ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

対合

索引 対合

対合(たいごう、ついごう、involution)は、自分自身をその逆として持つ写像である。 これは空間上の変換であって、二回繰り返すと恒等変換となる(元に戻る)という性質 を持つものと言ってもよい。ただし、それ自身が恒等変換となるものは通常は除いて考える。またこれは変換群に属する位数 2 の元 を指すと言っても同じことであり、それを理由に一般の群(抽象群)においても位数 2 の元を対合と呼ぶことがある。.

14 関係: 可換体合同変換 (数学)対合環ユークリッド空間コクセター群冪集合写像C*-環群論複素数転置行列逆写像準同型

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 対合と可換体 · 続きを見る »

合同

合同(ごうどう).

新しい!!: 対合と合同 · 続きを見る »

変換 (数学)

数学的意味での変換(へんかん、transformation)とは、点を他の点に移したり、式を他の式に変えたり、座標を取り替えたりすること。.

新しい!!: 対合と変換 (数学) · 続きを見る »

対合環

数学、特に抽象代数学における対合環(ついごうかん、involutory ring)、-環(スターかん、∗-ring)記法について: 対合 は後置により表される単項演算で、そのグリフはミーンライン付近やや上方に中心がくるように右肩にのせて のように書くが、"" のように中心がミーンライン上にくるようにはしない(スター記号 * とスター演算記号 ∗ との混同に注意: アスタリスクの項も参照)。あるいは対合付き環(ついごうつきかん、involution)は、環構造と両立する対合(共軛演算、随伴)を備える代数系である。可換 -環 上の結合多元環 がそれ自身 -環でもあるとき、二つの -環の -構造が両立するならば、 を -環 上の 対合多元環(ついごうたげんかん、involutive algebra; 対合代数)、-多元環(スターたげんかん、∗-algebra; -代数)あるいは対合付き多元環(ついごうつきたげんかん、algebra with involution; 対合つき代数)という。 対合環における対合(-演算)は複素数体における複素共軛を一般化するものであり、また対合多元環における対合は複素行列環における共軛転置あるいはヒルベルト空間上の線型作用素のエルミート共軛を一般化するものである。.

新しい!!: 対合と対合環 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 対合とユークリッド空間 · 続きを見る »

コクセター群

数学においてコクセター群(コクセターぐん、Coxeter group)とは鏡映変換で表示できる抽象群のことである。ハロルド・スコット・マクドナルド・コクセターに因んで名づけられた。有限コクセター群は何らかのユークリッド鏡映群(たとえば一般次元正多胞体の対称変換群など)になっている。もちろん、すべてのコクセター群が有限群とは限らないし、すべてのコクセター群をユークリッド的な鏡映や対称変換として記述できるわけでもない。コクセター群は鏡映群の抽象化として導入され、有限コクセター群の分類は完了している 。 コクセター群は数学のいくつもの分野に現れる。一般次元正多胞体の対称変換群や単純リー代数のワイル群は有限コクセター群の例であり、ユークリッド平面や双曲平面の正則三角形分割 (regular tessellation) に対応する三角群や無限次元カッツ-ムーディ代数のワイル群は無限コクセター群の例である。 コクセター群に関する標準的な文献としては や などがある。.

新しい!!: 対合とコクセター群 · 続きを見る »

冪集合

冪集合(べきしゅうごう、power set)とは、数学において、与えられた集合から、その部分集合の全体として新たに作り出される集合のことである。べきは冪乗の冪(べき)と同じもので、冪集合と書くのが正確だが、一部分をとった略字として巾集合とも書かれる。 集合と呼ぶべき対象を公理的に構成的に与える公理的集合論では、集合から作った冪集合が集合と呼ばれるべきもののうちにあることを公理の一つ(冪集合公理)としてしばしば提示する。.

新しい!!: 対合と冪集合 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: 対合と写像 · 続きを見る »

C*-環

数学における -環(しーすたーかん、C*-algebra)とは複素数体上の完備なノルム環で複素共役に類似の作用をもつものであり、フォン・ノイマン環と並ぶ作用素環論の主要な研究対象である。-代数(シースターだいすう)とも呼ばれる。1943年のGel'fand-Naimarkと1946年のRickartの研究によって公理系が与えられた。'-algebra' という用語は1947年にSegalによって導入された。 -環はその内在的な構造のみにもとづいて公理的に定義されるが、実はどんな -環もヒルベルト空間上の線形作用素のなす環で、随伴操作とノルムに関する位相で閉じたものとして実現されることが知られている。また、可換な -環を考えることは局所コンパクト空間上の複素数値連続関数環を考えることになり、その連続関数環からはもとの位相空間を復元できるので、可換 -環の理論は局所コンパクト空間の理論と等価だといえる。一般の -環は、群(あるいは亜群)など、幾何学的な文脈に現れながら普通の空間とは見なされないようなものを包摂しうる変形(「量子化」)された空間を表していると考えることもできる。.

新しい!!: 対合とC*-環 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: 対合と群論 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 対合と複素数 · 続きを見る »

転置行列

転置行列(てんちぎょうれつ、transpose, transposed matrix)とは 行 列の行列 に対して の 要素と 要素を入れ替えた 行 列の行列、つまり対角線で成分を折り返した行列のことである。転置行列は などと示される。行列の転置行列を与える操作のことを転置(てんち、transpose)といい、「 を転置する」などと表現する。.

新しい!!: 対合と転置行列 · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: 対合と逆写像 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: 対合と準同型 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »