ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

選択公理

索引 選択公理

選択公理(せんたくこうり、、選出公理ともいう)とは公理的集合論における公理のひとつで、どれも空でないような集合を元とする集合(すなわち、集合の集合)があったときに、それぞれの集合から一つずつ元を選び出して新しい集合を作ることができるというものである。1904年にエルンスト・ツェルメロによって初めて正確な形で述べられた。.

60 関係: 基底同値岩波書店巨大基数強制法チコノフの定理ハーン–バナッハの定理ハウスドルフのパラドックスバナッハ=タルスキーのパラドックスバートランド・ラッセルポール・コーエン (数学者)ルネ=ルイ・ベールルベーグ測度ヴァツワフ・シェルピニスキヒュー・ウッディンツォルンの補題テューキーの補題フィルター (数学)ベクトル空間命題アルフレト・タルスキアンリ・ルベーグエミール・ボレルエルンスト・ツェルメロクルルの定理クルト・ゲーデルケネス・キューネンケーニヒの定理 (集合論)ゲオルク・カントールコンパクト空間ステファン・バナフ写像全射全順序公理公理的集合論元 (数学)空集合無限直和直積集合順序集合証明部分集合集合集合族連続体仮説逆写像極大イデアル正則性公理...決定性公理濃度 (数学)有界日本数学会整列集合1904年1926年1943年1947年1964年 インデックスを展開 (10 もっと) »

基底

* 一般.

新しい!!: 選択公理と基底 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 選択公理と同値 · 続きを見る »

岩波書店

株式会社岩波書店(いわなみしょてん、Iwanami Shoten, Publishers. )は、日本の出版社。.

新しい!!: 選択公理と岩波書店 · 続きを見る »

巨大基数

巨大基数的性質(きょだいきすうてきせいしつ、large cardinal property)とは、数学の集合論における超限基数が有するある種の性質。この性質を持つ基数は、その名の通り、一般に大変「大きい」(例えば、α.

新しい!!: 選択公理と巨大基数 · 続きを見る »

強制法

数学の集合論における強制法(きょうせいほう、Forcing)とは、ポール・コーエンによって開発された、無矛盾性や独立性を証明するための手法である。強制法が初めて使われたのは1962年、連続体仮説と選択公理のZFからの独立性を証明した時のことである。強制法は60年代に大きく再構成されシンプルになり、集合論や、再帰理論などの数理論理学の分野で、極めて強力な手法として使われてきた。.

新しい!!: 選択公理と強制法 · 続きを見る »

チコノフの定理

チコノフの定理 (ちこのふのていり、Теорема Тихонова、Tychonoff's theorem)または、チホノフの定理 は、数学の位相幾何学 (トポロジー) における定理であり、任意個 (非可算個の場合を含む)のコンパクト空間の直積空間がやはりコンパクト空間となることを主張する。 この定理は、ソビエト連邦、後にロシア連邦の数学者である Andrey Nikolayevich Tikhonov (Андре́й Никола́евич Ти́хонов) (1906年 - 1993年)が、1930年に、最初は実数の閉区間の場合について証明し、1935年に完全な証明を与えている。 非可算個の直積について定理を証明するためには、選択公理またはこれと同値な整列可能定理の援用が不可避であり、さらには各コンパクト空間がT1分離公理を満たす場合は、チコノフの定理と選択公理が同値である (つまり、チコノフの定理から選択公理が証明可能である)ことも証明されている (英語版 Tychonoff's theoremに証明がある)。.

新しい!!: 選択公理とチコノフの定理 · 続きを見る »

ハーン–バナッハの定理

数学におけるハーン–バナッハの定理(ハーン–バナッハのていり、)は、関数解析学の分野における中心的な道具で、ベクトル空間の部分空間上で定義される有界線形汎関数が全空間への拡張できることについて述べたものである。これにより、どのようなノルム線形空間においても、その上で定義される連続線形汎関数が、双対空間の研究を「面白い」ものにするに「十分」なほどたくさんあることがわかる。ハーン-バナッハの定理の別形態のものとして、ハーン–バナッハの分離定理あるいは分離超平面定理と呼ばれるものがあり、の分野で多く用いられている。 定理の名前の由来は、1920年代後半にそれぞれ独立にこの定理を証明したハンス・ハーンとステファン・バナッハである。定理の特別な場合については、より早い段階(1912年)でエードゥアルト・ヘリーによって証明されており、またこの定理が導出されるようなある一般の拡張定理が、1923年にマルツェル・リースによって証明されていた。.

新しい!!: 選択公理とハーン–バナッハの定理 · 続きを見る »

ハウスドルフのパラドックス

ハウスドルフのパラドックス(英: Hausdorff paradox)とは、選択公理を仮定すると、球面の逆説的な分解が存在することを主張した定理(疑似パラドックス)である。 つまり、選択公理を仮定すると、球面 K の分割 K.

新しい!!: 選択公理とハウスドルフのパラドックス · 続きを見る »

バナッハ=タルスキーのパラドックス

バナッハ=タルスキーのパラドックス (Banach-Tarski paradox) は、球を3次元空間内で、有限個の部分に分割し、それらを回転・平行移動操作のみを使ってうまく組み替えることで、元の球と同じ半径の球を2つ作ることができるという定理(ただし、各断片は通常の意味で体積を定義できない)。この操作を行うために球を最低5つに分割する必要がある。 バナッハ=タルスキーの証明では、ハウスドルフのパラドックスが援用され、その後、多くの人により証明の最適化、様々な空間への拡張が行われた。 結果が直観に反することから、定理であるが、パラドックスと呼ばれる。証明の1箇所で選択公理を使う。ステファン・バナフ(バナッハ)とアルフレト・タルスキが1924年に初めてこの定理を述べたときに選択公理を肯定的にとらえていたか、否定的にとらえていたか、判断することは難しい。(彼らは、「この研究に対する選択公理の果たす役割は、注目するに値する。」(Le rôle que joue cet axiome dans nos raisonnements nous semble mériter l'attention.)としか述べていないのである。).

新しい!!: 選択公理とバナッハ=タルスキーのパラドックス · 続きを見る »

バートランド・ラッセル

3代ラッセル伯爵、バートランド・アーサー・ウィリアム・ラッセル(Bertrand Arthur William Russell, 3rd Earl Russell, OM, FRS、1872年5月18日 - 1970年2月2日)は、イギリスの哲学者、論理学者、数学者であり、社会批評家、政治活動家である。ラッセル伯爵家の貴族であり、イギリスの首相を2度務めた初代ラッセル伯ジョン・ラッセルは祖父にあたる。名付け親は同じくイギリスの哲学者ジョン・スチュアート・ミル。ミルはラッセル誕生の翌年に死去したが、その著作はラッセルの生涯に大きな影響を与えた。生涯に4度結婚し、最後の結婚は80歳のときであった。1950年にノーベル文学賞を受賞している。.

新しい!!: 選択公理とバートランド・ラッセル · 続きを見る »

ポール・コーエン (数学者)

ポール・コーエン (Paul Joseph Cohen, 1934年4月2日 - 2007年3月23日)はアメリカ合衆国の数学者。 スタンフォード大学教授。専門は集合論、調和解析、偏微分方程式。.

新しい!!: 選択公理とポール・コーエン (数学者) · 続きを見る »

ルネ=ルイ・ベール

ルネ=ルイ・ベール(René-Louis Baire, 1874年1月21日 - 1932年7月5日)はフランスの数学者。ベールのカテゴリー定理で知られる。.

新しい!!: 選択公理とルネ=ルイ・ベール · 続きを見る »

ルベーグ測度

数学におけるルベーグ測度(ルベーグそくど、Lebesgue measure)は、ユークリッド空間上の長さ、面積、体積の概念を拡張したものである。名称はフランスの数学者アンリ・ルベーグにちなむ。体積には「互いに素な集合の体積は元の体積の和に等しい」という性質(加法性)がある。この性質を保ちながらより複雑な集合に対しても「体積」を定めることができるよう体積の概念を拡張できる。このような拡張は一意である。実解析、特にルベーグ積分で用いられる。体積と同様ルベーグ測度は値として をとりうる。解析学で普通に考えられるような集合に対してはルベーグ測度が与えられるものと考えてよいが、選択公理によって の部分集合でルベーグ測度を与えることができない(無理に与えると加法性が成り立たない)ものが存在することを証明できる。ルベーグ測度が与えられる集合はルベーグ可測であるという。以下の説明ではルベーグ可測な集合 の測度を で表す。.

新しい!!: 選択公理とルベーグ測度 · 続きを見る »

ヴァツワフ・シェルピニスキ

ェルピンスキの記念メダル ヴァツワフ・シェルピンスキ(Wacław Franciszek Sierpiński、シェルピンスキー、1882年3月14日 - 1969年10月21日)とは、ワルシャワで生没したポーランドの数学者である。彼は集合論(選択公理や連続体仮説に関する研究)や数論、関数論、位相幾何学に対する多大な貢献をしたことで知られている。彼は、700部を越す論文と、50冊の本を出版した(そのうちの 2 つ、『一般位相数学入門』Introduction to General Topology,1934 と 『一般位相数学』General Topology,1952は、カナダの数学者 セシリア・クリューガーによって英訳されている)。 3 つの有名なフラクタルが、彼の名にちなんでいる(シェルピンスキーの三角形、シェルピンスキーのカーペット、シェルピンスキー曲線)。.

新しい!!: 選択公理とヴァツワフ・シェルピニスキ · 続きを見る »

ヒュー・ウッディン

ヒュー・ウッディン、1994年(photo by George Bergman) ウィリアム・ヒュー・ウッディン (William Hugh Woodin、1955年4月23日 - )はアリゾナ州トゥーソン出身の、ハーバード大学に所属する集合論学者。内部モデルや決定性の理論などで多くの顕著な業績を挙げている。巨大基数の一種であるウッディン基数は彼の名に因む。.

新しい!!: 選択公理とヒュー・ウッディン · 続きを見る »

ツォルンの補題

集合論においてツォルンの補題(ツォルンのほだい、Zorn's lemma)またはクラトフスキ・ツォルンの補題(クラトフスキ・ツォルンのほだい)とは次の定理をいう。; 命題 (Zorn の補題) この定理は数学者マックス・ツォルンとカジミェシュ・クラトフスキに因む。.

新しい!!: 選択公理とツォルンの補題 · 続きを見る »

テューキーの補題

テューキーの補題(あるいは)とは、ある性質を満たす集合族が包含関係に関する極大元を持つことを保証する命題である。ジョン・テューキーが初めに使用したことからその名前がついた。選択公理やツォルンの補題と同値であることが知られている。.

新しい!!: 選択公理とテューキーの補題 · 続きを見る »

フィルター (数学)

フィルター (filter) とは半順序集合の特別な部分集合のことである。実際には半順序集合として、特定の集合の冪集合に包含関係で順序を入れた物が考察されることが多い。フィルターが初めて用いられたのは一般位相幾何学の研究であったが、現在では順序理論や束の理論でも用いられている。順序理論的な意味でのフィルターの双対概念はイデアルである。 類似の概念として1922年にエリアキム・H・ムーアとH.L.スミスによって導入されたネットの概念がある。.

新しい!!: 選択公理とフィルター (数学) · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 選択公理とベクトル空間 · 続きを見る »

命題

命題(めいだい、proposition)とは、論理学において判断を言語で表したもので、真または偽という性質をもつもの。また数学で、真偽の判断の対象となる文章または式。定理または問題のこと。西周による訳語の一つ。 厳密な意味での命題の存在は、「意味」の存在と同様に、疑問を投げかける哲学者もいる。また、「意味」の概念が許容される場合にあっても、その本質は何であるかということにはなお議論のあるところである。古い文献では、語の集まりあるいはその語の集まりの表す「意味」という意味で命題という術語を用いているかどうかということが、つねに十分に明らかにされているわけではなかった。 現在では、論争や存在論的な含みを持つことを避けるため、ある解釈の下で(真か偽のいずれであるかという)真理の担い手となる記号列自体について述べる時は、「命題」という代わりに「文 (sentence)」という術語を用いる。ストローソンは「言明 ("statement")」 という術語を用いることを提唱した。.

新しい!!: 選択公理と命題 · 続きを見る »

アルフレト・タルスキ

アルフレト・タルスキ(Alfred Tarski, 1901年1月14日 - 1983年10月26日)はポーランドおよびアメリカの数学者・論理学者。彼の生年を1902年とする記述も散見されるが、これは誤りである。 アリストテレス、クルト・ゲーデル、ゴットロープ・フレーゲとともに、「四人の偉大な論理学者」の一人として数えられる。また、彼の名前は「バナッハ=タルスキーの定理」などで知られる。.

新しい!!: 選択公理とアルフレト・タルスキ · 続きを見る »

アンリ・ルベーグ

アンリ・レオン・ルベーグ(Henri Leon Lebesgue、1875年6月28日 ボーヴェ生まれ - 1941年7月26日 パリ没)は、フランスの数学者。17世紀以来の積分の概念の一般化を与えたルベーグ積分の理論で知られる。この理論は1902年にナンシー大学に提出した博士論文の中で構築された。.

新しい!!: 選択公理とアンリ・ルベーグ · 続きを見る »

エミール・ボレル

ミール・ボレル (Félix Édouard Justin Émile Borel, 1871年1月7日-1956年2月3日) は、フランスの数学者、政治家。ボレル測度などで知られ、アンリ・ルベーグとともに測度論の先駆者となった。また、ゲーム理論に関する論文もいくつか発表した。.

新しい!!: 選択公理とエミール・ボレル · 続きを見る »

エルンスト・ツェルメロ

エルンスト・ツェルメロ エルンスト・ツェルメロ(Ernst Friedrich Ferdinand Zermelo、1871年7月27日 ベルリン – 1953年5月21日 フライブルク)はドイツの数学者・論理学者。特に集合論に業績を残した。 ベルリン・ハレ・フライブルクの各大学で数学と哲学を学び、ベルリン大学でプランクの指導の下に物理学を研究した。1896年にはボルツマンのH定理に反論した(熱力学系は長時間の後には元と同じ状態に復帰し、エントロピーは減少するはずだという批判:再帰性パラドックス)。1897年ゲッティンゲン大学に移った。 1900年にヒルベルトが未解決の23の重要問題を提示し、ツェルメロはその最初の問題である連続体仮説に取り組んだ。これに関しては1902年、最初の論文を発表した。1904年には整列可能定理を証明し、連続体仮説への第一段階とした。これにより翌年ゲッティンゲン大学教授となったが、この証明は(当時はまだ公理とされていなかった)選択公理に基づいていたため、完全には受け入れられなかった。1908年にはより一般的な証明を与えた。また1905年には集合論の公理化に取り掛かり、1908年にこれを公刊したが、その無矛盾性を証明することはできなかった。1910年にはチューリヒ大学に移り1916年まで過ごした。1922年にはアドルフ・フレンケルとスコーレムがそれぞれ独立にツェルメロの公理系を改良した。この10公理からなる系は、現在ツェルメロ・フレンケルの公理系(ZF)と呼ばれ、公理的集合論で最も普通に用いられている公理系である。 1926年、フライブルク大学から名誉教授職を授与されたが、1935年にはヒトラーに反発してこれを返上した。第二次世界大戦後に再度授与されている。 Category:ドイツの数学者 Category:20世紀ドイツの哲学者 つえるめる えるんすと Category:数理論理学者 Category:ゲオルク・アウグスト大学ゲッティンゲンの教員 Category:アルベルト・ルートヴィヒ大学フライブルクの教員 Category:ベルリン出身の人物 Category:1871年生 Category:1953年没 Category:数学に関する記事.

新しい!!: 選択公理とエルンスト・ツェルメロ · 続きを見る »

クルルの定理

数学、とくに環論においてクルルの定理 (Krull's theorem)とは、零環でない環は少なくとも1つの極大イデアルを持つという定理である。1929年にヴォルフガング・クルル (Wolfgang Krull) によって超限帰納法を用いて証明された。この定理はツォルンの補題を用いると簡単に証明できるが、実際はツォルンの補題(そして選択公理と)と同値である。.

新しい!!: 選択公理とクルルの定理 · 続きを見る »

クルト・ゲーデル

ルト・ゲーデル(Kurt Gödel, 1906年4月28日 - 1978年1月14日)は、オーストリア・ハンガリー二重帝国(現チェコ)のブルノ生まれの数学者・論理学者である。業績には、完全性定理及び不完全性定理、連続体仮説に関する研究が知られる。.

新しい!!: 選択公理とクルト・ゲーデル · 続きを見る »

ケネス・キューネン

ハーバート・ケネス・キューネン(Herbert Kenneth Kunen、1943年8月2日 - )は ウィスコンシン大学マディソン校 の数学名誉教授で、集合論及び集合論的位相空間論や測度論を研究している。 ループのような非結合的代数系に関してもOtterなどといった自動定理証明システムを用いて 定理を証明し功績をあげている。 キューネンは構成可能宇宙の非自明な初等埋め込み j:L→L が存在すれば、 0#が存在することを示した。 また、彼はHuge cardinalの存在性が無矛盾なら \aleph_1 上のnormalな\aleph_2-飽和イデアルの存在が無矛盾であることも示している。 彼は可測基数 \kappa が 2^\kappa>\kappa^+ となるか強コンパクト基数であるなら \kappa 個の可測基数が存在する集合論の内部モデルが存在することを示して、 iterated ultrapowersの方法を提唱した。 彼が証明したキューネンの無矛盾性定理は、 ラインハルト基数の存在を示唆する非自明な初等埋め込み V\to V の不可能性を示している。 キューネンはスタンフォード大学で1968年に博士号を取得している。指導教員はデイナ・スコットであった。.

新しい!!: 選択公理とケネス・キューネン · 続きを見る »

ケーニヒの定理 (集合論)

集合論において、ケーニヒの定理 (ハンガリー人数学者 Gyula Kőnig に由来する。ケーニヒはJulius Königの名前で発表していた。) とは選択公理の下で成り立つ命題で、 I が集合で、全ての I の要素 i について mi と ni は それぞれ基数であり、m_i であるなら となる。というものである。 ここでの 和 は集合mi達の直和の濃度で、 積 は直積の濃度である。 しかしながら、選択公理を仮定しない場合は、この和と積は基数として定義できないので、 その場合にこの定理を考慮するにはこの不等式の意味は明らかにされる必要がある。.

新しい!!: 選択公理とケーニヒの定理 (集合論) · 続きを見る »

ゲオルク・カントール

ルク・カントール ゲオルク・フェルディナント・ルートヴィッヒ・フィリップ・カントール(Georg Ferdinand Ludwig Philipp Cantor, 1845年3月3日 - 1918年1月6日)は、ドイツで活躍した数学者。.

新しい!!: 選択公理とゲオルク・カントール · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: 選択公理とコンパクト空間 · 続きを見る »

ステファン・バナフ

テファン・バナフ(Stefan Banach, 1892年3月30日 - 1945年8月31日)はポーランドの数学者。バナッハ空間論、実解析論、数学基礎論などで多大な業績をのこした。ワルシャワ学派、クラクフ学派、ルヴフ学派の3派で構成されるポーランド学派のうち、ルヴフ学派のオリジナルメンバーの一人。.

新しい!!: 選択公理とステファン・バナフ · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: 選択公理と写像 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: 選択公理と全射 · 続きを見る »

全順序

数学における線型順序(せんけいじゅんじょ、linear order)、全順序(ぜんじゅんじょ、total order)または単純順序(たんじゅんじゅんじょ、simple order)は、推移的、反対称かつ完全な二項関係を言う。集合と全順序を組にしたものは、全順序集合 (totally ordered set), 線型順序集合 (linearly ordered set), 単純順序集合 (simply ordered set) あるいは鎖 (chain) と呼ばれる。 即ち、集合 X が関係 ≤ によって全順序付けられるとき、X の任意の元 a, b, c に対して、以下の条件 が満足される。 反対称性によって a < b でも b < a でもあるような不確定な状態は排除される。完全性を持つ関係は、その集合の任意の二元がその関係でであることを意味する。これはまた、元を直線に並べた図式によってその集合が表せるということでもあり、それは「線型」順序の名の由来である。また完全性から反射性 (a ≤ a) が出るから、全順序は半順序の公理を満たす。半順序は(完全性の代わりに反射性のみが課されるという意味で)全順序よりも弱い条件である。与えられた半順序を拡張して全順序をえることは、半順序のと呼ばれる。.

新しい!!: 選択公理と全順序 · 続きを見る »

公理

公理(こうり、axiom)とは、その他の命題を導きだすための前提として導入される最も基本的な仮定のことである。一つの形式体系における議論の前提として置かれる一連の公理の集まりを (axiomatic system) という 。公理を前提として演繹手続きによって導きだされる命題は定理とよばれる。多くの文脈で「公理」と同じ概念をさすものとして仮定や前提という言葉も並列して用いられている。 公理とは他の結果を導きだすための議論の前提となるべき論理的に定式化された(形式的な)言明であるにすぎず、真実であることが明らかな自明の理が採用されるとは限らない。知の体系の公理化は、いくつかの基本的でよく知られた事柄からその体系の主張が導きだせることを示すためになされることが多い。 なお、ユークリッド原論などの古典的な数学観では、最も自明(絶対的)な前提を公理、それに準じて要請される前提を公準 (postulate) として区別していた。.

新しい!!: 選択公理と公理 · 続きを見る »

公理的集合論

公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。.

新しい!!: 選択公理と公理的集合論 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: 選択公理と元 (数学) · 続きを見る »

空集合

集合(くうしゅうごう、empty set)は、要素を一切持たない集合の事である。公理的集合論において、空集合は公理として存在を仮定される場合と、他の公理から存在が導かれる場合がある。空集合を表す記号として、∅ または \emptyset、 がある。記号 ∅ はノルウェー語等で用いられるアルファベット Ø に由来しており、形の似ているギリシャ文字φ, Φ(ファイ)とは全く関係がない。.

新しい!!: 選択公理と空集合 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: 選択公理と無限 · 続きを見る »

直和

数学における直和(ちょくわ、)は、既知の数学的対象を「貼り合わせ」て同じ種類の対象を新たに作り出す操作の一種で、歴史的経緯から対象によってやや異なる意味で用いられるが、大雑把には集合論的、代数学的、圏論的用法に大別できる。またいずれの用法においても、直和を取る対象が全て一つの大きな対象の部分となっている場合(内部直和、構造的直和)と、そのようなものを仮定しない場合(外部直和、構成的直和)を区別することができる(場合によってはそれらの記述は見かけ上大きく異なる)が、それらの間に自然な同型があるため理論上区別して扱わないこともある。そのような自然同型は、しばしば圏論的直和(あるいは双積)の普遍性によって捉えることができる。 直和を表すのに用いられる記号には \oplus, \coprod などがある。.

新しい!!: 選択公理と直和 · 続きを見る »

直積集合

数学において、集合のデカルト積(デカルト­せき、Cartesian product)または直積(ちょくせき、direct product)、直積集合、または単に積(せき、product)、積集合は、集合の集まり(集合族)に対して各集合から一つずつ元をとりだして組にしたもの(元の族)を元として持つ新たな集合である。 具体的に二つの集合 に対し、それらの直積とはそれらの任意の元 の順序対 全てからなる集合をいう。 では と書くことができる。有限個の集合の直積 も同様のn-組からなる集合として定義されるが、二つの集合の直積を入れ子 (nested) にして、 と帰納的に定めることもできる。.

新しい!!: 選択公理と直積集合 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: 選択公理と順序集合 · 続きを見る »

証明

証明(しょうめい)とは、ある事柄が真理もしくは事実であることを明らかにすること。また、その内容。.

新しい!!: 選択公理と証明 · 続きを見る »

部分集合

集合 A が集合 B の部分集合(ぶぶんしゅうごう、subset; 下位集合)であるとは、A が B の一部(あるいは全部)の要素だけからなることである。A が B の一部分であるという意味で部分集合という。二つの集合の一方が他方の部分集合であるとき、この二つの集合の間に包含関係があるという。.

新しい!!: 選択公理と部分集合 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 選択公理と集合 · 続きを見る »

集合族

数学の集合論関連分野における集合族(しゅうごうぞく、family of sets)は集合の「あつまり」である。ここで「集合の集合」といわず「集合のあつまり」としているのは、文脈によっては集合族が同じ集合をいくつも重複して持つ場合(しばしば添字付けられた族 (indexed family of sets) として扱われる)があったり、別の文脈では集合でない真の類 (proper class) となる場合があるなどの理由による。 特に与えられた集合 の部分集合のみを考えるとき、 の部分集合からなる集合は の部分集合族、 上の集合族あるいはなどと呼ぶ。グラフ理論の文脈では集合系はハイパーグラフとも呼ばれる。 また、自然数で添字付けられた(あるいは可算な)集合族は特にと呼ぶ(族 (数学)および列 (数学)の項も参照)。.

新しい!!: 選択公理と集合族 · 続きを見る »

連続体仮説

連続体仮説(れんぞくたいかせつ、Continuum Hypothesis, CH)とは、可算濃度と連続体濃度の間には他の濃度が存在しないとする仮説。19世紀にゲオルク・カントールによって提唱された。現在の数学で用いられる標準的な枠組みのもとでは「連続体仮説は証明も反証もできない命題である」ということが明確に証明されている。.

新しい!!: 選択公理と連続体仮説 · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: 選択公理と逆写像 · 続きを見る »

極大イデアル

の極大左イデアル(きょくだいひだりいである、maximal left ideal)とは、 以外の左イデアルの中で(集合の包含関係に関して)極大なもののことである。すなわち、左イデアル を真に含む左イデアルが しかないときに を の極大左イデアルという。極大右イデアルおよび極大両側イデアルも同様に定義される。これらのイデアルは(環が 0 でなく単位元をもつとき)ツォルンの補題によって存在が保証される。可換環においては、左・右・両側の区別はない。唯一の極大左イデアルをもつ環は局所環と呼ばれる。.

新しい!!: 選択公理と極大イデアル · 続きを見る »

正則性公理

正則性公理(せいそくせいこうり、axiom of regularity)は、別名基礎の公理(きそのこうり、axiom of foundation) とも呼ばれ、ZF公理系を構成する公理の一つで、1925年にジョン・フォン・ノイマンによって導入された。選択公理と同様、様々な同値な命題が存在する。.

新しい!!: 選択公理と正則性公理 · 続きを見る »

決定性公理

決定性公理(けっていせいこうり、axiom of determinacy)とは、1962年に、によって提出された集合論の公理である。もとの決定性公理はゲーム理論に言及し、可算無限の長さをもったある特定の二人完全情報ゲームについて(後述)、どちらかのプレイヤーは必ず必勝法を持つことを主張する。 決定性公理は公理的集合論の選択公理と矛盾する。決定性公理を仮定すると、実数の任意の部分集合について「ルベーグ可測である」「ベールの性質を持つ」「を持つ」ことが従う。とくに実数の任意の部分集合が完全集合性を持つことは「実数の部分で非可算なる集合は実数と同じ濃度を持つ」という弱い形の連続体仮説が成り立つことに換言される。 選択公理からは「実数の部分集合でルベーグ可測でないものが存在する」ことが導かれるが、この事実からも決定性公理と選択公理が相容れないことが分かる。 Category:集合論 Category:公理 Category:数学に関する記事.

新しい!!: 選択公理と決定性公理 · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: 選択公理と濃度 (数学) · 続きを見る »

有界

上が有界集合、下が非有界集合を模式的に表したもの。ただし、下のほうは枠を超えて右方へ延々と続くものとする。 数学において集合が有界(ゆうかい、bounded)である、または有界集合(ゆうかいしゅうごう、bounded set)であるとは、ある種の「差渡しの大きさ」に関する有限性をそれが持つときにいう。有界でない集合は非有界(ひゆうかい、unbounded)であるという。 単純閉曲線はそれを境界として平面 '''R'''2 を有界(内側)および非有界(外側)な二つの領域に分ける。.

新しい!!: 選択公理と有界 · 続きを見る »

日本数学会

一般社団法人 日本数学会(いっぱんしゃだんほうじんにほんすうがっかい、The Mathematical Society of Japan、略称: MSJ)は、1877年(明治10年)に設立された東京数学会社を起源とする1946年(昭和21年)に設立された学会である。数学の研究に関する交流の場であり、数学を一般社会へ普及することを図る。また、関係諸方面と協力して学術文化の向上発展に寄与することを目的とする。会員約 5,000 名を擁する組織である。日本国内および国際的に、数学の進歩・発展のために力をつくしている。.

新しい!!: 選択公理と日本数学会 · 続きを見る »

整列集合

数学において、整列順序付けられた集合または整列集合(せいれつしゅうごう、well­ordered set)とは、整列順序を備えた集合のことをいう。ここで、集合 上の整列順序関係 (well­order) とは、 上の全順序関係 "" であって、 の空でない任意の部分集合が必ず に関する最小元をもつものをいう。あるいは同じことだが、整列順序とは整礎な全順序関係のことである。整列集合 を慣例に従ってしばしば単純に で表す。.

新しい!!: 選択公理と整列集合 · 続きを見る »

1904年

記載なし。

新しい!!: 選択公理と1904年 · 続きを見る »

1926年

記載なし。

新しい!!: 選択公理と1926年 · 続きを見る »

1943年

記載なし。

新しい!!: 選択公理と1943年 · 続きを見る »

1947年

記載なし。

新しい!!: 選択公理と1947年 · 続きを見る »

1964年

記載なし。

新しい!!: 選択公理と1964年 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »