ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

巨大数

索引 巨大数

巨大数(きょだいすう)とは、日常生活において使用される数よりも巨大な数(実数)のことである。非常に巨大な数は、数学、天文学、宇宙論、暗号理論、インターネットやコンピュータなどの分野でしばしば登場する。天文学的数字(てんもんがくてきすうじ)と呼ばれることもある。 なお、巨大数に対して、0ではないが0に限りなく近い正の実数のことを微小数(びしょうすう)という。 後述のように、巨大な数(や微小な数)を処理するために特殊な数学記号が使われている。.

72 関係: 加法原子多角形多角形表記天文学太陽実数宇宙宇宙のインフレーション宇宙論対数巨大基数不可説不可説転乗法地球ハードディスクドライブハッシュ関数ハイパー演算子ヨーロッパレオナルド・サスキンドビジービーバーアメリカ合衆国アレフ数アボガドロ定数アッカーマン関数インターネットカナダクヌースの矢印表記グラハム数グーゴルグーゴルプレックスグーゴルプレックスプレックスコンピュータコンウェイのチェーン表記シナプススキューズ数センティリオンタバコ冪乗光年国内総生産BEAF素数細胞統計力学組合せ爆発組合せ数学無量大数無限階乗...順列観測可能な宇宙計算可能関数誕生日のパラドックス質量超階乗集合連続体仮説MD5暗号理論濃度 (数学)指数表記有限日本数に関する記事の一覧数の比較数学数学定数数学記号の表整数2007年 インデックスを展開 (22 もっと) »

加法

加法(かほう、addition, summation)とは、数を合わせることを意味する二項演算あるいは多項演算で、四則演算のひとつ。足し算(たしざん)、加算(かさん)、あるいは寄せ算(よせざん)とも呼ばれる。また、加法の演算結果を和(わ、)という。記号は「+」。 自然数の加法は、しばしば物の個数を加え合わせることに喩えられる。また数概念の拡張にしたがって、別の意味を持つ加法を考えることができる。たとえば実数の加法は、もはや自然数の加法のように物の個数を喩えに出すことはできないが、曲線の長さなど別の対象物を見出すことができる。 減法とは互いに逆の関係にあり、また例えば、負の数の加法として減法が捉えられるなど、加法と減法の関連は深い。これは代数学において加法群の概念として抽象化される。 無限個の数を加えること(総和法)については総和、級数、極限、ε–δ 論法などを参照。.

新しい!!: 巨大数と加法 · 続きを見る »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 巨大数と原子 · 続きを見る »

多角形

初等幾何学における多辺形または多角形(たかっけい、polygon; )は、閉あるいは閉曲線を成す、線分の閉じた有限鎖で囲まれた平面図形を言う。多角形を構成するこれら線分をその多角形の辺 (edge, side) と呼び、それらの二つの辺が交わる点をその多角形の頂点 (vertex, corner) と呼ぶ。 個の辺を持つ多角形は -辺形 (-gon) と呼ぶ。例えば三角形は三辺形である。多角形は、より一般の任意次元における超多面体の二次元の例になっている。 多角形に関する基本的な幾何学的概念は特定の目的に応じて様々な方法で適応されてきた。数学においてはしばしば有界な閉折れ線や自己交叉を持たないに限って問題にするため、そのようなもののみ多角形と呼ぶこともある。他方、多角形の境界が自分自身と交わることを許す流儀もあり、その場合星型多角形やその他のが形作られる。その他の多角形の一般化については後述。 多角形 (poly­gon) の語は、「多い」を意味するπολύς と「角」を意味するγωνία に由来する.

新しい!!: 巨大数と多角形 · 続きを見る »

多角形表記

多角形表記(たかくけいひょうき、polygon notation)とは、多角形を用いた巨大数の表記法である。によって考案され、後にによって拡張された。.

新しい!!: 巨大数と多角形表記 · 続きを見る »

天文学

星空を観察する人々 天文学(てんもんがく、英:astronomy, 独:Astronomie, Sternkunde, 蘭:astronomie (astronomia)カッコ内は『ラランデ歴書』のオランダ語訳本の書名に見られる綴り。, sterrenkunde (sterrekunde), 仏:astronomie)は、天体や天文現象など、地球外で生起する自然現象の観測、法則の発見などを行う自然科学の一分野。主に位置天文学・天体力学・天体物理学などが知られている。宇宙を研究対象とする宇宙論(うちゅうろん、英:cosmology)とは深く関連するが、思想哲学を起源とする異なる学問である。 天文学は、自然科学として最も早く古代から発達した学問である。先史時代の文化は、古代エジプトの記念碑やヌビアのピラミッドなどの天文遺産を残した。発生間もない文明でも、バビロニアや古代ギリシア、古代中国や古代インドなど、そしてイランやマヤ文明などでも、夜空の入念な観測が行われた。 とはいえ、天文学が現代科学の仲間入りをするためには、望遠鏡の発明が欠かせなかった。歴史的には、天文学の学問領域は位置天文学や天測航法また観測天文学や暦法などと同じく多様なものだが、近年では天文学の専門家とはしばしば天体物理学者と同義と受け止められる。 天文学 (astronomy) を、天体の位置と人間界の出来事には関連があるという主張を基盤とする信念体系である占星術 (astrology) と混同しないよう注意が必要である。これらは同じ起源から発達したが、今や完全に異なるものである。.

新しい!!: 巨大数と天文学 · 続きを見る »

太陽

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。人類が住む地球を含む太陽系の物理的中心尾崎、第2章太陽と太陽系、pp. 9–10であり、太陽系の全質量の99.86%を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か。 太陽は属している銀河系の中ではありふれた主系列星の一つで、スペクトル型はG2V(金色)である。推測年齢は約46億年で、中心部に存在する水素の50%程度を熱核融合で使用し、主系列星として存在できる期間の半分を経過しているものと考えられている尾崎、第2章太陽と太陽系、2.1太陽 2.1.1太陽の概観 pp. 10–11。 また、太陽が太陽系の中心の恒星であることから、任意の惑星系の中心の恒星を比喩的に「太陽」と呼ぶことがある。.

新しい!!: 巨大数と太陽 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 巨大数と実数 · 続きを見る »

宇宙

宇宙(うちゅう)とは、以下のように定義される。.

新しい!!: 巨大数と宇宙 · 続きを見る »

宇宙のインフレーション

宇宙のインフレーション(うちゅうのインフレーション、)とは、初期の宇宙が指数関数的な急膨張(インフレーション)を引き起こしたという、初期宇宙の進化モデルである。ビッグバン理論のいくつかの問題を一挙に解決するとされる。インフレーション理論・インフレーション宇宙論などとも呼ばれる。この理論は、1981年に佐藤勝彦K.

新しい!!: 巨大数と宇宙のインフレーション · 続きを見る »

宇宙論

宇宙論(うちゅうろん、cosmology)とは、「宇宙」や「世界」などと呼ばれる人間をとりかこむ何らかの広がり全体、広義には、それの中における人間の位置、に関する言及、論、研究などのことである。 宇宙論には神話、宗教、哲学、神学、科学(天文学、天体物理学)などが関係している。 「Cosmology コスモロジー」という言葉が初めて使われたのはクリスティアン・ヴォルフの 『Cosmologia Generalis』(1731)においてであるとされている。 本項では、神話、宗教、哲学、神学などで扱われた宇宙論も幅広く含めて扱う。.

新しい!!: 巨大数と宇宙論 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: 巨大数と対数 · 続きを見る »

巨大基数

巨大基数的性質(きょだいきすうてきせいしつ、large cardinal property)とは、数学の集合論における超限基数が有するある種の性質。この性質を持つ基数は、その名の通り、一般に大変「大きい」(例えば、α.

新しい!!: 巨大数と巨大基数 · 続きを見る »

不可説不可説転

不可説不可説転(ふかせつふかせつてん)とは、華厳経に登場する自然数の数詞である。仏典に現れる具体的な数詞としては最大のものとされている。.

新しい!!: 巨大数と不可説不可説転 · 続きを見る »

乗法

算術における乗法 (じょうほう、multiplication) は、算術の四則と呼ばれるものの一つで、整数では、一方の数 (被乗数、ひじょうすう、multiplicand) に対して他方の数 (乗数、じょうすう、multiplier) の回数だけ繰り返し和をとる(これを掛けるまたは乗じるという。)ことにより定義できる演算である。掛け算(かけざん)、乗算(じょうざん)とも呼ばれる。代数学においては、変数の前の乗数(例えば 3y の 3)は係数(けいすう、coefficient)と呼ばれる。 逆の演算として除法をもつ。乗法の結果を積 (せき、product) と呼ぶ。 乗法は、有理数、実数、複素数に対しても拡張定義される。また、抽象代数学においては、一般に可換とは限らない二項演算に対して、それを乗法、積などと呼称する(演算が可換である場合はしばしば加法、和などと呼ぶ)。.

新しい!!: 巨大数と乗法 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

新しい!!: 巨大数と地球 · 続きを見る »

ハードディスクドライブ

AT互換機用内蔵3.5インチHDD(シーゲイト・テクノロジー製) ハードディスクドライブ(hard disk drive, HDD)とは、磁性体を塗布した円盤を高速回転し、磁気ヘッドを移動することで、情報を記録し読み出す補助記憶装置の一種である。.

新しい!!: 巨大数とハードディスクドライブ · 続きを見る »

ハッシュ関数

ハッシュ関数で名前と0から15までの整数をマッピングしている。"John Smith" と "Sandra Dee" のハッシュ値が衝突している点に注意。 ハッシュ関数 (ハッシュかんすう、hash function) あるいは要約関数とは、あるデータが与えられた場合にそのデータを代表する数値を得る操作、または、その様な数値を得るための関数のこと。ハッシュ関数から得られた数値のことを要約値やハッシュ値または単にハッシュという。 ハッシュ関数は主に検索の高速化やデータ比較処理の高速化、さらには改竄の検出に使われる。例えば、データベース内の項目を探したり、大きなファイル内で重複しているレコードや似ているレコードを検出したり、核酸の並びから類似する配列を探したりといった場合に利用できる。 ハッシュ関数の入力を「キー (key)」と呼ぶ。ハッシュ関数は2つ以上のキーに同じハッシュ値をマッピングすることがある。多くの場合、このような衝突の発生は最小限に抑えるのが望ましい。したがって、ハッシュ関数はキーとハッシュ値をマッピングする際に可能な限り一様になるようにしなければならない。用途によっては、他の特性も要求されることがある。ハッシュ関数の考え方は1950年代に遡るが、ハッシュ関数の設計の改善は今でも盛んに研究されている。 ハッシュ関数は、チェックサム、チェックディジット、フィンガープリント、誤り訂正符号、暗号学的ハッシュ関数などと関係がある。これらの概念は一部はオーバーラップしているが、それぞれ用途が異なり、異なった形で設計・最適化されている。 またプログラミング言語の一部(Perl、Ruby等、主に高等言語とされる一般的なプログラミング言語の多く)においては、連想配列のことを伝統的にハッシュと呼ぶが、これは連想配列そのもののプログラムの内部的実装に拠るものであり、ハッシュ関数そのものとは全く異なる。連想配列はハッシュ関数の応用例の一つのハッシュテーブルの実用例である。.

新しい!!: 巨大数とハッシュ関数 · 続きを見る »

ハイパー演算子

ハイパー演算子 (hyper operator) は、加算、乗算、冪乗を一般化した演算のための演算子である。.

新しい!!: 巨大数とハイパー演算子 · 続きを見る »

ヨーロッパ

ヨーロッパ日本語の「ヨーロッパ」の直接の原語は、『広辞苑』第5版「ヨーロッパ」によるとポルトガル語・オランダ語、『デジタル大辞泉』goo辞書版「」によるとポルトガル語。(、)又は欧州は、地球上の七つの大州の一つ。漢字表記は欧羅巴。 地理的には、ユーラシア大陸北西の半島部を包括し、ウラル山脈およびコーカサス山脈の分水嶺とウラル川・カスピ海・黒海、そして黒海とエーゲ海を繋ぐボスポラス海峡-マルマラ海-ダーダネルス海峡が、アジアと区分される東の境界となる増田 (1967)、pp.38–39、Ⅲ.地理的にみたヨーロッパの構造 ヨーロッパの地理的範囲 "Europe" (pp. 68-9); "Asia" (pp. 90-1): "A commonly accepted division between Asia and Europe...

新しい!!: 巨大数とヨーロッパ · 続きを見る »

レオナルド・サスキンド

レオナルド・サスキンド(Leonard Susskind、1940年 - )はアメリカの物理学者。素粒子物理学における弦理論の創始者の一人。.

新しい!!: 巨大数とレオナルド・サスキンド · 続きを見る »

ビジービーバー

ビジービーバー(英:busy beaver)とは、計算可能性理論で扱われるある種のチューリングマシンである。この名称は「仕事人間」を意味する英語の慣用句に由来する。ビジービーバーは空のテープから処理を開始し、可能な限り走り続けるが、最終的には停止する。これは停止するチューリングマシンのクラスが消費し得る時間と領域(テープ)の長さの上限を与える。 ビジービーバー関数はこの上限を数値化するものであり、計算不能関数の一例でもある。この関数はいかなる計算可能関数よりも急速に増大するということを証明できる。ビジービーバー関数の概念は、ティボール・ラドーによる1962年の論文 "On Non-Computable Functions" の中で、「ビジービーバー・ゲーム」という名称で初めて導入された。.

新しい!!: 巨大数とビジービーバー · 続きを見る »

アメリカ合衆国

アメリカ合衆国(アメリカがっしゅうこく、)、通称アメリカ、米国(べいこく)は、50の州および連邦区から成る連邦共和国である。アメリカ本土の48州およびワシントンD.C.は、カナダとメキシコの間の北アメリカ中央に位置する。アラスカ州は北アメリカ北西部の角に位置し、東ではカナダと、西ではベーリング海峡をはさんでロシアと国境を接している。ハワイ州は中部太平洋における島嶼群である。同国は、太平洋およびカリブに5つの有人の海外領土および9つの無人の海外領土を有する。985万平方キロメートル (km2) の総面積は世界第3位または第4位、3億1千7百万人の人口は世界第3位である。同国は世界で最も民族的に多様かつ多文化な国の1つであり、これは多くの国からの大規模な移住の産物とされているAdams, J.Q.;Strother-Adams, Pearlie (2001).

新しい!!: 巨大数とアメリカ合衆国 · 続きを見る »

アレフ数

数学を基礎付ける集合論において、アレフ数(アレフすう、aleph number)は無限集合の濃度(あるいは大きさ)を表現するために使われる数の列である。それらはそれらを表記するのに使われる文字、ヘブライ文字のアレフ にちなんで名づけられている。 自然数全体の集合の濃度はアレフ・ノート (; アレフ・ヌル (aleph-null) あるいはアレフ・ゼロ (aleph-zero) とも)であり、次に大きい濃度がアレフ・ワン, 次はアレフ・ツー と以下同様に続く。このように続けて、すべての順序数 に対して以下に述べられるように一般のアレフ数となる濃度 を定義することができる。 概念はゲオルク・カントールまでさかのぼる。彼は濃度の概念を定義し無限集合には異なる濃度があることに気付いた。 アレフ数は代数学や微積分でよく見る無限大 (∞) とは異なる。アレフ数は集合の大きさを測るものだが、一方無限大は一般に(関数や数列が「無限大に発散する」とか「限りなく増大する」という形で現れる)実数直線上の非有限極限、あるいは拡張実数直線の極点として定義される。.

新しい!!: 巨大数とアレフ数 · 続きを見る »

アボガドロ定数

アボガドロ定数(アボガドロていすう、Avogadro constant )とは、物質量 1 mol とそれを構成する粒子(分子、原子、イオンなど)の個数との対応を示す比例定数で、SI単位は mol である。イタリア出身の化学者、アメデオ・アヴォガドロにちなんで名付けられており、記号 で表す。以前はアボガドロ数(アボガドロすう、Avogadro's number )と呼ばれたが、1969年のIUPAC総会でアボガドロ定数に名称が変更された。 なお、アボガドロ定数に関連し、時に混同される数として、0 ℃・1 atmの気体1 cmに含まれる分子の数、ロシュミット数(Loschmidt's number)がある。.

新しい!!: 巨大数とアボガドロ定数 · 続きを見る »

アッカーマン関数

アッカーマン関数(アッカーマンかんすう、Ackermann function、Ackermannfunktion)とは、非負整数 m と n に対し、 \end によって定義される関数のことである。 与える数が大きくなると爆発的に計算量が大きくなるという特徴があり、性能測定などに用いられることもある。 また、数学的な意味として、原始再帰関数でないμ再帰関数の実例として有名である。これを(再帰のない手続き型の)プログラミング言語の言葉で言えば、whileループを使えばアッカーマン関数をプログラミングできるが、whileを使わずにforループだけでは実現不能だということである。 なお、アッカーマン関数のグラフは原始再帰的である。.

新しい!!: 巨大数とアッカーマン関数 · 続きを見る »

インターネット

インターネット(internet)は、インターネット・プロトコル・スイートを使用し、複数のコンピュータネットワークを相互接続した、グローバルな情報通信網のことである。 インターネットは、光ファイバーや無線を含む幅広い通信技術により結合された、地域からグローバルまでの範囲を持つ、個人・公共・教育機関・商用・政府などの各ネットワークから構成された「ネットワークのネットワーク」であり、ウェブのハイパーテキスト文書やアプリケーション、電子メール、音声通信、ファイル共有のピア・トゥ・ピアなどを含む、広範な情報とサービスの基盤となっている。.

新しい!!: 巨大数とインターネット · 続きを見る »

カナダ

ナダ(英・、 キャナダ、 キャナダ、カナダ)は、10の州と3の準州を持つ連邦立憲君主制国家である。イギリス連邦加盟国であり、英連邦王国のひとつ。北アメリカ大陸北部に位置し、アメリカ合衆国と国境を接する。首都はオタワ(オンタリオ州)。国土面積は世界最大のロシアに次いで広い。 歴史的に先住民族が居住する中、外からやってきた英仏両国の植民地連合体として始まった。1763年からイギリス帝国に包括された。1867年の連邦化をきっかけに独立が進み、1931年ウエストミンスター憲章で承認され、1982年憲法制定をもって政体が安定した。一連の過程においてアメリカと政治・経済両面での関係が深まった。第一次世界大戦のとき首都にはイングランド銀行初の在外金準備が保管され、1917年7月上旬にJPモルガンへ償還するときなどに取り崩された。1943年にケベック協定を結んだ(当時のウラン生産力も参照)。1952年にはロスチャイルドの主導でブリンコ(BRINCO)という自然開発計画がスタートしている。結果として1955年と1960年を比べて、ウラン生産量は約13倍に跳ね上がった。1969年に石油自給国となる過程では、開発資金を供給するセカンダリー・バンキングへ機関投資家も参入したので、カナダの政治経済は機関化したのであった。 立憲君主制で、連邦政府の運営は首相を中心に行われている。パワー・コーポレーションと政界の連携により北米自由貿易協定(NAFTA)に加盟した。.

新しい!!: 巨大数とカナダ · 続きを見る »

クヌースの矢印表記

ヌースの矢印表記とは、1976年にドナルド・クヌースが巨大数を表現するために発明した表記法である。これは、乗算が加算の反復であり、冪乗が乗算の反復であるのと同様の考え方に基づくもので、冪乗の反復(テトレーション、超指数)を表す演算の表記法である。また、クヌースの矢印表記を拡張した表記法に、コンウェイのチェーン表記やBEAFがある。.

新しい!!: 巨大数とクヌースの矢印表記 · 続きを見る »

グラハム数

ラハム数(グラハムすう、Graham's number)は、ラムゼー理論に関する未解決問題の解の推定値の上限として得られた自然数である。数学の証明で使われたことのある最大の数として1980年にギネスブックに認められた。 極めて巨大な巨大数であり、指数表記を用いるのは事実上不可能なため、特別な表記法を用いて表される。.

新しい!!: 巨大数とグラハム数 · 続きを見る »

グーゴル

ーゴル (googol) とは、数の単位であり、1グーゴルは10の100乗 (10100) である。 グーゴルは1920年に誕生したもので、アメリカの数学者エドワード・カスナーの当時9歳の甥ミルトン・シロッタ (Milton Sirotta) による造語である。カスナーはこの言葉を著書「数学と想像力」 (Mathematics and the Imagination) の中で紹介している。 1グーゴルは1の後に0が100個連なった101桁の整数であり、次のように書くことができる。 この数は70の階乗 (70!) に比較的近い。70の階乗は次のような101桁の整数である。 1グーゴルは観測可能な範囲の宇宙に存在している原子の数(およそ1079から1081個と推算されている)よりも多い。 多くの関数電卓では10進法で指数部が2桁までしか表せないので、絶対値が1グーゴル以上の数や途中計算で1グーゴルを超える数式は扱えない。 また、グーゴルをもとにしたグーゴルプレックス(10の1グーゴル乗 (101googol)、すなわち10の10の100乗乗 (1010100))やグーゴルプレックスプレックス(10の1グーゴルプレックス乗 (101googolplex)、すなわち10の10の10の100乗乗乗 (101010100))もある。.

新しい!!: 巨大数とグーゴル · 続きを見る »

グーゴルプレックス

ーゴルプレックス (googolplex) とは、数の単位であり、1グーゴルプレックスは10の1グーゴル乗 (101googol)、すなわち10の10の100乗乗 (1010100) である。1グーゴルプレックスは1の後に0を1グーゴル個つけることによって表される整数である。.

新しい!!: 巨大数とグーゴルプレックス · 続きを見る »

グーゴルプレックスプレックス

ーゴルプレックスプレックス (googolplexplex) とは、数の単位であり、1グーゴルプレックスプレックスは10の1グーゴルプレックス乗 (10googolplex)、すなわち10の10の10の100乗乗乗 (101010100) である。グーゴルデュプレックス (googolduplex) あるいはグーゴルプレクシアン (googolplexian) とも呼ばれる。.

新しい!!: 巨大数とグーゴルプレックスプレックス · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: 巨大数とコンピュータ · 続きを見る »

コンウェイのチェーン表記

ンウェイのチェーン表記とは、1995年にイギリスの数学者ジョン・ホートン・コンウェイによって導入された巨大数の表記法の一つである。.

新しい!!: 巨大数とコンウェイのチェーン表記 · 続きを見る »

シナプス

ナプス(synapse)は、神経細胞間あるいは筋繊維(筋線維)、神経細胞と他種細胞間に形成される、シグナル伝達などの神経活動に関わる接合部位とその構造である。化学シナプス(小胞シナプス)と電気シナプス(無小胞シナプス)、および両者が混在する混合シナプスに分類される。シグナルを伝える方の細胞をシナプス前細胞、伝えられる方の細胞をシナプス後細胞という。又は日本のインディーズバンドを指す。.

新しい!!: 巨大数とシナプス · 続きを見る »

スキューズ数

ューズ数(スキューズすう、Skewes number)は、南アフリカの数学者が素数の個数に関する研究において用いた、極めて大きな数である。あるいは、π(x) > li(x) を満たす最小の自然数 x を指すこともある。ここに、π(x) は x 以下の素数の個数、li(x) は対数積分である。後者の意味でのスキューズ数は、1014 から 1.3983 × 10316 の間にあることが知られているが、正確な値は不明である。.

新しい!!: 巨大数とスキューズ数 · 続きを見る »

センティリオン

ンティリオン(centillion)は、数の単位の一種であるが、使用される地域によって表す数量が異なる。.

新しい!!: 巨大数とセンティリオン · 続きを見る »

タバコ

タバコ(たばこ、煙草、)は、ナス科タバコ属の熱帯地方原産の植物佐竹元吉 監修『日本の有毒植物』 学研教育出版 2012年、ISBN 9784054052697 p.192.

新しい!!: 巨大数とタバコ · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: 巨大数と冪乗 · 続きを見る »

光年

光年(こうねん、light-year、Lichtjahr、記号 ly)は、主として天文学で用いられる距離(長さ)の単位であり、正確に 、約9.5兆キロメートルである。1981年まではSI併用単位であった。.

新しい!!: 巨大数と光年 · 続きを見る »

国内総生産

国内総生産(こくないそうせいさん、英:Gross Domestic Product、GDP)は、一定期間内に国内で産み出された付加価値の総額のことである。.

新しい!!: 巨大数と国内総生産 · 続きを見る »

BEAF

BEAF (Bowers Exploding Array Function) とは、Jonathan Bowersによって考案された、巨大数を表すための表記法の一つである。.

新しい!!: 巨大数とBEAF · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 巨大数と素数 · 続きを見る »

細胞

動物の真核細胞のスケッチ 細胞(さいぼう)とは、全ての生物が持つ、微小な部屋状の下部構造のこと。生物体の構造上・機能上の基本単位。そして同時にそれ自体を生命体と言うこともできる生化学辞典第2版、p.531-532 【単細胞生物】。 細胞を意味する英語の「cell」の語源はギリシャ語で「小さな部屋」を意味する語である。1665年にこの構造を発見したロバート・フックが自著においてcellと命名した。.

新しい!!: 巨大数と細胞 · 続きを見る »

統計力学

統計力学(とうけいりきがく、statistical mechanics)は、系の微視的な物理法則を基に、巨視的な性質を導き出すための学問である。統計物理学 (statistical physics)、統計熱力学 (statistical thermodynamics) とも呼ぶ。歴史的には系の熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマン、ジェームズ・クラーク・マクスウェル、ウィラード・ギブズらによって始められた。理想気体の温度と気圧ばかりでなく、実在気体についても扱う。.

新しい!!: 巨大数と統計力学 · 続きを見る »

組合せ爆発

組合せ爆発(くみあわせばくはつ、Combinatorial explosion)は、計算機科学、応用数学、情報工学、人工知能などの分野では、解が組合せ(combination)的な条件で定義される離散最適化問題で、問題の大きさn に対して解の数が指数関数や階乗などのオーダーで急激に大きくなってしまうために、有限時間で解あるいは最適解を発見することが困難になることをいう。.

新しい!!: 巨大数と組合せ爆発 · 続きを見る »

組合せ数学

組合せ数学(くみあわせすうがく、combinatorics)や組合せ論(くみあわせろん)とは、特定の条件を満たす(普通は有限の)対象からなる集まりを研究する数学の分野。特に問題とされることとして、集合に入っている対象を数えたり(数え上げ的組合せ論)、いつ条件が満たされるのかを判定し、その条件を満たしている対象を構成したり解析したり(組合せデザインやマトロイド理論)、「最大」「最小」「最適」な対象をみつけたり(極値組合せ論や組合せ最適化)、それらの対象が持ちうる代数的構造をみつけたり(代数的組合せ論)することが挙げられる。.

新しい!!: 巨大数と組合せ数学 · 続きを見る »

無量大数

無量大数(むりょうたいすう)は、漢字文化圏(漢字圏)における数の単位の一つ。漢字文化圏において名前がついている最大のものである。無量大数がいくつを示すかは時代や地域により異なり、また、現在でも人により解釈が分かれる。一般的には1068を指すが、1088とする人もいる。.

新しい!!: 巨大数と無量大数 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: 巨大数と無限 · 続きを見る »

階乗

数学において非負整数 の階乗(かいじょう、factorial) は、1 から までのすべての整数の積である。例えば、 である。空積の規約のもと と定義する。 階乗は数学の様々な場面に出現するが、特に組合せ論、代数学、解析学などが著しい。階乗の最も基本的な出自は 個の相異なる対象を一列に並べる方法(対象の置換)の総数が 通りであるという事実である。この事実は少なくとも12世紀にはインドの学者によって知られていた。は1677年にへの応用として階乗を記述した。再帰的な手法による記述の後、Stedman は(独自の言葉を用いて)階乗に関しての記述を与えている: 感嘆符(!)を用いた、この "" という表記は1808年にによって発明された。 階乗の定義は、最も重要な性質を残したまま、非整数を引数とする函数に拡張することができる。そうすれば解析学における著しい手法などの進んだ数学を利用できるようになる。.

新しい!!: 巨大数と階乗 · 続きを見る »

順列

初等組合せ論における順列(じゅんれつ、sequence without repetition、arrangement)は、区別可能な特定の元から有限個を選んで作られる重複の無い有限列をいう。 初等組合せ論における「」はともに n-元集合から -個の元を取り出す方法として可能なものを数え上げる問題に関するものである。取り出す順番を勘案するのが -順列、順番を無視するのが -組合せである。.

新しい!!: 巨大数と順列 · 続きを見る »

観測可能な宇宙

IPAC'')。 ビッグバン宇宙論でいう観測可能な宇宙(かんそくかのうなうちゅう、observable universe)とは、中心にいる観測者が領域内の物体を十分に観測できるほど小さい、つまり、ビッグバン以後のどの時点でその物体から放出された信号であっても、それが光速で進んで、現在の観測者のもとに届くまでに十分な時間があるような球状の空間領域である。宇宙のどの場所にもその場所にとっての観測可能な宇宙があり、それは地球を中心とするものと重なる部分も重ならない部分もある。.

新しい!!: 巨大数と観測可能な宇宙 · 続きを見る »

計算可能関数

計算可能関数(けいさんかのうかんすう、Computable function)は、計算可能性理論研究の基本的な目的で、直観的には、アルゴリズムによって結果の値が得られる関数のことである。計算可能関数は、チューリングマシンやレジスタマシンといった具体的な計算モデルを参照せずに、計算可能性を論じるのに使われる。しかし、その定義には特定の計算モデルを参照する必要がある。 計算可能関数の正確な定義が与えられる以前から、数学者は effectively computable(実効的に計算可能)という言い回しをよく使っていた。現在では、その概念が計算可能関数となっている。effective(実効的)であってもefficient(効率的)に計算できるということは導かない。実際、計算可能関数には非効率な場合もある。計算複雑性理論は、そのような関数の計算効率を研究している。 チャーチ=チューリングのテーゼによれば、計算可能関数は、任意にいくらでも拡大できる記憶装置を持った計算機械を使い(いくら長くても良いが)有限の時間で計算が必ず終了する関数である。アルゴリズムのある関数は全て計算可能である。 ブラムの公理を使って、計算可能関数の集合について抽象的な計算複雑性を定義できる。計算複雑性理論では、計算可能関数の複雑性を特定する問題を函数問題と呼ぶ。.

新しい!!: 巨大数と計算可能関数 · 続きを見る »

誕生日のパラドックス

誕生日のパラドックス(たんじょうびのパラドックス、)とは「何人集まれば、その中に誕生日が同一の2人(以上)がいる確率が、50%を超えるか?」という問題から生じるパラドックスである。鳩の巣原理より、366人(閏日も考えるなら367人)集まれば確率は100%となるが、しかしその5分の1に満たない70人しか集まらなくても確率は99.9%を超え、50%を超えるのに必要なのはわずか23人である。 誕生日のパラドックスは論理的な矛盾に基づいているという意味でのパラドックスではなく、結果が一般的な直感と反しているという意味でのパラドックスである。 この理論の背景には によって記述された「湖にいる魚の総数の推定」がある。これは、統計学では標的再捕獲法 (法) として知られている。.

新しい!!: 巨大数と誕生日のパラドックス · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: 巨大数と質量 · 続きを見る »

超階乗

数学における自然数の組合せ論的函数(二項係数・階乗類似函数)として、超階乗(ちょうかいじょう、superfactorial) は階乗の拡張となるものである。ただし、幾つかの異なる定義が存在する。.

新しい!!: 巨大数と超階乗 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 巨大数と集合 · 続きを見る »

連続体仮説

連続体仮説(れんぞくたいかせつ、Continuum Hypothesis, CH)とは、可算濃度と連続体濃度の間には他の濃度が存在しないとする仮説。19世紀にゲオルク・カントールによって提唱された。現在の数学で用いられる標準的な枠組みのもとでは「連続体仮説は証明も反証もできない命題である」ということが明確に証明されている。.

新しい!!: 巨大数と連続体仮説 · 続きを見る »

MD5

MD5(エムディーファイブ、Message Digest Algorithm 5)とは、与えられた入力に対して128ビットのハッシュ値を出力するハッシュ関数である。MD5のハッシュキーの長さは、2128(約 3.403×1038 = 340澗(かん) = 340京の1京倍)通りのハッシュ値をとり、IPv6のアドレス空間と同じである。.

新しい!!: 巨大数とMD5 · 続きを見る »

暗号理論

暗号理論(あんごうりろん)の記事では暗号、特に暗号学に関係する理論について扱う。:Category:暗号技術も参照。.

新しい!!: 巨大数と暗号理論 · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: 巨大数と濃度 (数学) · 続きを見る »

指数表記

指数表記(しすうひょうき、exponential notation, E notation, scientific notation)は、数の表記方法の1つである。主に非常に大きな、または非常に小さな数を表記する場合に使われる。.

新しい!!: 巨大数と指数表記 · 続きを見る »

有限

有限(ゆうげん、finite)とは、無限ではないことである。.

新しい!!: 巨大数と有限 · 続きを見る »

日本

日本国(にっぽんこく、にほんこく、ひのもとのくに)、または日本(にっぽん、にほん、ひのもと)は、東アジアに位置する日本列島(北海道・本州・四国・九州の主要四島およびそれに付随する島々)及び、南西諸島・伊豆諸島・小笠原諸島などから成る島国広辞苑第5版。.

新しい!!: 巨大数と日本 · 続きを見る »

数(かず、すう、number)とは、.

新しい!!: 巨大数と数 · 続きを見る »

数に関する記事の一覧

数に関する記事の一覧(かずにかんするきじのいちらん)は、数に関する記事へのアクセスの一助とするものであり、全てを網羅するものではない。:Category:数も参照。.

新しい!!: 巨大数と数に関する記事の一覧 · 続きを見る »

数の比較

本項では、数を比較できるよう、昇順に表にする。ここでは原則として正の実数のみを扱う。 ここで扱う「数」には.

新しい!!: 巨大数と数の比較 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 巨大数と数学 · 続きを見る »

数学定数

数学定数(すうがくていすう)とは、なんらかの"面白い"性質を持った定数である。 数学定数は、ふつうは実数体か複素数体の元である。数学定数と呼ばれうるものは、一つの変項を持ち、ZFC 集合論により証明可能な論理式により、それを満足するただ一つの数として決定可能 (definable) であり、ほとんどの場合はその値が計算可能 (computable) である。 変数を斜体で表すのに対し、定数であることを明示するために、立体を使うことがある。.

新しい!!: 巨大数と数学定数 · 続きを見る »

数学記号の表

数学的概念を記述する記号を数学記号という。数学記号は、数学上に抽象された概念を簡潔に表すためにしばしば用いられる。 数学記号が示す対象やその定義は、基本的にそれを用いる人に委ねられるため、一見して同じ記号であっても内容が異なっていたり、逆に異なる記号であっても、同じ対象を示していることがある数学においては、各々の記号はそれ単独では「意味」を持たないものと理解される。それらは常に、数式あるいは論理式として文脈(時には暗黙のうちに掲げられている、前提や枠組み)に即して評価をされて初めて、値として意味を生じるのである。ゆえにここに掲げられる意味は慣用的な一例に過ぎず絶対ではないことに事前の了解が必要である。記号の「読み」は記号の見た目やその文脈における意味、あるいは記号の由来(例えばエポニム)など便宜的な都合(たとえば、特定のグリフをインプットメソッドを通じてコードポイントを指定して利用するために何らかの呼称を与えたりすること)などといったものに従って生じるために、「記号」と「読み」との間には相関性を見いだすことなく分けて考えるのが妥当である。。従って本項に示す数学記号とそれに対応する数学的対象は、数多くある記号や概念のうち、特に慣用されうるものに限られる。.

新しい!!: 巨大数と数学記号の表 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 巨大数と整数 · 続きを見る »

2007年

この項目では、国際的な視点に基づいた2007年について記載する。.

新しい!!: 巨大数と2007年 · 続きを見る »

ここにリダイレクトされます:

天文学的数字

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »