ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

整数

索引 整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

71 関係: 加法単位元単射単位元単位的環単項イデアル整域反数可逆元可換体可換環同値関係岩波書店巡回群一意分解環交換法則二進化十進表現二進法代数体代数的整数代数的整数論代数方程式付値環保江邦夫バイト (情報)モノイドユークリッドの互除法ユークリッド環リヒャルト・デーデキントブルーバックスビットフワーリズミーニコラ・ブルバキ分配法則アーリヤバタアーベル群アブル・ワファーアイゼンシュタイン整数ガウス整数コンピュータシモン・ステヴィンジャン・ル・ロン・ダランベール剰余類環算術の基本定理群同型結合法則環 (数学)環準同型直積集合百科全書違いを除いて順序環...証明記号の濫用高木貞治講談社黒板太字閉性自然数零元零因子集合逆元除法の原理抽象代数学正の数と負の数準同型有理数数学整域整数型整数環2の補数 インデックスを展開 (21 もっと) »

加法単位元

数学、とくに抽象代数学における加法単位元(かほうたんいげん、additive identity)は、加法を演算として備える集合において、ほかのどのような元 x に加えても x が変化しない特別の元である。最もよく馴染みのある加法単位元のひとつとしては初等数学で扱う数の 0 が挙げられるが、加法単位元の概念はもっと多くの、加法が定義される数学的構造(たとえば加法群や環)に対して定義されるものである。環などにおける加法単位元はしばしば零元と呼ばれる。.

新しい!!: 整数と加法単位元 · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 整数と単射 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: 整数と単位元 · 続きを見る »

単位的環

数学、特に環論における単位的環(たんいてきかん、unital/unitary ring)、単位環(たんいかん、unit ring)あるいは単位元持つ環 (ring with unit/unity/identity) は、乗法単位元を持つ環のことを言う。.

新しい!!: 整数と単位的環 · 続きを見る »

単項イデアル整域

代数学において単項イデアル整域(たんこうイデアルせいいき、あるいは主イデアル整域、principal ideal domain; PID)あるいは主環(しゅかん、anneau principal)とは、任意のイデアルが単項イデアルであるような(可換)整域のことである。 より一般に、任意のイデアルが単項イデアルであるような(零環でない)可換環を単項イデアル環と呼ぶ(この場合、整域とは限らない、つまり零因子をもつかもしれない)が、文献によっては(例えばブルバキなどでは)「主(イデアル)環」という呼称によって、ここでいう「単項イデアル整域」のことを指している場合があるので注意が必要である。.

新しい!!: 整数と単項イデアル整域 · 続きを見る »

反数

反数(はんすう、opposite)とは、ある数に対し、足すと になる数である。つまり、ある数 に対して、 となるような数 を の反数といい、 と表す。記号「−」を負号と呼び、「マイナス 」と読む。また、 は の反数であるともいえる。 は加法における単位元であるから、反数は加法における逆元である。このような加法における逆元は加法逆元(かほうぎゃくげん、additive inverse)と呼ばれる。 ある数にある数の反数を足すことを「引く」といい、減法 を以下のように定義する。 「 引く 」 または「 マイナス 」 と読む。反数に使われる「−」(負号)と引き算に使われる「−」(減算記号)をあわせて「マイナス記号」と呼ぶ。 また、反数を与える − は単項演算子と見なすことができ、単項マイナス演算子 と呼ばれる。一方、減算を表す演算子としての − は、項を 2 つとるの二項演算子なので、二項マイナス演算子 と呼ばれる。 乗法において反数に相当するものは逆数、あるいはより一般には乗法逆元 と呼ばれる。整数、有理数、実数、複素数においては、逆数は必ずしも存在しないが、反数は必ず存在する。ただし、 を含まない自然数においては反数は常に存在しない。 反数の概念はそのままベクトルに拡張することができ、反ベクトル(はんベクトル、opposite vector)と呼ばれる。ベクトルの加法における単位元はゼロ・ベクトルであり、あるベクトル に足すと を与えるベクトル を の反ベクトルという。 これを満たすベクトル は と表される。またこのとき は の反ベクトル でもある。.

新しい!!: 整数と反数 · 続きを見る »

可逆元

数学、とくに代数学における可逆元(かぎゃくげん、invertible element)または単元(たんげん、unit)とは、一般に代数系の乗法と呼ばれる二項演算に対する逆元を持つ元のことをいう。.

新しい!!: 整数と可逆元 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 整数と可換体 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: 整数と可換環 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: 整数と同値関係 · 続きを見る »

岩波書店

株式会社岩波書店(いわなみしょてん、Iwanami Shoten, Publishers. )は、日本の出版社。.

新しい!!: 整数と岩波書店 · 続きを見る »

巡回群

群論における巡回群(じゅんかいぐん、cyclic group、monogenous group)とは、ただ一つの元で生成される群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元 (generator) あるいは原始元 (primitive) と呼ばれる。.

新しい!!: 整数と巡回群 · 続きを見る »

一意分解環

数学における一意分解環(いちいぶんかいかん、unique factorization domain,UFD; 一意分解整域)あるいは素元分解環(そげんぶんかいかん)は、大雑把に言えば整数に対する算術の基本定理の如くに(特別の例外を除く)各元が素元(あるいは既約元)の積に一意的に書くことができるような可換環のことである。ブルバキの語法にしたがってしばしば分解環 (anneau factriel) とも呼ばれる。 環のクラスの中で、一意分解環は以下のような包含関係に位置するものである。.

新しい!!: 整数と一意分解環 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 整数と交換法則 · 続きを見る »

二進化十進表現

二進化十進数 (BCD、Binary-coded decimal) とは、コンピュータにおける数値の表現方式の一つで、十進法の1桁を、0から9までを表す二進法の4桁で表したものである。「二進化十進符号」などとも呼ばれる。3増し符号など同じ目的の他の方式や、より一般的に、十進3桁を10ビットで表現するDensely packed decimalなども含めることもある。.

新しい!!: 整数と二進化十進表現 · 続きを見る »

二進法

二進法(にしんほう)とは、2 を底(てい、基(base)とも)とし、底の冪の和で数を表現する方法である。 英語でバイナリ (binary) という。binaryという語には「二進法」の他に「二個一組」「二個単位」といったような語義もある(例: バイナリ空間分割)。.

新しい!!: 整数と二進法 · 続きを見る »

代数体

代数体(だいすうたい、algebraic number field)とは、有理数体の有限次代数拡大体のことである。代数体 K の有理数体上の拡大次数 を、K の次数といい、次数が n である代数体を、n 次の代数体という。 特に、2次の代数体を二次体、1のベキ根を添加した体を円分体という。 K を n 次の代数体とすると、K は単拡大である。つまり、K の元 θ が存在して、K の任意の元 α は、以下の様に表される。 このとき θ は n 次の代数的数であるので、K を \mathbb 上のベクトル空間とみたとき、\ は基底となる。.

新しい!!: 整数と代数体 · 続きを見る »

代数的整数

数論において代数的整数(だいすうてきせいすう、algebraic integer)とは、整数係数モニック多項式の根となるような複素数のことを言う。代数的整数の全体 A は加法と乗法について閉じており、ゆえに複素数環 C の部分環をなす。この環 A は有理整数環 Z の C における整閉包となっている。 代数体 K の整数環 O は K ∩ A に等しく、また体 K の極大整環(order)となっている。全ての代数的整数はそれぞれ何らかの代数体の整数環に属している。x が代数的整数であることは、環 Z がアーベル群として有限生成(即ち有限生成 '''Z'''-加群)であることと同値である。.

新しい!!: 整数と代数的整数 · 続きを見る »

代数的整数論

代数的整数論(だいすうてきせいすうろん、algebraic number theory)は数論の一分野であり、抽象代数学の手法を用いて、整数や有理数、およびそれらの一般化を研究する。数論的な問題は、代数体やその整数環、有限体、関数体のような代数的対象の性質のことばで記述される。これらの性質は、例えば環において一意分解が成り立つかとか、イデアルの性質、体のガロワ群などであるが、ディオファントス方程式の解の存在のような、数論において極めて重要な問題を解決することができる。.

新しい!!: 整数と代数的整数論 · 続きを見る »

代数方程式

数学において、代数方程式 (だいすうほうていしき、algebraic equation) とは(一般には多変数の)多項式を等号で結んだ形で表される方程式の総称で、式で表せば の形に表されるもののことである。言い換えれば、代数方程式は多項式の零点を記述する数学的対象である。.

新しい!!: 整数と代数方程式 · 続きを見る »

付値環

抽象代数学において、付値環(ふちかん、valuation ring)とは、整域 D であって、その分数体 F のすべての元 x に対して、x か x −1 の少なくとも一方が D に属するようなものである。 体 F が与えられたとき、D が F の部分環であって、F のすべての 0 でない元 x に対して x か x −1 が D に属しているとき、D を 体 F の付値環(a valuation ring for the field F)または座 (place of F) という。この場合 F は確かに D の分数体であるので、体の付値環は付値環である。体 F の付値環を特徴づける別の方法は、F の付値環 D は F をその分数体としてもち、そのイデアルは包含関係で全順序づけられている、あるいは同じことだが、その単項イデアルが包含関係で全順序付けられていることである。とくに、すべての付値環は局所環である。 体の付値環は支配(dominance)あるいは細分(refinement)によって順序を入れた体の局所部分環の集合の極大元である、ただし 体 K のすべての局所環は K のある付値環によって支配される。 任意の素イデアルにおける局所化が付値環であるような整域はプリューファー整域と呼ばれる。.

新しい!!: 整数と付値環 · 続きを見る »

保江邦夫

保江 邦夫(やすえ くにお、1951年9月27日 - )は、日本の理学博士。専門は数理物理学・量子力学・脳科学。岡山県出身。ノートルダム清心女子大学 大学院人間生活学研究科人間複合科学専攻教授。同情報理学研究所所長。 量子脳理論の治部・保江アプローチ(英:Quantum Brain Dynamics)の開拓者。少林寺拳法武道専門学校講師。冠光寺眞法・冠光寺流柔術創始・主宰。大東流合気武術宗範佐川幸義直門。特徴的な文体を持ち、45冊以上の著書を上梓。日本科学技術ジャーナリスト会議会員。アメリカ数学会会員。身体運動文化学会会員。日本サイマティクス・セラピー研究会顧問。.

新しい!!: 整数と保江邦夫 · 続きを見る »

バイト (情報)

バイト (byte) は、「複数ビット」を意味する、データ量あるいは情報量の単位である。 1980年頃から1バイトは8ビット (bit) であることが一般的であったが、 正式に定義されたのは2008年発行のIEC_80000-13である。 8ビットは、256個の異なる値(たとえば整数であれば、符号無しで0から255、符号付きで−128から+127、など)を表すことができる。.

新しい!!: 整数とバイト (情報) · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 整数とモノイド · 続きを見る »

ユークリッドの互除法

ユークリッドの互除法(ユークリッドのごじょほう、)は、2 つの自然数の最大公約数を求める手法の一つである。 2 つの自然数 a, b (a ≧ b) について、a の b による剰余を r とすると、 a と b との最大公約数は b と r との最大公約数に等しいという性質が成り立つ。この性質を利用して、 b を r で割った剰余、 除数 r をその剰余で割った剰余、と剰余を求める計算を逐次繰り返すと、剰余が 0 になった時の除数が a と b との最大公約数となる。 明示的に記述された最古のアルゴリズムとしても知られ、紀元前300年頃に記されたユークリッドの『原論』第 7 巻、命題 1 から 3 がそれである。.

新しい!!: 整数とユークリッドの互除法 · 続きを見る »

ユークリッド環

数学の特に抽象代数学および環論におけるユークリッド整域(ユークリッドせいいき、Euclidean domain)あるいはユークリッド環(ユークリッドかん、Euclidean ring)とは、「ユークリッド写像(次数写像)」とも呼ばれるある種の構造を備えた環で、そこではユークリッドの互除法を適当に一般化したものが行える。この一般化された互除法は整数に対するもともとの互除法アルゴリズムとほとんど同じ形で行うことができ、任意のユークリッド環において二元の最大公約数を求めるのに適用できる。特に、任意の二元に対してそれらの最大公約数は存在し、それら二元の線型結合として書き表される(ベズーの等式)。また、ユークリッド環の任意のイデアルは主イデアル(つまり、単項生成)であり、したがって算術の基本定理の適当な一般化が成立する。すなわち、任意のユークリッド環は一意分解環である。 ユークリッド環のクラスをより大きな主イデアル環 (PID) のクラスと比較することには大いに意味がある。勝手な PID はユークリッド環(あるいは実際には有理整数環を考えるので十分だが)と多くの「構造的性質」を共有しているが、しかしユークリッド環には明示的に与えられるユークリッド写像から得られる具体性があるのでアルゴリズム的な応用に有用である。特に、有理整数環や体上一変数の任意の多項式環が容易に計算可能なユークリッド写像を持つユークリッド環となることは、計算代数において基本的に重要な事実である。 そういったことから、整域 が与えられたとき、 がユークリッド写像を持つことがわかるとしばしば非常に便利なのである。特に、そのとき が PID であることが分かるが、しかし一般にはユークリッド写像の存在が「明らか」でないときに が PID かどうかを決定する問題は、それがユークリッド環であるかどうかの決定よりも容易である。.

新しい!!: 整数とユークリッド環 · 続きを見る »

リヒャルト・デーデキント

ブラウンシュヴァイクの中央墓地にあるデデキントの墓 ユリウス・ヴィルヘルム・リヒャルト・デーデキント(デデキント、Julius Wilhelm Richard Dedekind、1831年10月6日 - 1916年2月12日)は、ドイツのブラウンシュヴァイク出身の数学者。代数学・数論が専門分野。1858年からチューリッヒ工科大学教授、1894年からブラウンシュヴァイク工科大学教授を歴任した。彼の名前にちなんだ数学用語としては、デデキント環、デデキント切断などがある。.

新しい!!: 整数とリヒャルト・デーデキント · 続きを見る »

ブルーバックス

ブルーバックスは、講談社が刊行している新書で、自然科学全般の話題を一般読者向けに解説・啓蒙しているシリーズである。1963年に創刊され、2018年時点でシリーズの数は2000点を超える。 科学は難解である、という先入観を払拭し、多角的観点からの研究を行い、多くの人々が科学への興味と科学的な視点を培うことを目標としている。キャッチコピーは「科学をあなたのポケットに」。「マンガ パソコン通信入門」(画:永野のりこ)など漫画形式もある。 講談社ブルーバックスのホームページ上に一部の書籍の正誤表が公開されている。2013年4月18日からブルーバックスの前書きを集めて公開するサイト「前書き図書館」をオープンした。 内容に関連したデータを収録したCD-ROMがついたシリーズも一時期刊行されていた。またカバーの角を10枚切り取って講談社に郵送すると特製ブックカバーがもれなく返送されてくるサービスがあったが、現在は廃止となっている。 洋書の翻訳もある。.

新しい!!: 整数とブルーバックス · 続きを見る »

ビット

ビット (bit, b) は、ほとんどのデジタルコンピュータが扱うデータの最小単位。英語の binary digit (2進数字)の略であり、2進数の1けたのこと。量子情報科学においては古典ビットと呼ばれる。 1ビットを用いて2通りの状態を表現できる(二元符号)。これらの2状態は一般に"0"、"1"と表記される。 情報理論における選択情報およびエントロピーの単位も「ビット」と呼んでいるが、これらの単位は「シャノン」とも呼ばれる(詳細は情報量を参照)。 省略記法として、バイトの略記である大文字の B と区別するために、小文字の b と表記する。.

新しい!!: 整数とビット · 続きを見る »

フワーリズミー

フワーリズミー 1983年のソビエト連邦の記念切手 アル=フワーリズミー(الخوارزمي al-Khuwārizmī)ことアブー・アブドゥッラー・ムハンマド・イブン・ムーサー・アル=フワーリズミー(أبو عبد الله محمد ابن موسى الخوارزمي)は、9世紀前半にアッバース朝時代のバグダードで活躍したイスラム科学の学者である。アッバース朝第7代カリフ、マアムーンに仕え、特に数学と天文学の分野で偉大な足跡を残した。.

新しい!!: 整数とフワーリズミー · 続きを見る »

ニコラ・ブルバキ

ニコラ・ブルバキ(Nicolas Bourbaki, ブールバキとも)は架空の数学者であり、主にフランスの若手の数学者集団のペンネームである。当初この数学者集団は秘密結社として活動し、ブルバキを一個人として活動させ続けた。日本で出版された38冊に及ぶ数学原論や、定期的に開催されるで有名。.

新しい!!: 整数とニコラ・ブルバキ · 続きを見る »

分配法則

集合 S に対して、積 × と和 + が定義されている時に、.

新しい!!: 整数と分配法則 · 続きを見る »

アーリヤバタ

アーリヤバタ(IAST: 、476年3月21日 - ?)は、古典期インドの天文学者、数学者。著作に『』(499年)と『アーリヤシッダーンタ』がある。各種の天文常数や円周率などの定数の精密化、を取り入れたインド数学の発展、インドの数理天文学の開拓といった業績がある。.

新しい!!: 整数とアーリヤバタ · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 整数とアーベル群 · 続きを見る »

アブル・ワファー

アブル・ワファー・ブーズジャーニー アブル・ワファー・ブーズジャーニー(ペルシア語Abū al-Wafā Būzjānī ابوالوفا بوزجانى、 全名(アラビア語) ابوالوفا محمد بن محمد بن يحيى بن اسماعيل بن العباس البوزجاني Abū al-Wafāʾ Muḥammad ibn Muḥammad ibn Yaḥyā ibn Ismāʿīl ibn al-ʿAbbās al-Būzjānī 、940年 – 997年または998年没)は、ブワイフ朝時代のイラクで活躍したペルシアの数学者、天文学者である。日本語ではアブル・ウワファ・ブーズジャーニと表記されている場合もある。.

新しい!!: 整数とアブル・ワファー · 続きを見る »

アイゼンシュタイン整数

ウス平面内の、正三角形を成す格子における格子点は、アイゼンシュタイン整数を表す。 アイゼンシュタイン整数(アイゼンシュタインせいすう、Eisenstein integer)とは、フェルディナント・ゴットホルト・マックス・アイゼンシュタインにちなんで名付けられた複素数の一種である。正確には、整数 a, b と1の原始3乗根 に対して a + b ω の形の複素数のことである。b.

新しい!!: 整数とアイゼンシュタイン整数 · 続きを見る »

ガウス整数

ウス整数とは、ガウス平面では格子点に当たる。 ガウス整数(ガウスせいすう、Gaussian integer)とは、実部と虚部が共に整数である複素数のことである。すなわち、(, は整数)の形の数のことである。ここで は虚数単位を表す。ガウス整数という名称は、カール・フリードリヒ・ガウスが導入したことに因む。ガウス自身はガウス整数のことを複素整数(Komplexe Ganze Zahl)と呼んだが、今日ではこの呼称は一般的ではない。 通常の整数は、 の場合なので、ガウス整数の一種である。区別のために、通常の整数は有理整数と呼ばれることもある。 数学的には一つ一つのガウス整数を考えるよりも、集合として全体の構造を考える方が自然である。ガウス整数全体の集合を と表し、これをガウス整数環と呼ぶ。すなわち、 である( は有理整数環、すなわち有理整数全体の集合を表す)。その名が示すように、ガウス整数環は加法と乗法について閉じており、環としての構造を持つ。複素数体 C の部分環であるから、整域でもある。 を有理数体、すなわち有理数全体の集合とするとき、 をガウス数体という。ガウス整数環はガウス数体の整数環である。ガウス数体は、典型的な代数体であるところの円分体や二次体の一種であるので、ガウス整数環は代数的整数論における最も基本的な対象の一つである。.

新しい!!: 整数とガウス整数 · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: 整数とコンピュータ · 続きを見る »

シモン・ステヴィン

モン・ステヴィン ステヴィンが考案した小数 16世紀にステヴィンが製作した船 シモン・ステヴィン(、1548年 - 1620年)は、フランドル(現:ベルギー)ブルッヘ出身の数学者、物理学者、会計学者、オランダ軍主計将校ステヴィンはオランダ人である。。 イタリアの天文学者、哲学者、物理学者であるガリレオ・ガリレイよりも早く落下の法則を発見し、また、ヨーロッパで初めて小数を提唱したとして名高い。また、力の平行四辺形の法則の発見者としても名高い。.

新しい!!: 整数とシモン・ステヴィン · 続きを見る »

ジャン・ル・ロン・ダランベール

ャン・ル・ロン・ダランベール(Jean Le Rond d'Alembert、1717年11月16日 - 1783年10月29日)は、18世紀フランスの哲学者、数学者、物理学者。ドゥニ・ディドロらと並び、百科全書派知識人の中心者。.

新しい!!: 整数とジャン・ル・ロン・ダランベール · 続きを見る »

剰余類環

数学において、自然数 を法とする合同類環(ごうどうるいかん)あるいは剰余(類)環(じょうよかん、n, n)は、整数を で割った「剰余」を抽象的な類別として捉えたものである。 本項は剰余類環 の代数的な定義と性質について述べる。合同類別に関するより平易な導入については整数の合同を参照のこと。.

新しい!!: 整数と剰余類環 · 続きを見る »

算術の基本定理

pp.

新しい!!: 整数と算術の基本定理 · 続きを見る »

群同型

抽象代数学において、群同型(写像) (group isomorphism) は 2 つの群の間の関数であって与えられた群演算と両立する方法で群の元の間の一対一対応ができるものである。2 つの群の間に同型写像が存在すれば、群は同型 (isomorphic) と呼ばれる。群論の見地からは、同型な群は同じ性質を持っており、区別する必要はない。.

新しい!!: 整数と群同型 · 続きを見る »

結合法則

数学、殊に代数学における結合法則(けつごうほうそく、associative law) 、結合則、結合律あるいは演算の結合性(けつごうせい、associativity)は二項演算に対して考えられる性質の一つ。ひとつの数式にその演算の演算子が2個以上並んでいる時、その演算子について、左右どちらの側が優先されるかに関わらず結果が同じになるような演算は結合的 (associative) である。.

新しい!!: 整数と結合法則 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 整数と環 (数学) · 続きを見る »

環準同型

論や抽象代数学において、環準同型(ring homomorphism)は2つの環の間の構造を保つ関数である。 きちんと書くと、R と S が環であれば、環準同型は以下を満たす関数 である。.

新しい!!: 整数と環準同型 · 続きを見る »

直積集合

数学において、集合のデカルト積(デカルト­せき、Cartesian product)または直積(ちょくせき、direct product)、直積集合、または単に積(せき、product)、積集合は、集合の集まり(集合族)に対して各集合から一つずつ元をとりだして組にしたもの(元の族)を元として持つ新たな集合である。 具体的に二つの集合 に対し、それらの直積とはそれらの任意の元 の順序対 全てからなる集合をいう。 では と書くことができる。有限個の集合の直積 も同様のn-組からなる集合として定義されるが、二つの集合の直積を入れ子 (nested) にして、 と帰納的に定めることもできる。.

新しい!!: 整数と直積集合 · 続きを見る »

百科全書

『百科全書』(ひゃっかぜんしょ、L'Encyclopédie、正式には L'Encyclopédie, ou Dictionnaire raisonné des sciences, des arts et des métiers, par une société de gens de lettres)は、フランスの啓蒙思想家ディドロとダランベールら「百科全書派」が中心となって編集し、1751年から1772年まで20年以上かけて完成した大規模な百科事典。.

新しい!!: 整数と百科全書 · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: 整数と違いを除いて · 続きを見る »

順序環

抽象代数学において、順序環(じゅんじょかん、)は、演算と両立するような全順序が定義された(通常は可換な)環を言う。即ち、 が順序環であるとき、任意の元 に対し、以下の二つが成り立つ。.

新しい!!: 整数と順序環 · 続きを見る »

証明

証明(しょうめい)とは、ある事柄が真理もしくは事実であることを明らかにすること。また、その内容。.

新しい!!: 整数と証明 · 続きを見る »

記号の濫用

数学において、記号の濫用(きごうのらんよう、abuse of notation, abus de notation)とは、形式的には正しくないが表記を簡単にしたり正しい直観を示唆するような表記を(間違いのもととなったり混乱を引き起こすようなことがなさそうなときに)用いることである。記号の濫用は記号の誤用とは異なる。誤用は避けなければならない。 関連する概念に用語の濫用(abuse of language, abuse of terminology, abus de langage)がある。これは記号ではなく用語が(形式的には)誤って使われることを指す。記号以外の濫用とほぼ同義である。例えば群 の表現とは正確には から GL(''V'') (ただし はベクトル空間)への群準同型のことであるが、よく表現空間 のことを「 の表現」という。用語の濫用は異なるが自然に同型な対象を同一視する際によく行われる。例えば、定数関数とその値や、直交座標系の入った 次元ユークリッド空間と である。.

新しい!!: 整数と記号の濫用 · 続きを見る »

高木貞治

木 貞治(たかぎ ていじ、1875年(明治8年)4月21日 - 1960年(昭和35年)2月28日)は、日本の数学者。東京帝国大学教授。第1回フィールズ賞選考委員。文化勲章受章。.

新しい!!: 整数と高木貞治 · 続きを見る »

講談社

株式会社講談社(こうだんしゃ、英称:Kodansha Ltd.)は、日本の総合出版社。創業者の野間清治の一族が経営する同族企業。.

新しい!!: 整数と講談社 · 続きを見る »

黒板太字

黒板太字(こくばんふとじ、Blackboard bold; 黒板ボールド、ブラックボードボールド)あるいは中抜き文字は、しばしば数学の書籍におけるある種の記号に対して用いられる、記号の一部の線(主に垂直線あるいはそれに近い線)を二重打ちにする書体のスタイルである。この記号は数の成す集合によく用いられる。黒板太字体の文字は、重ね打ち体 (double struck) として言及されることもある(実際にはタイプライターで重ね打ちをしてもこの字体になるわけではないけれども)。 は1993年の第14版では "lackboard bold should be confined to the classroom(黒板太字は教室内に限るべきである)" (13.14) と忠告しているが、2003年の第15版では、"pen-faced (blackboard) symbols are reserved for familiar systems of numbers(よく知られた数の体系のために黒板太字の記号が用意されている)" (14.12) と記述している。 書籍によってはこれらの文字を単なるボールド体で示しているものもある。もとを正せば黒板太字体は、黒板に太字を書く際に太くない文字との違いをはっきりさせるための方法として用いられたのだが、そこから離れて印刷でも普通の太字と異なる一つのスタイルとして用いられたのは、恐らく複素解析の教科書の が最初である。だから数学者の中には黒板太字と通常の太字を区別しない者もある。例えばセールは、黒板以外で「黒板太字」を用いることに対して公に強く非難していて、自身は黒板で太字を書くときに重ね打ち字体を用いるけれども、それと同じ記号に対して自身の出版物においては一貫して通常の太字を用いている。クヌースも出版物における黒板太字の使用について苦言を呈している。 黒板太字記法はブルバキが導入したものだという誤った主張がされることがあるが、それに反して秘密結社ブルバキの個々のメンバーは黒板において重ね打ち書体が普及してからも、彼らの著書において通常の太字体を用いている。 黒板太字で書かれる記号は、普通の文字で組版されたものが多くの異なる意味を以って用いられるのと異なり、それらの持つ意味の解釈はほぼ普遍的なものである。 数学書で標準的な組版システムであるTeXは黒板太字体を直接サポートしているわけではないが、アメリカ数学会 (AMS) によるアドオンの AMS フォントパッケージ (amsfonts) がそれを担っており、例えば黒板太字体の R は \mathbb と打てば出る。 ユニコードでは、比較的よく用いられるごく僅かの黒板太字体の文字 (C, H, N, P, Q, R, Z) が基本多言語面 (BMP) の文字様記号 (2100–214F) に、DOUBLE-STRUCK CAPITAL C などとして収録されている。しかし残りは BMP の外の U+1D538 から U+1D550 まで(BMP 収録分以外のアルファベット大文字)と、U+1D552 から U+1D56B まで(アルファベット小文字)および U+1D7D8 から U+1D7E1 まで(数字)に収録されている。BMP の外にあるということは、これらは比較的新しく、広くサポートされているわけではないということである。.

新しい!!: 整数と黒板太字 · 続きを見る »

閉性

数学において、与えられた集合がある演算あるいは特定の性質を満たす関係について閉じている (closed) あるいはその演算がその集合上で閉性(へいせい、closure property; 包性)を持つとは、その集合の元に対して演算を施した結果がふたたびもとの集合に属することを言う。複数の演算からなる集まりが与えられた場合も、それら演算の族に関して閉じているとは、それが個々の演算すべてに関して閉じていることを言う。.

新しい!!: 整数と閉性 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 整数と自然数 · 続きを見る »

零元

数学において、零元(れいげん、ぜろげん)とは、.

新しい!!: 整数と零元 · 続きを見る »

零因子

抽象代数学において、環 R の元 a は、ax.

新しい!!: 整数と零因子 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 整数と集合 · 続きを見る »

逆元

逆元 (ぎゃくげん、)とは、数学、とくに抽象代数学において、数の加法に対する反数や乗法に関する逆数の概念の一般化で、直観的には与えられた元に結合してその効果を「打ち消す」効果を持つ元のことである。逆元のきちんとした定義は、考える代数的構造によって少し異なるものがいくつか存在するが、群を考える上ではそれらの定義する概念は同じものになる。.

新しい!!: 整数と逆元 · 続きを見る »

除法の原理

数学の特に算術において、自然数や整数に対する通常の剰余付き除法(じょうよつきじょほう、division with remainder; 余りのある割り算)は、ユークリッド除法(ユークリッドじょほう、Euclidean division)または整除法(せいじょほう、entire division)とも呼ばれ、「被除数と除数と呼ばれる二つの自然数に対して、商と剰余と呼ばれる二つの自然数が、与えられた性質を満たして一意的に存在する」ことを主張する定理として明確に規定することができる。このような定理を「除法の原理」(じょほうのげんり、division algorithm; 除法の算法)という。即ち、その主張は「二つの自然数 n および m ≠ 0 に対してある自然数 a および b が存在して n.

新しい!!: 整数と除法の原理 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: 整数と抽象代数学 · 続きを見る »

正の数と負の数

正の数(せいのすう、positive number)とは、0より大きい実数である。負の数(ふのすう、negative number)とは、0より小さい実数である。.

新しい!!: 整数と正の数と負の数 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: 整数と準同型 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 整数と有理数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 整数と数学 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

新しい!!: 整数と整域 · 続きを見る »

整数型

整数型(せいすうがた)は、コンピュータのプログラムなどのデータ型の1つまたは1群であり、整数を取り扱う。コンピュータで扱うもっとも単純な部類のデータ型のひとつである。C言語やJavaなどの多くのプログラミング言語では、整数型は固定長であり、その固定サイズで表現可能な範囲の、整数の有限な部分集合の要素を値とする型である。また多くの言語において、標準あるいは第三者によるライブラリにより、範囲に制限のない整数も扱うことができる。 パスカルによる機械式計算機などが数をその処理の対象としていたことを考えれば、計算機械の歴史において、整数を扱うことはコンピュータ以前からの存在である。.

新しい!!: 整数と整数型 · 続きを見る »

整数環

数学において,代数体 の整数環(せいすうかん,ring of integers)とは, に含まれるすべての整な元からなる環である.整な元とは有理整数係数の単多項式 の根である.この環はしばしば あるいは \mathcal O_K と書かれる.任意の有理整数は に属し,その整元であるから,環 はつねに の部分環である. 環 は最も簡単な整数環である.すなわち, ただし は有理数体である.

新しい!!: 整数と整数環 · 続きを見る »

2の補数

2の補数(にのほすう)は、2、ないし2のべき乗の補数、またそれによる負の値の表現法である。特に二進法で使われる。(数学的あるいは理論的には、三進法における減基数による補数、すなわち による補数も「2の補数」であるが、まず使われることはない) コンピュータの固定長整数型や、固定小数点数で、負の値を表現するためや加算器で減算をするために使われる。 頭の部分の1個以上の0を含む(正規化されていない)ある桁数の二進法で表現された数があるとき、その最上位ビット (MSB) よりひとつ上のビットが1で、残りが全て0であるような値(8ビットの整数であれば、100000000_.

新しい!!: 整数と2の補数 · 続きを見る »

ここにリダイレクトされます:

有理整数有理整数環

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »