ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

三次関数

索引 三次関数

x-軸と交わる点である。このグラフは二つの極値を持つ。 1.

22 関係: 単調写像多項式多項式の次数多項式函数変曲点実数実数値関数不定元中間値の定理三次方程式二次関数代数学の基本定理微分可能ニュートン法判別式グラフ (関数)点対称鞍点臨界点 (数学)連続 (数学)極値数学

単調写像

単調写像(たんちょうしゃぞう、monotonic function, monotone function)または単調関数は、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、monotonically increasing)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、monotonically increasing function)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、monotonically decreasing)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、monotonically decreasing function)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右上りで、右下がりになっている部分がない。逆に単調減少関数の場合には、常に右下がりであり右上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、monotonicity)と呼ぶ。.

新しい!!: 三次関数と単調写像 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 三次関数と多項式 · 続きを見る »

多項式の次数

数学、初等代数学における多項式の次数(じすう、degree)は、多項式を不定元の冪積の線型結合からなるに表すとき、そこに現れる項のうち最も高い項の次数を言う。ここに、項の次数とは、それに現れる不定元の冪指数の総和である。次数の同義語として「位数」「階数」(order) が用いられることもあるが、今日的にはに取られるのが普通だろう。 例えば、多項式 は三つの項からなる。多項式の記法に関する通常の規約により、この多項式は厳密には を意味することに注意する。最初の項の次数は (冪指数 と の和)であり、二番目の項の次数は, 最後の項の次数は であるから、この中で最高次の項の次数である がこの多項式の次数ということになる。 上のような標準形になっていない多項式の次数の決定に際しては、たとえば のような場合、積は分配法則に従って展開し、同類項をまとめて、まずは標準形に直さなければならない。いまの例では だから次数は である(二つの二次式の和をとったにもかかわらず、である)。しかし、多項式が標準形の多項式の「積」に書かれている時には、積の次数は各因子の次数の総和として計算できるから、必ずしも展開・整理は要しない。 多項式の次数の日本語名称は、一貫して次数の値に接尾辞「-次」をつける。英語名称は、いくつかの例外はあるが基本的にラテン語の序数詞に形容詞を作る接尾辞の -ic を付けて表す。次数と不定元の数はきちんと区別されるべきであって、こちらには接尾辞「-元」あるいは「-変数」を付ける(英語名称ではラテン語に接尾辞 -ary が付く)。例えば のような二つの不定元に関する次数 の多項式は「二元二次」("binary quadratic") であると言い、二元 (binary) が不定元の数が であることを、二次 (quadratic) 次数が であることを言い表している。もう一つ、項の数も明示するなら「-項式」(英語名称では ラテン配分数詞に接尾辞 -nomial)を付ける。単項式 (monomial), 二項式 (binomial) あるいは三項式 (trinomial) など。つまり、例えば は「二元二次二項式」("binary quadratic binomial") である。 以下しばらくは一元多項式に関して述べる。.

新しい!!: 三次関数と多項式の次数 · 続きを見る »

多項式函数

代数学における多項式函数(たこうしきかんすう、polynomial function)は、適当な可換環(多くの場合は可換体) に係数を持つ多項式に付随して定まる f\colon x \mapsto a_n x^n + a_ x^ + \cdots + a_1 x + a_0 x^0 なる形の写像を言う。ただし、 は自然数で、 は の係数と呼ばれる の元である。これはまた、和の sum-記法によって のようにも書かれる。このような写像 を に係数を持つ多項式函数と呼ぶ。 ここでは定義を複雑にしないために多項式函数の定義域および終域 については特に限定しないが、事実として は 上の単位的結合多元環の構造を持てば十分である。つまりそのような構造は多項式函数の定義に現れるすべての演算を持っている.

新しい!!: 三次関数と多項式函数 · 続きを見る »

変曲点

変曲点(へんきょくてん)とは、平面上の曲線で曲がる方向が変わる点のこと。幾何学的にいえば、曲線上で曲率の符号(プラス・マイナス)が変化する点(この点では0となる)をいう。これは幾何学的または解析学的に、次の各定義と同値である。.

新しい!!: 三次関数と変曲点 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 三次関数と実数 · 続きを見る »

実数値関数

実数値関数(じっすうちかんすう、real-valued function)、あるいは実関数(じつかんすう、real function)とは、値として実数を与える関数をいう。つまり、定義域のそれぞれの元に対し実数を割り当てる関数のことである。 多くの重要な関数空間が、いくつかの実数値関数からなるものとして定義されている。.

新しい!!: 三次関数と実数値関数 · 続きを見る »

不定元

不定元 (indeterminate) は多項式や形式的冪級数に現れる記号であり、しばしば変数と呼ばれる。正式には、不定元は変数ではなく、多項式環や形式的冪級数環の定数である。しかしながら、多項式や形式的級数とそれらの定義する関数との間の強い関係のために、多くの著者は不定元を変数の特別な種類と考える。 例えば、二元体 F2 において多項式 X2 + X を考えると、これは 0 ではないが、この多項式の表す多項式関数は 0 である。 Category:抽象代数学 Category:数学に関する記事.

新しい!!: 三次関数と不定元 · 続きを見る »

中間値の定理

中間値の定理:関数 ''f'' を閉区間[''a'', ''b'']上で連続な関数とすると、''f''(''a'') < ''s'' < ''f''(''b'') を満たす実数 ''s'' に対して、''f''(''x'').

新しい!!: 三次関数と中間値の定理 · 続きを見る »

三次方程式

三次方程式(さんじほうていしき、cubic equation)とは、次数が 3 であるような代数方程式の事である。この項目では主に、実数を係数とする一変数の三次方程式を扱う。.

新しい!!: 三次関数と三次方程式 · 続きを見る »

二次関数

二次関数はグラフでは放物線を表す。図はy.

新しい!!: 三次関数と二次関数 · 続きを見る »

代数学の基本定理

代数学の基本定理(だいすうがくのきほんていり、fundamental theorem of algebra)は「次数が 1 以上の任意の複素係数一変数多項式には複素根が存在する」 という定理である。.

新しい!!: 三次関数と代数学の基本定理 · 続きを見る »

微分可能

微分可能(びぶんかのう).

新しい!!: 三次関数と微分可能 · 続きを見る »

ニュートン法

数値解析の分野において、ニュートン法(ニュートンほう、Newton's method)またはニュートン・ラフソン法(Newton-Raphson method)は、方程式系を数値計算によって解くための反復法による求根アルゴリズムの1つである。対象とする方程式系に対する条件は、領域における微分可能性と2次微分に関する符号だけであり、線型性などは特に要求しない。収束の速さも2次収束なので古くから数値計算で使用されていた。名称はアイザック・ニュートンとに由来する。.

新しい!!: 三次関数とニュートン法 · 続きを見る »

判別式

代数学において、多項式の判別式(はんべつしき、discriminant)はその係数たちの関数であり、一般には大文字の 'D' あるいは大文字のギリシャ文字デルタ (Δ) で表記される。それは根の性質についての情報を与えてくれる。例えば、二次多項式 の判別式は である。ここで、実数,, に対して、Δ > 0 であれば、多項式は 2 つの実根を持ち、Δ.

新しい!!: 三次関数と判別式 · 続きを見る »

グラフ (関数)

関数のグラフ(graph)は、直観的には、関数を平面内の曲線もしくは空間内の曲面としてダイアグラム状に視覚化したものである。形式的には、関数 のグラフとは、順序対 の集合である。 例えば、 と が常に実数であるような関数の場合、グラフは座標平面上の点の集まりとみなすことができる。このような関数のうち、応用上重要な関数の多くは、グラフを座標平面上に曲線として描くことが可能である。 グラフの概念は、関数のみならず、より一般の写像や対応に対しても定義される。標語的には、グラフは関数や対応を特徴付ける集合であるといえる。.

新しい!!: 三次関数とグラフ (関数) · 続きを見る »

点対称

山梨県韮崎市の市章 点対称(てんたいしょう、point symmetry, point reflection)とは、対称性の一種である。点対称な図形は、対称点(対称中心)を中心とした反転に対し不変である。.

新しい!!: 三次関数と点対称 · 続きを見る »

鞍点

鞍点(あんてん、)は、多変数実関数の変域の中で、ある方向で見れば極大値だが別の方向で見れば極小値となる点である。 鞍部点、峠点とも言う。微分可能な関数については極値を取らない停留点とも言う。.

新しい!!: 三次関数と鞍点 · 続きを見る »

臨界点 (数学)

数学において,あるいはの可微分関数の臨界点(りんかいてん,critical point)あるいは(ていりゅうてん,stationary point)とは,微分が 0 あるいは未定義となる定義域内の任意の値である.に対して,臨界点はすべての偏微分が 0 になるような定義域内の値である.関数の臨界点における値は臨界値(りんかいち,critical value)である. この概念の興味は,関数が極値をとる点は臨界点であるという事実にある. この定義は と の間の可微分写像に拡張し,臨界点はこの場合ヤコビ行列の階数が最大でない点である.さらに,可微分多様体の間の可微分写像にも同様に拡張される.この場合,臨界点は とも呼ばれる. 特に, が陰方程式 で定義される平面曲線のとき, 軸に平行な 軸への射影の臨界点は の接線が 軸に平行な点,つまり,\frac(x,y).

新しい!!: 三次関数と臨界点 (数学) · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 三次関数と連続 (数学) · 続きを見る »

極値

数学において、関数の局所的な(つまり、ある点の近傍における)最大値または最小値のことをそれぞれ極大値(きょくだいち、maximal, local maximum)、極小値(きょくしょうち、minimal, local minimum)といい、これらを併せて極値(きょくち)と総称する。 極値は局所的な概念であるため、ある点で極値をとってもその点が全域的な最大・最小値を取るとは限らないが、極値自体が適当な区間における最大・最小値の候補と考えることができるため、関数の振る舞いを知る上で重要である。極値を調べる方法としては、微分を利用することで極値をとるための必要条件を求めることができる。.

新しい!!: 三次関数と極値 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 三次関数と数学 · 続きを見る »

ここにリダイレクトされます:

三次函数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »