ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

双曲線関数

索引 双曲線関数

csch) のグラフ 数学において、双曲線関数(そうきょくせんかんすう、hyperbolic function)とは、三角関数と類似の関数で、標準形の双曲線を媒介変数表示するときなどに現れる。.

31 関係: 加法定理原点偶関数と奇関数双曲線双曲線正割分布媒介変数対数三角関数三角関数の無限乗積展開二次方程式ラジアンローラン級数ロジスティック方程式パラメトリック方程式テイラー展開ベルヌーイ数オイラー数カテナリー曲線グーデルマン関数シグモイド関数円 (数学)積分法線型微分方程式線分総乗領域関数 (数学)逆写像指数関数有理関数数学

加法定理

数学、物理学等において、特殊函数の加法定理(かほうていり、addition theorem)、加法法則(かほうほうそく、addition law/rule)あるいは加法公式(かほうこうしき、addition formula)とは、ある関数や対応・写像について、2 つ以上の変数の和として記される変数における値を、それぞれの変数における値によって書き表したもの。.

新しい!!: 双曲線関数と加法定理 · 続きを見る »

原点

原点(げんてん、, origo)は、物事のはじまりや基(もと)、基準、根拠となるところ。人の人生、企業などの歴史を振り返る際に、出発点という意味で比喩でも用いられる。.

新しい!!: 双曲線関数と原点 · 続きを見る »

偶関数と奇関数

数学において、偶関数(ぐうかんすう、even function)および奇関数(きかんすう、odd function)は、変数の符号を反転させる変換に関してそれぞれ、特定の対称性を満足する関数である。これらは解析学の多くの分野、殊に冪級数やフーリエ級数に関する理論において重要である。名称は、この性質を満足する冪函数の冪指数の(整数としての)偶奇に由来する(すなわち、函数 は が偶数のとき偶函数であり、 が奇数のとき奇函数である)。 この、函数の偶奇性 (parity of function) の概念は、始域および終域がともに加法逆元(マイナス元)を持つような場合であれば常に意味を成す。加法逆元を持つような代数系には、例えば任意のアーベル群、(必ずしも可換でない)環や体、あるいはベクトル空間などが挙げられるから、従って例えば実変数実数値の函数やベクトル変数複素数値の函数といったようなものに対して、その偶奇性を定めることができる。 以下では特に断らない限り、それら函数のグラフの対称性を詳らかにするために、実変数実数値函数に関して述べる。 y 軸対称 奇関数の例:正弦関数は原点対称 正弦関数と余弦関数 偶関数の例:絶対値関数 偶関数の例:双曲線余弦関数 奇関数の例:双曲線正弦関数 1.

新しい!!: 双曲線関数と偶関数と奇関数 · 続きを見る »

双曲線

双曲線(そうきょくせん、hyperbola)とは、2次元ユークリッド空間 R2 上で定義され、ある2点 P, Q からの距離の差が一定であるような曲線の総称である。この P, Q は焦点と呼ばれる。双曲線は、次の陰関数曲線の直交変換によって決定することができる。 この場合、焦点の座標は と書ける。このとき、2焦点から曲線への距離の差は 2a となる。また、双曲線には2つの漸近線が存在しており、 である。漸近線が直交している、すなわち a.

新しい!!: 双曲線関数と双曲線 · 続きを見る »

双曲線正割分布

統計学および確率論において、双曲線正割分布(そうきょくせんせいかつぶんぷ、hyperbolic secant distribution)は、その確率密度関数と特性関数が双曲線正割関数 (sech) に比例する連続確率分布である。.

新しい!!: 双曲線関数と双曲線正割分布 · 続きを見る »

媒介変数

数学において媒介変数(ばいかいへんすう、パラメータ、パラメタ、parameter)とは、主たる変数(自変数)あるいは関数に対して補助的に用いられる変数のことである。なおこの意味でのパラメータは助変数(じょへんすう)とも呼び、また古くは径数(けいすう)とも訳された(後者はリー群の一径数部分群(1-パラメータ部分群)などに残る)。母数と呼ぶこともある。 媒介変数の役割にはいくつかあるがその主なものとして、主たる変数たちの間に陰に存在する関係を記述すること、あるいはいくつもの対象をひとまとまりのものとして扱うことなどがある。前者では関数の媒介変数表示とか陰関数などとよばれるもの、後者では集合族とか数列などが一つの例である。後者の意味を持つ媒介変数はしばしば文字の肩や斜め下に本文より少し小さな文字 (script style) で書かれ、添字 (index) と呼ばれる。.

新しい!!: 双曲線関数と媒介変数 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: 双曲線関数と対数 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: 双曲線関数と三角関数 · 続きを見る »

三角関数の無限乗積展開

数学において、三角関数と双曲線関数について無限乗積を用いた以下の恒等式が成立する。.

新しい!!: 双曲線関数と三角関数の無限乗積展開 · 続きを見る »

二次方程式

数学の特に代数学において二次方程式(にじほうていしき、quadratic equation)は、二次の多項式函数のを記述する。多変数の二次方程式については(特に実数係数のものについて)その零点集合に対する幾何学的考察が歴史的に行われ、よく知られている(二元二次方程式については円錐曲線を、一般の多変数二次方程式については二次曲面を参照するとよい)。 初等代数学における二次方程式は未知数 および既知数 を用いて ax^2+bx+c.

新しい!!: 双曲線関数と二次方程式 · 続きを見る »

ラジアン

ラジアン(radian、記号: rad)は、国際単位系 (SI) における角度(平面角)の単位である。円周上でその円の半径と同じ長さの弧を切り取る2本の半径が成す角の値と定義される。.

新しい!!: 双曲線関数とラジアン · 続きを見る »

ローラン級数

ーラン級数(ローランきゅうすう、Laurent series)とは負冪の項も含む形での冪級数としての関数の表示のことである。テイラー級数展開できない複素関数を表示する場合に利用される。ローラン級数の名は、最初の発表が1843年にピエール・アルフォンス・ローランによってなされたことに由来する。ローラン級数の概念自体はそれより先の1841年にカール・ワイエルシュトラスによって発見されていたが公表されなかった。 特定の点 ''c'' および閉曲線 γ に関して定義されたローラン級数。 積分路である γ は赤で塗ったアニュラスの内側に載っており、アニュラスの内側で ''f''(''z'') は正則である.

新しい!!: 双曲線関数とローラン級数 · 続きを見る »

ロジスティック方程式

ティック方程式(ロジスティックほうていしき、英語:logistic equation)は、生物の個体数の変化の様子を表す数理モデルの一種である。ある単一種の生物が一定環境内で増殖するようなときに、その生物の個体数(個体群サイズ)の変動を予測できる。人間の場合でいえば、人口の変動を表すモデルである。 1838年にベルギーの数学者ピエール=フランソワ・フェルフルスト(Pierre-François Verhulst)によって、ロジスティック方程式は最初に発案された。フェルフルストは、1798年に発表されて大きな反響を呼んだトマス・ロバート・マルサスの『人口論』の不自然な点を解消するために、このモデルを考案した。マルサスは『人口論』で、人口は原理的に指数関数的に増加することを指摘した。しかし、実際には環境や資源は限られているため、人口の増加にはいずれブレーキがかかると考えるのが自然である。人口が増えるに連れて人口増加率は低減し、人口はどこかで飽和すると考えられる。ロジスティック方程式はこの点を取り入れて、生物の個体数増殖をモデル化したものである。フェルフルスト以後には、アメリカの生物学者レイモンド・パール(Raymond Pearl)が式を普及させた。 具体的には、ロジスティック方程式は という微分方程式で表される。N は個体数、t は時間、dN/dt が個体数の増加率を意味する。r は内的自然増加率、K は環境収容力と呼ばれる定数である。個体数が増えて環境収容力に近づくほど、個体数増加率が減っていくというモデルになっている。 式の解(個体数と時間の関係)はS字型の曲線を描き、個体数は最終的には環境収容力の値に収束する。この曲線や解の関数はロジスティック曲線やロジスティック関数として知られる。方程式の名称は、ロジスティック式やロジスティックモデル、ロジスティック微分方程式と表記される場合もある。発案者の名からVerhulst方程式、発案者と普及者の名からVerhulst-Pearl方程式とも呼ばれる。 ロジスティック方程式は、個体群生態学あるいは個体群動態論における数理モデルとしては入門的なものとして位置づけられ、より複雑な現象に対応する基礎を与える。数学分野としては、微分方程式論や力学系理論の初等的な話題としても取り上げられる。.

新しい!!: 双曲線関数とロジスティック方程式 · 続きを見る »

パラメトリック方程式

バタフライ曲線はパラメトリック方程式で定義される曲線の一例である。 パラメトリック方程式(パラメトリックほうていしき、英: parametric equation)とは、関数を媒介変数(パラメータ)を使って表したもの、またはその手法である。単純な運動学的例として、時間を媒介変数として位置、速度、その他の運動体に関する情報を表す場合が挙げられる。 抽象的には、関係は1つの方程式の形で表され、ユークリッド空間 Rn の項からなる関数のイメージとしても表される。したがって、より正確には媒介変数表示(英: parametric representation)として定義される。.

新しい!!: 双曲線関数とパラメトリック方程式 · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 双曲線関数とテイラー展開 · 続きを見る »

ベルヌーイ数

ベルヌーイ数 (ベルヌーイすう、Bernoulli number) は数論における基本的な係数を与える数列であり、もともと、連続する整数のべき乗和を定式化する際の展開係数として1713年にヤコブ・ベルヌーイが著書 Ars Conjectandi (推測術) にて導入したことからこの名称がついた。ベルヌーイ数は、べき乗和の展開係数にとどまらず、級数展開の係数や剰余項、リーマンゼータ関数においても登場する。また、ベルヌーイ数はすべてが有理数である。.

新しい!!: 双曲線関数とベルヌーイ数 · 続きを見る »

オイラー数

イラー数は、双曲線正割関数のテイラー展開における展開係数として定義される。 形式的には、テイラー級数: における E_k がオイラー数である。 この数列は整数であり、奇数項がすべて 0、偶数項の符号が交互に切り替わることが特徴である。 双曲線正割関数の代わりに、三角関数の正割関数: の展開級数 \hat_k (セカント数) をオイラー数と呼ぶこともある。 なお、\hat_.

新しい!!: 双曲線関数とオイラー数 · 続きを見る »

カテナリー曲線

媒介変数 ''a'' のいくつかの異なる値に対するカテナリー曲線の例 カテナリー(赤)と放物線(青) カテナリー曲線(カテナリーきょくせん、catenary)または懸垂曲線(けんすいきょくせん)または懸垂線(けんすいせん)とは、ロープや電線などの両端を持って垂らしたときにできる曲線である。カテナリーの名はホイヘンスによるもので、"catena" (カテーナ、ラテン語で「鎖、絆」の意) に由来する。カテナリー曲線をあらわす式を最初に得たのはヨハン・ベルヌーイ、ライプニッツらで、1691年のことである。.

新しい!!: 双曲線関数とカテナリー曲線 · 続きを見る »

グーデルマン関数

ーデルマン関数(グーデルマンかんすう、Gudermannian function、Gudermannfunktion)は、(1798–1852)にちなんで命名された、複素数を用いない三角関数及び双曲線関数と関係する関数。.

新しい!!: 双曲線関数とグーデルマン関数 · 続きを見る »

シグモイド関数

モイド関数(シグモイドかんすう、sigmoid function)は、 で表される実関数である。なお、a をゲイン (gain) と呼ぶ。 狭義には、ゲインが1の標準シグモイド関数 (standard sigmoid function) をさす。 以下は広義のシグモイド関数について述べる。標準シグモイド関数については、 a.

新しい!!: 双曲線関数とシグモイド関数 · 続きを見る »

円 (数学)

数学において、円(えん)とは、平面(2次元ユークリッド空間)上の、定点 O からの距離が等しい点の集合でできる曲線のことをいう。ここで現れる定点 O を円の中心と呼ぶ。円には、その中心が1つあり、また1つに限る。中心から円周上の 1 点を結んだ線分を輻(や)とよび、その長さを半径というが、現在では輻のことを含めて半径と呼ぶことが多い。中心が点 O である円を、円 O と呼ぶ。定幅図形の一つ。 円が囲む部分、すなわち円の内部を含めて円ということもある。この場合は、曲線のことを円周という。これに対して、内部を含めていることを強調するときには円板という。また、三角形、四角形などと呼称を統一して、円形ということもある。 数学以外の分野ではこの曲線のことを「丸(まる)」という俗称で呼称することがある。 円: 中心、半径・直径、円周.

新しい!!: 双曲線関数と円 (数学) · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 双曲線関数と積分法 · 続きを見る »

線型微分方程式

線型微分方程式線形等の用字・表記の揺れについては線型性を参照。(せんけいびぶんほうていしき、linear differential equation)は、微分を用いた線型作用素(線型微分作用素) と未知関数 と既知関数 を用いて の形に書かれる微分方程式のこと。.

新しい!!: 双曲線関数と線型微分方程式 · 続きを見る »

線分

線分の幾何学的な定義 幾何学における線分(せんぶん、Line segment)とは2つの点に挟まれた直線の部分であり、それら端点の間にあるどの点も含む。 通常は端点も含むものとするが、端点を含まないものも線分として認め、端点を含む狭義の線分を閉線分、含まないものを開線分とすることもある。 線分の例として、三角形や四角形の辺が挙げられる。もっと一般に、端点がある1つの多角形の頂点となっている線分は、その端点が多角形の隣接する2頂点であるときその多角形の辺となり、そうでないときには対角線である。端点が円周のような1つの曲線上に載っているとき、その線分はその曲線の弦と呼ばれる。.

新しい!!: 双曲線関数と線分 · 続きを見る »

総乗

総乗(そうじょう)とは、積の定義される集合における多項演算の一つで、元の列の全ての積のことである。.

新しい!!: 双曲線関数と総乗 · 続きを見る »

領域

域(りょういき).

新しい!!: 双曲線関数と領域 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 双曲線関数と関数 (数学) · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: 双曲線関数と逆写像 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: 双曲線関数と指数関数 · 続きを見る »

有理関数

数学における有理関数(ゆうりかんすう、rational function)は、二つの多項式をそれぞれ分子と分母に持つ分数として書ける関数の総称である。抽象代数学においては変数と不定元とを区別するので、後者の場合を有理式と呼ぶ。.

新しい!!: 双曲線関数と有理関数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 双曲線関数と数学 · 続きを見る »

ここにリダイレクトされます:

CosechCoshCothSechSinhTanh双曲線余弦函数双曲線函数双曲線正弦函数双曲線正接函数双曲線正接関数双曲関数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »