ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

自然対数

索引 自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

64 関係: 加法群半減期十二進法十進法単射単位行列単調写像単連結空間双曲線多価関数多重対数関数実解析実数実数値関数対数対数積分常用対数主値乗法群二十進法二進対数五進法代数的数微分微分積分学ノルムネイピア数バナッハ環リンデマンの定理プログラミング言語テイラー展開ニコラス・メルカトルアイザック・ニュートンオイラーの定数ゴットフリート・ライプニッツジョン・ネイピアジョン・ワイリー・アンド・サンズ冪乗写像八進法六十進法値域C++積分法級数群 (数学)群準同型無理数複利複素対数函数...複素数超越数逆写像逆数FORTRANMathematicaMATLABWell-defined正方行列求積法指数関数指数関数的減衰102の自然対数 インデックスを展開 (14 もっと) »

加法群

加法群 (additive group) は群演算をある意味で加法と考えることのできる群である。それは通常アーベル群であり、その二項演算を記号 + を使って書くのが一般的である。 この用語は複数の演算をもった構造で他の演算を忘れることによって得られる構造を明示するために広く使われる。例えば、整数全体、ベクトル空間、環の加法群。これは環と体で可逆元全体からなる乗法群を加法群と区別するために特に有用である。.

新しい!!: 自然対数と加法群 · 続きを見る »

半減期

半減期(はんげんき、half-life)とは、ある放射性同位体が、放射性崩壊によってその内の半分が別の核種に変化するまでにかかる時間を言う。.

新しい!!: 自然対数と半減期 · 続きを見る »

十二進法

十二進法(じゅうにしんほう)は、12 を底(てい)とし、底およびその冪を基準にして数を表す方法である。.

新しい!!: 自然対数と十二進法 · 続きを見る »

十進法

十進法(じっしんほう、decimal system)とは、10 を底(てい)とし、底およびその冪を基準にして数を表す方法である。.

新しい!!: 自然対数と十進法 · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 自然対数と単射 · 続きを見る »

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: 自然対数と単位行列 · 続きを見る »

単調写像

単調写像(たんちょうしゃぞう、monotonic function, monotone function)または単調関数は、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、monotonically increasing)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、monotonically increasing function)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、monotonically decreasing)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、monotonically decreasing function)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右上りで、右下がりになっている部分がない。逆に単調減少関数の場合には、常に右下がりであり右上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、monotonicity)と呼ぶ。.

新しい!!: 自然対数と単調写像 · 続きを見る »

単連結空間

連結であるが、穴のまわりを1周するループを考えればわかるように単連結ではない。穴を全てふさげば単連結となる。 位相幾何学における単連結空間(たんれんけつくうかん、simply connected space)とは、任意のループを連続的に1点に収縮できるような弧状連結空間のことである。.

新しい!!: 自然対数と単連結空間 · 続きを見る »

双曲線

双曲線(そうきょくせん、hyperbola)とは、2次元ユークリッド空間 R2 上で定義され、ある2点 P, Q からの距離の差が一定であるような曲線の総称である。この P, Q は焦点と呼ばれる。双曲線は、次の陰関数曲線の直交変換によって決定することができる。 この場合、焦点の座標は と書ける。このとき、2焦点から曲線への距離の差は 2a となる。また、双曲線には2つの漸近線が存在しており、 である。漸近線が直交している、すなわち a.

新しい!!: 自然対数と双曲線 · 続きを見る »

多価関数

多価関数(たかかんすう、multivalued function)とは、完全関係のひとつであり、一つの入力が与えられたときに一つあるいは複数の出力を得るものである。しかし現代的な定義での関数は写像の一種とみなされ、一つの入力があるときに出力を一つだけ得るものと定義されることが多く、この場合には多価関数を「関数」と呼ぶのは不適切となる(下記多価関数#歴史的経緯参照)。多価関数は単射でない関数から得ることができる。そのような関数では逆関数が定義できないが、逆関係 (inverse relation) はある。多価関数は、この逆関係に相当する。.

新しい!!: 自然対数と多価関数 · 続きを見る »

多重対数関数

解析学における多重対数関数 (たじゅうたいすうかんすう)またはポリ対数関数 (英:Polylogarithm、略称ポリログ)もしくは de Jonquiereの関数 とは特殊関数の一つで、通常 \operatorname_s(z) と書かれ、以下のように定義される: \operatorname_s(z).

新しい!!: 自然対数と多重対数関数 · 続きを見る »

実解析

数学において実解析(じつかいせき、Real analysis)あるいは実関数論(じつかんすうろん、theory of functions of a real variable)は(ユークリッド空間(の部分集合)上または(抽象的な)集合上の関数)について研究する解析学の一分野である。現代の実解析では、関数として一般に複素数値関数や複素数値写像あるいは複素数値関数に値をとる写像も含む。 実解析は、元々は実1変数実数値関数あるいは実多変数実数値およびベクトルに対する初等的な微分積分を意味していた。しかし現代の実解析は、積分論のいちぶとして測度論とルベーグ積分、関数空間((超)関数の成す線型位相空間)の理論、関数不等式、特異積分作用素などを扱う。関数解析におけるバナッハ空間の理論や作用素論・調和解析のフーリエ解析などの初歩的または部分的な理論も含むとされている。 関数空間の例には、L^p空間・数列空間・ソボレフ空間・緩増加超関数の空間・ベゾフ空間・トリーベル-リゾルキン空間・実解析版ハーディー空間・実補間空間がある。関数不等式の例には、作用素の実補間または複素補間による作用素または関数の有界性の調整・関数方程式について、初期値または非斉次項(非線型項)と未知関数の、有界性や可積分性または可微分性の関係を表すL^p-L^q評価と時空分散評価および時空消散評価・時間の経過に対する、関数の可微分性または可積分性を保存する意味を持つエネルギー(不)等式などの(解の存在を前提とした)評価式(アプリオリ評価)・別々の作用素を施された関数のノルムの関係、などがある。特異積分作用素には、「積分と微分を同時にする」リース変換や、流体力学と発展方程式の理論で現れるヒルベルト変換がある。 超関数とフーリエ変換は、実解析に入るのか関数解析に入るのか数学者の間でも扱いが分かれている。さらに今ではユークリッド空間だけではなく抽象的な集合(群または位相空間あるいは関数空間など)で定義された複素数値の写像(複素数値測度、複素数値線型汎関数)も取り扱う。そして特異積分作用素を扱う理論は「関数解析」における作用素論ではなく「実解析」として扱われている。複素解析の実解析への応用は(留数定理による実関数の積分の計算が)有名だが、実解析の複素解析への応用(その計算にルベーグの収束定理を適用することによる簡易化;フーリエ変換による複素解析版ハーディー空間とL^p関数の関係など)もある。現代数学では「実解析」の範囲は明確ではなく「複素解析」とは対をなす分野ではなくなっている。 また、実解析による偏微分微分方程式の解法は、主に関数空間と関数不等式およびフーリエ変換や特異積分作用素によるもので、解が具体的に表示できることも多いが計算が多くなる場面も多い。関数解析の作用素により論理を重ねる方法(例えば、リースの表現定理・変分法・半群理論・リース-シャウダーの理論・スペクトル分解などを使う解の存在証明)とは異なるが、高等的には両者を巧みに合わせて(関連しながら)解かれている。.

新しい!!: 自然対数と実解析 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 自然対数と実数 · 続きを見る »

実数値関数

実数値関数(じっすうちかんすう、real-valued function)、あるいは実関数(じつかんすう、real function)とは、値として実数を与える関数をいう。つまり、定義域のそれぞれの元に対し実数を割り当てる関数のことである。 多くの重要な関数空間が、いくつかの実数値関数からなるものとして定義されている。.

新しい!!: 自然対数と実数値関数 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: 自然対数と対数 · 続きを見る »

対数積分

数学において、対数積分(たいすうせきぶん、logarithmic integral function) とは、全ての正の実数 において次の自然対数 を含む定積分によって定義される特殊関数である。 ただし関数 は において特異点を持つため、上記における の積分は、次のようにコーシーの主値として解釈される。.

新しい!!: 自然対数と対数積分 · 続きを見る »

常用対数

常用対数(じょうようたいすう、common logarithm)は 10 を底とする対数のことである。数の表記で通常用いられる十進法表示と親和する。レベル表現の「ベル」などに使われている。.

新しい!!: 自然対数と常用対数 · 続きを見る »

主値

複素解析において、関数値として複数の複素数を取る多価関数を考えるとき、関数の主値(しゅち、principal value)とはその関数の分枝から取られる値のことである。多価関数の値を主値に限定することで、一価の関数となる。.

新しい!!: 自然対数と主値 · 続きを見る »

乗法群

数学と群論において、用語乗法群 (multiplicative group) は次の概念の1つを意味する:.

新しい!!: 自然対数と乗法群 · 続きを見る »

二十進法

二十進法(にじっしんほう、 vigesimal)は、20 を底(てい)とし、底およびその冪を基準にして数を表す方法である。.

新しい!!: 自然対数と二十進法 · 続きを見る »

二進対数

二進対数 (にしんたいすう、binary logarithm)とは、2を底とする対数 のことである。これは、指数関数 の逆関数でもある。.

新しい!!: 自然対数と二進対数 · 続きを見る »

五進法

五進法(ごしんほう)とは、5 を底(てい)とし、底およびその冪を基準にして数を表す方法である。.

新しい!!: 自然対数と五進法 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: 自然対数と代数的数 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 自然対数と微分 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: 自然対数と微分積分学 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: 自然対数とノルム · 続きを見る »

ネイピア数

1.

新しい!!: 自然対数とネイピア数 · 続きを見る »

バナッハ環

数学の、特に関数解析学の分野におけるバナッハ環(バナッハかん、; バナッハ代数、バナッハ多元環、バナッハ線型環)は、完備ノルム体(ふつうは実数体 または 複素数体 )上の結合多元環 であって、バナッハ空間(ノルムが存在し、に関して完備)ともなる。バナッハ代数におけるノルムは乗法に関して を満たすことが要求され、それにより乗法の連続性は保証される。名称はステファン・バナッハに由来する。 上述の定義において、バナッハ空間をノルム空間に緩める(つまり完備性を要請しない)場合、同様の構造はノルム環(ノルム線型環)と呼ばれる。 バナッハ環は、乗法単位元を持つとき、単位的(unital)であると言う。また乗法が可換であるとき、可換と言う。単位元を持つ持たないにかかわらず、任意のバナッハ環 は適当な単位的バナッハ環(つまり の「単位化」) にこの閉イデアルとなるように等長的に埋め込める。しばしば、扱っている環は単位的であるということがアプリオリに仮定される。すなわち、 を考えることで多くの理論を展開でき、その結果を元の環に応用するという方法が取られることがある。しかしこの方法は常に有効という訳ではない。例えば、単位元を持たないバナッハ環においては、すべての三角関数を定義することが出来ない。 実バナッハ環の理論は、複素バナッハ環の理論とは非常に異なるものである。例えば、非自明な複素バナッハ環の元のスペクトルは決して空とはならないが、実バナッハ環においてはいくつかの元のスペクトルは空となり得る。 p-進数体 上のバナッハ代数(-進バナッハ代数)は、p-進解析の一部として研究される。.

新しい!!: 自然対数とバナッハ環 · 続きを見る »

リンデマンの定理

リンデマンの定理(リンデマンのていり、Lindemann's theorem)は、1882年にフェルディナント・フォン・リンデマンが証明した、超越数論における定理の一つである。この定理は、円周率やネイピア数などの数が超越数であることを内包する。1885年のカール・ワイエルシュトラスによる寄与を踏まえ、リンデマン.

新しい!!: 自然対数とリンデマンの定理 · 続きを見る »

プログラミング言語

プログラミング言語(プログラミングげんご、programming language)とは、コンピュータプログラムを記述するための形式言語である。なお、コンピュータ以外にもプログラマブルなものがあることを考慮するならば、この記事で扱っている内容については、「コンピュータプログラミング言語」(computer programming language)に限定されている。.

新しい!!: 自然対数とプログラミング言語 · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 自然対数とテイラー展開 · 続きを見る »

ニコラス・メルカトル

ニコラス・メルカトル(Nicholas (Nikolaus) Mercator、1620年頃 - 1687年)は17世紀の数学者。 北ドイツのオイティンに生まれた。1642年から1648年までオランダで暮らし、1648年から1654年までコペンハーゲン大学で教え、その後パリで暮らし、1657年にサセックスで第10代ノーサンバランド伯の息子のジョスリン・パーシーの数学の家庭教師を務め、1658年から1682年までロンドンで数学を教えた。1666年に王立協会の会員になり、チャールズ2世のために航海用時計を設計し、ヴェルサイユ宮殿の噴水の設計と製作をおこなった。 もっとも知られているのは1668年の対数に関する著書『対数術』(Logarithmo-technica)でGregory Saint-Vincentと独立に式: を導き、自然対数という用語を導いた。 音楽理論の分野でも53平均律の理論で知られる。.

新しい!!: 自然対数とニコラス・メルカトル · 続きを見る »

アイザック・ニュートン

ウールスソープの生家 サー・アイザック・ニュートン(Sir Isaac Newton、ユリウス暦:1642年12月25日 - 1727年3月20日、グレゴリオ暦:1643年1月4日 - 1727年3月31日ニュートンの生きていた時代のヨーロッパでは主に、グレゴリオ暦が使われ始めていたが、当時のイングランドおよびヨーロッパの北部、東部ではユリウス暦が使われていた。イングランドでの誕生日は1642年のクリスマスになるが、同じ日がグレゴリオ暦では1643年1月4日となる。二つの暦での日付の差は、ニュートンが死んだときには11日にも及んでいた。さらに1752年にイギリスがグレゴリオ暦に移行した際には、3月25日を新年開始の日とした。)は、イングランドの自然哲学者、数学者、物理学者、天文学者。 主な業績としてニュートン力学の確立や微積分法の発見がある。1717年に造幣局長としてニュートン比価および兌換率を定めた。ナポレオン戦争による兌換停止を経て、1821年5月イングランド銀行はニュートン兌換率により兌換を再開した。.

新しい!!: 自然対数とアイザック・ニュートン · 続きを見る »

オイラーの定数

イラーの定数(オイラーのていすう、)は、数学定数の1つで、以下のように定義される。 オイラー・マスケローニ定数、オイラーの とも呼ぶ。ちなみに、オイラーはこの定数を表わすのに記号 を用いた。 を用いたのはである。 この値は、およそ0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 35988 05767 23488 48677 26777 66467 09369 47063 29174 67495...である。 オイラーの定数は超越数であろうと予想されているが、無理数であるかどうかさえ分かっていない。.

新しい!!: 自然対数とオイラーの定数 · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: 自然対数とゴットフリート・ライプニッツ · 続きを見る »

ジョン・ネイピア

ョン・ネイピア(John Napier, 1550年 - 1617年4月4日)はスコットランドのバロン。数学者、物理学者、天文学者、占星術師としても知られる。.

新しい!!: 自然対数とジョン・ネイピア · 続きを見る »

ジョン・ワイリー・アンド・サンズ

ョン・ワイリー・アンド・サンズ(John Wiley & Sons、略称: Wiley、)は、1807年創業の科学、医学、教育などの分野の世界的な学術出版社である。 大学院のための教材、トレーニング教材、百科事典などの印刷、オンライン製品やオンラインサービスのような電子的情報も扱っている。『フォー・ダミーズ』シリーズの出版でも知られている。.

新しい!!: 自然対数とジョン・ワイリー・アンド・サンズ · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: 自然対数と冪乗 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: 自然対数と写像 · 続きを見る »

八進法

八進法(はっしんほう、octal)とは、8 を底(てい)とし、底およびその冪を基準にして数を表す方法である。.

新しい!!: 自然対数と八進法 · 続きを見る »

六十進法

六十進法(ろくじっしんほう)とは、60 を底(てい)とし、底およびその冪を基準にして数を表す方法である。.

新しい!!: 自然対数と六十進法 · 続きを見る »

値域

数学、特に素朴集合論における写像の値域(ちいき、range)は、その写像の終域または像の何れかの意味で用いられる。現代的な用法ではほとんど全ての場合において「像」の意味である。.

新しい!!: 自然対数と値域 · 続きを見る »

C++

C++(シープラスプラス)は、汎用プログラミング言語の一つである。日本語では略してシープラプラ、シープラなどとも呼ばれる。.

新しい!!: 自然対数とC++ · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 自然対数と積分法 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: 自然対数と級数 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 自然対数と群 (数学) · 続きを見る »

群準同型

数学、特に群論における群の準同型写像(じゅんどうけいしゃぞう、group homomorphism)は群の構造を保つ写像である。準同型写像を単に準同型とも呼ぶ。.

新しい!!: 自然対数と群準同型 · 続きを見る »

無理数

無理数(むりすう、 irrational number)とは、有理数ではない実数、つまり分子・分母ともに整数である分数(比.

新しい!!: 自然対数と無理数 · 続きを見る »

複利

複利(ふくり)とは、複利法によって計算された利子のこと。複利法とは、元金(がんきん)によって生じた利子を次期の元金に組み入れる方式であり、元金だけでなく利子にも次期の利子がつく。したがって、各期の利子が次第に増加していく。投資や借金などでは、雪だるま式に利子が増えていくことになる。重利(じゅうり)とも。.

新しい!!: 自然対数と複利 · 続きを見る »

複素対数函数

複素解析における複素対数函数(ふくそたいすうかんすう、complex logarithm)は、実自然対数函数が実自然指数函数の逆函数であるのと同様の意味において、複素指数函数の逆「函数」である。すなわち、複素数 の対数 とは を満たす複素数を言い、そのような を や などと書く。任意の非零複素数 は無限個の対数を持つから、そのような表記が紛れのない意味を為すように気を付けねばならない。 極形式を用いて と書くならば、 は の対数の一つを与えるが、これに の任意の整数倍を加えたもので の対数はすべて尽くされる。.

新しい!!: 自然対数と複素対数函数 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 自然対数と複素数 · 続きを見る »

超越数

超越数(ちょうえつすう、transcendental number)とは、代数的数でない数、すなわちどんな有理係数の代数方程式 のにもならないような複素数のことである。有理数は一次方程式の解であるから、超越的な実数はすべて無理数になるが、無理数 2 は の解であるから、逆は成り立たない。超越数論は、超越数について研究する数学の分野で、与えられた数の超越性の判定などが主な問題である。 よく知られた超越数にネイピア数(自然対数の底)や円周率がある。ただし超越性が示されている実数のクラスはほんの僅かであり、与えられた数が超越数であるかどうかを調べるのは難しい問題だとされている。例えば、ネイピア数と円周率はともに超越数であるにもかかわらず、それをただ足しただけの すら超越数かどうか分かっていない。 代数学の標準的な記号 \mathbb で有理数係数多項式全体を表し、代数的数全体の集合を、代数的数 algebraic number の頭文字を使って と書けば、超越数全体の集合は となる。 なお、本稿では を自然対数とする。.

新しい!!: 自然対数と超越数 · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: 自然対数と逆写像 · 続きを見る »

逆数

逆数(ぎゃくすう、reciprocal)とは、ある数に掛け算した結果が となる数である。すなわち、数 の逆数 とは次のような関係を満たす。 通常、 の逆数は分数の記法を用いて のように表されるか、冪の記法を用いて のように表される。 を乗法に関する単位元と見れば、逆数とは乗法逆元(じょうほうぎゃくげん、multiplicative inverse)の一種であり、乗法逆元とは一般化された逆数である。 上述の式から明らかなように、 と の役割を入れ替えれば、 は の逆数であると言える。従って、 の逆数が であるとき の逆数は である。 が である場合、任意の数との積は になるため、(0 ≠ 1 であれば) に対する逆数は存在しない。 また、任意の について必ずしもその逆数が存在するとは限らない。たとえば、自然数の範囲では上述の関係を満たす数は 以外には存在しない。 を除く任意の数 について逆数が常に存在するようなものには、有理数や実数、複素数がある。これらのように四則演算が自由にできる集合を体と呼ぶ。 逆数は乗法における逆元であるが、加法における逆元として反数がある。 1つの二項演算を持つ集合であって左右の逆元が常に存在するもの(代数的構造)はと呼ばれる。.

新しい!!: 自然対数と逆数 · 続きを見る »

FORTRAN

FORTRAN(フォートラン)は、1954年にIBMのジョン・バッカスによって考案された、コンピューターにおいて広く使われた世界最初の高級言語である。.

新しい!!: 自然対数とFORTRAN · 続きを見る »

Mathematica

Mathematica(マセマティカ)は、スティーブン・ウルフラムが考案し広く使われている数式処理システム。ウルフラム・リサーチの、ウルフラムが率いる数学者とプログラマのチームが開発し、同社が販売している。Mathematicaは項書き換えを基本として、複数のパラダイムをエミュレートするプログラミング言語としても強力である。.

新しい!!: 自然対数とMathematica · 続きを見る »

MATLAB

MATLAB(マトラボ)は、アメリカ合衆国のMathWorks社が開発している数値解析ソフトウェアであり、その中で使うプログラミング言語の名称でもある。MATLABは、行列計算、関数とデータの可視化、アルゴリズム開発、グラフィカルインターフェイスや、他言語(C/C++/Java/Python)とのインターフェイスの機能を有している。MATLABは、主に、数値計算を扱う事ができるが、追加のオプションを使うことで、数式処理の能力を得ることができる。2004年で、MATLABは産業界、教育界において100万人ユーザーを達成しており、工学、理学、経済学など幅広い業種で利用されている。.

新しい!!: 自然対数とMATLAB · 続きを見る »

Well-defined

数学における は、ある概念が数学的あるいは論理学的に特定の条件を公理に用いて定義・導入されるとき、その定義(における公理の組)が自己矛盾をその中に含み持たぬ状態にあることを言い表す修飾語句である。また、ある概念の定義をする場合、そう決めることによって、何も論理的な矛盾なく上手くいくということ(定義の整合性)が確認されているということを言い表す言葉である。文脈により、「うまく定義されている」「矛盾なく定まった」「定義可能である」などと表現されることもある。 でないことは、 であることとは異なる。 は「状態」を表す形容詞であるが、日本語の定訳はなく慣例的に形容詞と動詞の複合語に訳されるか、そのまま形容動詞的に「 である」といった形で用いる。名詞形 などもあり、これを 性と記すことはできるが日本語訳としてこなれたものは特には存在しない(文脈によっては「定義可能性」などで代用可能である)。.

新しい!!: 自然対数とWell-defined · 続きを見る »

正方行列

正方行列(せいほうぎょうれつ、square matrix)とは、行要素の数と列要素の数が一致する行列である。サイズが n × n つまり、n 行 n 列であるとき、n 次正方行列という。 \end.

新しい!!: 自然対数と正方行列 · 続きを見る »

求積法

求積法(きゅうせきほう、quadrature)とは、定積分を求める方法のこと。特に、平面上の領域や曲面の面積を求める方法を意味することもある。 微分方程式論においては、有限回の不定積分を用いて常微分方程式の解を表す方法を意味する日本数学会編『岩波数学辞典』第4版、岩波書店、2007年 ISBN 978-4000803090。求積法で解くことができる常微分方程式は限られているが、例えば一階線型常微分方程式やクレローの方程式は求積法で解ける。この他にも求積法で解ける常微分方程式は数多く知られている長島 隆廣 『常微分方程式80余例とその厳密解』 近代文芸社、2005年 ISBN 4-7733-7282-6.

新しい!!: 自然対数と求積法 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: 自然対数と指数関数 · 続きを見る »

指数関数的減衰

指数関数的減衰(しすうかんすうてきげんすい、exponential decay)、または指数的減衰とは、ある量が減少する速さが減少する量に比例することである。数学的にいえば、この過程は微分方程式 によって表される。ここでN (t) は時刻t における減衰する量であり、λは崩壊定数と呼ばれる正の数である。崩壊定数の単位は s-1 である。 この微分方程式を解くと(詳細は後述)、この現象は指数関数 によって表される。ここでN0.

新しい!!: 自然対数と指数関数的減衰 · 続きを見る »

10

十」の筆順 10(十、じゅう、とお)は、自然数または整数において、9 の次で 11 の前の数である。日本語の訓読みでは、十倍を意味する語尾を「そ」と読む(例:三十を「みそ」と読む)(但し、二十ははたちと読む。)。漢字の「十」は音読みを「ジッ」もしくは「ジュウ」と発音する(下記参照)。英語の序数詞では、10th、tenth となる。ラテン語では decem(デケム)。.

新しい!!: 自然対数と10 · 続きを見る »

2の自然対数

2の自然対数(にのしぜんたいすう)は、自然対数関数 の での値であり、 と表記する。2の常用対数との混同を避けるため あるいは底を明記して とも書かれる。 は正の実数であり、その値は である。この数は無理数であるので数字の循環しない無限小数である。さらに超越数であるため、代数方程式の解にはならない。連分数表記では となる。また、この数は、核反応や化学反応において物質濃度の半減期を求める際に現れる数である。.

新しい!!: 自然対数と2の自然対数 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »