばい)とは、特定の化学反応の反応速度を速める物質で、自身は反応の前後で変化しないものをいう。また、反応によって消費されても、反応の完了と同時に再生し、変化していないように見えるものも触媒とされる。「触媒」という用語は明治の化学者が英語の catalyser、ドイツ語の Katalysator を翻訳したものである。今日では、触媒は英語では catalyst、触媒の作用を catalysis という。 今日では反応の種類に応じて多くの種類の触媒が開発されている。特に化学工業や有機化学では欠くことができない。また、生物にとっては酵素が重要な触媒としてはたらいている。.

新しい!!: ロジウムと触媒 · 続きを見る »

講談社

株式会社講談社(こうだんしゃ、英称:Kodansha Ltd.)は、日本の総合出版社。創業者の野間清治の一族が経営する同族企業。.

新しい!!: ロジウムと講談社 · 続きを見る »

貴金属

貴金属元素のサンプル 貴金属(ききんぞく、precious metal)は、化学としては金 (Au)、銀 (Ag)、白金 (Pt)、パラジウム (Pd)、ロジウム (Rh)、イリジウム (Ir)、ルテニウム (Ru)、オスミウム (Os) の8つの元素を指す。存在が希少なものが多く、耐腐食性があるのが特徴である。Dブロック元素に属する。 ルテニウム、ロジウム、パラジウム(これら3つをパラジウム類と言うことがある)、オスミウム、イリジウム、白金(これら3つは白金類と言うことがある)の6つの元素を「白金族元素」と言う。 またこれらは遷移元素である。白金族元素はお互い性質が似通っており、融点が高く、白金、パラジウムはアルミニウム並に軟らかく、ルテニウム、イリジウムは硬く、オスミウムは非常に硬く脆い。ロジウムはその中間の硬さである。全体的にくすんだ銀白色を呈した金属である。 また白金類は密度が21から22と非常に高く、物質中最も重い元素になる。重白金族とも言う。パラジウム類は密度は12で、軽白金族とも言う。酸、アルカリなどにも侵されにくい。非常に有用な触媒となるものもある。 周期表の11属同族元素である金、銀、銅も貴金属 (noble metal) であり、この場合、銅も貴金属に含まれる場合がある。また学問分野によっては、水銀など 上記以外の元素を貴金属に含めることがある。これはイオン化傾向が水素より小さい金属という定義によるものである。 ジュエリー用貴金属 8種の貴金属の中で、金 (Au)、銀 (Ag)、白金 (Pt)、パラジウム (Pd) の4種とその合金を、ISO9202、JIS-H6309、及びCIBJO(国際貴金属宝飾品連盟)は、ジュエリー用貴金属合金として定め、品位区分を設けている。 イリジウム (Ir)、ルテニウム (Ru) は、白金 (Pt)(プラチナ)の割り金として用いられている。 ロジウム (Rh) は、ジュエリーやアクセサリーの表面めっきとして、広く利用されている。 ジュエリーの製造現場では、加工上の性質、用途と色調から、産出量は多いが銅を貴金属の一種と考えることもある。.

新しい!!: ロジウムと貴金属 · 続きを見る »

薔薇色

薔薇色(そうびいろ、ばらいろ)は、バラの赤い花の色。.

新しい!!: ロジウムと薔薇色 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: ロジウムと金属 · 続きを見る »

長さの比較

本項では、長さの比較(ながさのひかく)ができるよう、長さを昇順に表にする。.

新しい!!: ロジウムと長さの比較 · 続きを見る »

酸(さん、acid)は化学において、塩基と対になってはたらく物質のこと。酸の一般的な使用例としては、酢酸(酢に3〜5%程度含有)、硫酸(自動車のバッテリーの電解液に使用)、酒石酸(ベーキングに使用する)などがある。これら三つの例が示すように、酸は溶液、液体、固体であることができる。さらに塩化水素などのように、気体の状態でも酸であることができる。 一般に、プロトン (H+) を与える、または電子対を受け取る化学種。化学の歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの酸の定義が存在する。 酸としてはたらく性質を酸性(さんせい)という。一般に酸の強さは酸性度定数 Ka またはその負の常用対数 によって定量的に表される。 酸や塩基の定義は相対的な概念であるため、ある系で酸である物質が、別の系では塩基としてはたらくことも珍しくはない。例えば水は、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用するが、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞う。 酸解離定数の大きい酸を強酸、小さい酸を弱酸と呼ぶ。さらに、100%硫酸より酸性の強い酸性媒体のことを、特に超酸(超強酸)と呼ぶことがある。 「—酸」と呼ばれる化合物には、酸味を呈し、その水溶液のpHは7より小さいものが多い。.

新しい!!: ロジウムと酸 · 続きを見る »

酸化

酸化(さんか、英:oxidation)とは、対象の物質が酸素と化合すること。 例えば、鉄がさびて酸化鉄になる場合、鉄の電子は酸素(O2)に移動しており、鉄は酸化されていることが分かる。 目的化学物質を酸化する為に使用する試薬、原料を酸化剤と呼ぶ。ただし、反応における酸化と還元との役割は物質間で相対的である為、一般的に酸化剤と呼ぶ物質であっても、実際に酸化剤として働くかどうかは、反応させる相手の物質による。.

新しい!!: ロジウムと酸化 · 続きを見る »

電子捕獲

電子捕獲(でんしほかく、electron capture、EC)とは、原子核の放射性崩壊の一種である。電子捕獲では、電子軌道の電子が原子核に取り込まれ、捕獲された電子は原子核内の陽子と反応し中性子となり、同時に電子ニュートリノが放出される。捕獲される電子は普通はK軌道の電子であるが、L軌道やM軌道の電子が捕獲される場合もある。.

新しい!!: ロジウムと電子捕獲 · 続きを見る »

陽電子放出

陽電子放出(ようでんしほうしゅつ、positron emission)、または、正のβ崩壊(せいのべーたほうかい、beta plus decay)とはベータ崩壊の一種。この過程において、陽子は弱い力を通して中性子、陽電子、ニュートリノに転換される。陽電子はベータプラス粒子として知られている電子の反粒子である。このため、この放出過程は時に"ベータプラス"(β+)として言及される。 この崩壊を行い、それに伴い陽電子を放出する同位体には炭素11、カリウム40、窒素13、酸素15、フッ素18、ヨウ素121などが上げられる。例として、炭素11からホウ素11への崩壊が上げられ、下記の式のように表すことができる。 これらの同位体は陽電子断層法に使われ、この手法は医用画像処理に使われている。特徴的であるのは放たれるエネルギーが崩壊する同位体に依存していることである。上記のように炭素11の一個の崩壊では0.96 MeVが発生し、これは炭素11にのみ当てはまる。 中性子と陽子の中には、クォークと呼ばれる素粒子が存在する。中性子と陽子の中にあるクォークにはアップクォークとダウンクォークがある。ひとつの陽子、中性子に対してクォークは常に3つ入っており、これの組み合わせにより中性子か陽子かという特性を得る。アップクォークは3分の2の電荷で、ダウンクォークは-3分の1の電荷である。陽子ではアップクォーク2個、ダウンクォーク1個であり電荷は2/3 + 2/3 - 1/3.

新しい!!: ロジウムと陽電子放出 · 続きを見る »

核異性体転移

核異性体転移(英語:Isomeric transition、ITとも略記)とは、励起された原子核(核異性体)に起こる、ガンマ線の放出を伴う放射性崩壊(ガンマ崩壊)の形式の一種である。 例えば核分裂や核融合、アルファ崩壊やベータ崩壊などの核反応の直後の原子核は、エネルギーの高い励起状態にあることがある。 この励起した原子核(励起核)の持つ余分なエネルギーはガンマ線の放出によって解放され、原子核はよりエネルギーの低い励起状態、あるいはエネルギーが最低の基底状態へと戻る。 この現象は励起後、即時にガンマ線を放出するガンマ崩壊と同じであるが、励起された状態をある程度の時間継続する核異性体が関わると言う点で、通常のガンマ崩壊と区別して核異性体転移と呼ばれる。 放出されたガンマ線は通常そのまま原子外に放射されるが、光電効果により原子内の束縛電子にガンマ線のエネルギーを転移させ、高エネルギー電子として原子からはじき出すこともある。 これはまた、励起核が、原子核内部にも存在確率を有するS殻電子に、励起核のエネルギーを直接受け渡して放出する内部転換とも類似するが、どの束縛電子が放出されるかという点で別のメカニズムであり混同するべきではない。.

新しい!!: ロジウムと核異性体転移 · 続きを見る »

水素化

水素化(すいそか、hydrogenation)とは、水素ガスを還元剤として化合物に対して水素原子を付加する還元反応のことである。水素添加反応(すいそてんかはんのう)、略して水添(すいてん)と呼ばれることもある。この反応は触媒を必要とするため、接触水素化(せっしょくすいそか、catalytic hydrogenation)とも呼ばれる。文脈によっては水素化反応を使用した実験手法・技術のことを指す場合もある。 より広義には還元剤が何であるかを問わず、化合物に水素原子を付加する還元反応全般のことを指す場合もある。.

新しい!!: ロジウムと水素化 · 続きを見る »

沸点

沸点(ふってん、)とは、液体の飽和蒸気圧が外圧液体の表面にかかる圧力のこと。と等しくなる温度であるアトキンス第8版 p.122.

新しい!!: ロジウムと沸点 · 続きを見る »

日本経済新聞

日本経済新聞(にほんけいざいしんぶん、題字:日本經濟新聞、The Nikkei)は、日本経済新聞社の発行する新聞(経済紙)であり、広義の全国紙の一つ。略称は日経(にっけい)、または日経新聞(にっけいしんぶん)。日本ABC協会調べによると販売部数は2017年10月で朝刊約260万部、夕刊約127万部である。最大印刷ページ数は48ページである。.

新しい!!: ロジウムと日本経済新聞 · 続きを見る »

1 E5 s

105 - 106 s(27.8 時間 - 11.6 日)の時間のリスト.

新しい!!: ロジウムと1 E5 s · 続きを見る »

1 E6 s

106 - 107 s(11.6 日 - 116 日)の時間のリスト.

新しい!!: ロジウムと1 E6 s · 続きを見る »

1 E7 s

107 - 108 s(116 日 - 1160 日)の時間のリスト.

新しい!!: ロジウムと1 E7 s · 続きを見る »

1 E8 s

108 - 109 s(3.2 年 - 32 年)の時間のリスト.

新しい!!: ロジウムと1 E8 s · 続きを見る »

1803年

記載なし。

新しい!!: ロジウムと1803年 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »