ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ベルヌーイの定理

索引 ベルヌーイの定理

ベルヌーイの定理(ベルヌーイのていり、Bernoulli's principle)またはベルヌーイの法則とは、非粘性流体(完全流体)のいくつかの特別な場合において、ベルヌーイの式と呼ばれる運動方程式の第一積分が存在することを述べた定理である。ベルヌーイの式は流体の速さと圧力と外力のポテンシャルの関係を記述する式で、力学的エネルギー保存則に相当する。この定理により流体の挙動を平易に表すことができる。ダニエル・ベルヌーイ(Daniel Bernoulli 1700-1782)によって1738年に発表された。なお、運動方程式からのベルヌーイの定理の完全な誘導はその後の1752年にレオンハルト・オイラーにより行われた 。 ベルヌーイの定理は適用する非粘性流体の分類に応じて様々なタイプに分かれるが、大きく二つのタイプに分類できる。外力が保存力であること、バロトロピック性(密度が圧力のみの関数となる)という条件に加えて、 である。(I)の法則は流線上(正確にはベルヌーイ面上)でのみベルヌーイの式が成り立つという制限があるが、(II)の法則は全空間で式が成立する。 最も典型的な例である 外力のない非粘性・非圧縮性流体の定常な流れに対して \fracv^2 + \frac.

67 関係: 加速度境界層外力定常状態定理完全流体密度層流仕事位置エネルギー循環微分積分学後流保存系圧力マッハ数ポテンシャルポアソンの法則メートルレオンハルト・オイラーパスカルピトー管ダニエル・ベルヌーイベンチュリ分圧エヴァンジェリスタ・トリチェリエアインテークオイラー方程式 (流体力学)クッタ・ジュコーフスキーの定理コアンダ効果ジュールよどみ点内積噴流粘度真空熱伝導物質微分音速音波運動エネルギー運動方程式非圧縮性流れ静水圧平衡順圧質量保存の法則重力加速度量の次元...速度速度ポテンシャル接線揚力比熱比水頭法線ベクトル渦度測定流体流体力学流体粒子流線流線曲率の定理断熱過程方向微分曲率 インデックスを展開 (17 もっと) »

加速度

加速度(かそくど、acceleration)は、単位時間当たりの速度の変化率。速度がベクトルなので、加速度も同様にベクトルとなる。加速度はベクトルとして平行四辺形の法則で合成や分解ができるのは力や速度の場合と同様であるが、法線加速度、接線加速度に分解されることが多い。法線加速度は向きを変え、接線加速度は速さを変える。 速度を v とすれば、加速度 a は速度の時間 t についての微分であり, と定義される。 平面運動を極座標(r,θ)で表した場合、動径方向・角方向成分はそれぞれ となる。 一般に「減速度(げんそくど)」と言われるのは、負(進行方向と反対)の加速度の事である。また、進行方向を変える(曲がる)のは、進行方向とは異なる方向への加速度を受けるという事である。 遠心力による加速度を遠心加速度という。 物体に加速度がかかることと、力が加わることとは等価である。(運動の第2法則) ちなみに、加速度の単位時間当たりの変化率は、加加速度あるいは躍度とよばれる。.

新しい!!: ベルヌーイの定理と加速度 · 続きを見る »

境界層

境界層(きょうかいそう、boundary layer)とは、ある粘性流れにおいて、粘性による影響を強く受ける層のことである。1904年、ドイツの物理学者ルートヴィヒ・プラントルによって発見された。.

新しい!!: ベルヌーイの定理と境界層 · 続きを見る »

外力

外力(がいりょく).

新しい!!: ベルヌーイの定理と外力 · 続きを見る »

定常状態

定常状態(ていじょうじょうたい、steady state)とは、時間的に一定して変わらない状態を意味し、自然科学の各分野で用いられる概念である。 自然界において、たとえば小川は、上流などで雨が降らない限り、時間とともに川の流れの速度や流量が変わることはなく一定であり、この意味で定常状態にあると言える。.

新しい!!: ベルヌーイの定理と定常状態 · 続きを見る »

定理

定理(ていり、theorem)とは、数理論理学および数学において、証明された真なる命題をいう。 文脈によっては公理も定理に含む。また、数学においては論説における役割等から、補題(ほだい、lemma)あるいは補助定理(ほじょていり、helping theorem)、系(けい、corollary)、命題(めいだい、proposition)などとも呼ばれることがある。ここでの「命題」と冒頭文に言う命題とは意味が異なることに注意。 一般的に定理は、まずいくつかの条件を列挙し、次にその下で成り立つ結論を述べるという形をしている。例えば、次は代数学の基本定理の述べ方の1つである。 ある一定の条件(公理系)下で定理を述べそれを証明すること、というのが数学という分野の中心的な研究の形態である。 数学の多くの分野には、各々「基本定理」という名で呼ばれる中心的な定理が存在している。なお定理という名称と証明という手続きは、数学のみならず、物理や工学においても使用される。.

新しい!!: ベルヌーイの定理と定理 · 続きを見る »

完全流体

完全流体(かんぜんりゅうたい、perfect fluid)または理想流体(りそうりゅうたい、ideal fluid)、非粘性流体(ひねんせいりゅうたい、inviscid fluid)とは、流体力学において、粘性が存在しない流体のことである。粘性を持つ実在の流体を単純化したモデルとして用いられる。 粘性が存在しないとは、せん断応力が常に(流体が運動していても)存在しないことと同義である。粘性によるせん断応力は一般に抵抗力として働くので、この仮定は力学における摩擦力の無視に類似している。.

新しい!!: ベルヌーイの定理と完全流体 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: ベルヌーイの定理と密度 · 続きを見る »

層流

層流(そうりゅう、英語:laminar flow)とは、各流体要素が揃って運動して作り出す流れのことである。.

新しい!!: ベルヌーイの定理と層流 · 続きを見る »

仕事

仕事とは、.

新しい!!: ベルヌーイの定理と仕事 · 続きを見る »

位置エネルギー

位置エネルギー(いちエネルギー)とは、物体が「ある位置」にあることで物体にたくわえられるエネルギーのこと。力学でのポテンシャルエネルギー(ポテンシャルエナジー、英:potential energy)と同義であり、主に教育の分野でエネルギーの概念を「高さ」や「バネの伸び」などと結び付けて説明するために導入される用語である。 位置エネルギーが高い状態ほど、不安定で、動き出そうとする性質を秘めているといえる。力との関係や数学的な詳細についてはポテンシャルに回し、この項目では具体的な例を挙げて説明する。.

新しい!!: ベルヌーイの定理と位置エネルギー · 続きを見る »

循環

循環(じゅんかん、circulation, cycle)とは、.

新しい!!: ベルヌーイの定理と循環 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: ベルヌーイの定理と微分積分学 · 続きを見る »

後流

流体力学において、後流(こうりゅう)もしくは伴流(はんりゅう、wake)とは、流体中を運動するか、流れの中で静止している鈍い物体(流線型ではない物体)の背後に現れる乱れた領域。物体と流体との間の粘性力によって生じる。境界層剥離や乱流、流速の低下を伴うことがある。.

新しい!!: ベルヌーイの定理と後流 · 続きを見る »

保存系

力学系が保存系であるとは、保存量(または、第一積分)が存在することを意味している。.

新しい!!: ベルヌーイの定理と保存系 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: ベルヌーイの定理と圧力 · 続きを見る »

マッハ数

マッハ数(マッハすう、Mach number)は、流体の流れの速さと音速との比で求まる無次元量である。 名称は、オーストリアの物理学者エルンスト・マッハ(Ernst Mach)に由来し、航空技師のにより名付けられた。英語圏ではMachを英語読みして(マーク・ナンバ)、あるいは、(メァク・ナンバ)と呼ぶ。.

新しい!!: ベルヌーイの定理とマッハ数 · 続きを見る »

ポテンシャル

ポテンシャル(potential)は、潜在力、潜在性を意味する物理用語。 最初にポテンシャル(スカラーポテンシャル)の考え方を導入したのは、ジョゼフ=ルイ・ラグランジュである(1773年)。ラグランジュの段階ではポテンシャルとは言われておらず、これをポテンシャルと呼んだのは、ジョージ・グリーンである(1828年)。カール・フリードリヒ・ガウス、ウィリアム・トムソン、ペーター・グスタフ・ディリクレによってポテンシャル論における三つの基本問題として、ディリクレ問題、ノイマン問題、斜交微分の問題が注目されるようになった。 ポテンシャルエネルギー(位置エネルギー)のことをポテンシャルと呼ぶこともある。.

新しい!!: ベルヌーイの定理とポテンシャル · 続きを見る »

ポアソンの法則

ポアソンの法則(ポアソンのほうそく)は理想気体を断熱条件の下で準静的に変化させた時の圧力と体積の関係を示す法則である。 ポアソンの法則は、理想気体を断熱条件の下で準静的に変化させた時、圧力 と体積 が で関係付けられることを主張する。ここで指数 は比熱比で与えられる。 理想気体の状態方程式 を用いれば と変形される。さらに比熱比 は自由度の1/2に相当する定数 と で関係付けられるので と表すこともできる。.

新しい!!: ベルヌーイの定理とポアソンの法則 · 続きを見る »

メートル

メートル(mètre、metre念のためであるが、ここでの「英」は英語(English language)による綴りを表しており、英国における綴りという意味ではない。詳細は「英語表記」の項及びノートの「英語での綴り」を参照。、記号: m)は、国際単位系 (SI) およびMKS単位系における長さの物理単位である。他の量とは関係せず完全に独立して与えられる7つのSI基本単位の一つである。なお、CGS単位系ではセンチメートル (cm) が基本単位となる。 元々は、地球の赤道と北極点の間の海抜ゼロにおける子午線弧長を 倍した長さを意図し、計量学の技術発展を反映して何度か更新された。1983年(昭和58年)に基準が見直され、現在は1秒の 分の1の時間に光が真空中を伝わる距離として定義されている。.

新しい!!: ベルヌーイの定理とメートル · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: ベルヌーイの定理とレオンハルト・オイラー · 続きを見る »

パスカル

パスカル (pascal、記号: Pa) は、圧力・応力の単位で、国際単位系 (SI) における、固有の名称を持つSI組立単位である。「ニュートン毎平方メートル」とも呼ばれる。 1パスカルは、1平方メートル (m2) の面積につき1ニュートン (N) の力が作用する圧力または応力と定義されている。その名前は、圧力に関する「パスカルの原理」に名を残すブレーズ・パスカルに因む。.

新しい!!: ベルヌーイの定理とパスカル · 続きを見る »

ピトー管

ピトー管(ピトーかん、)は流体の流れの速さを測定する計測器である。発明者であるにちなんで命名され、ヘンリー・ダルシーにより改良された。航空機の速度計や風洞などに使用される。 アンリ・ピトーは1732年11月12日にパリ科学アカデミーでこの流速を直接計測できる発明を発表した。当時ベルヌーイの定理はまだ発表されていなかったため、彼はまったく直感的な根拠によってこの装置を利用した。ピトー管の動作とその使用における合理的な理論をベルヌーイの定理に基づいて調査したのはジョン・エアレイで、1913年のことであった。.

新しい!!: ベルヌーイの定理とピトー管 · 続きを見る »

ダニエル・ベルヌーイ

ダニエル・ベルヌーイ(Daniel Bernoulli, 1700年2月8日 - 1782年3月17日)は、スイスの数学者・物理学者。.

新しい!!: ベルヌーイの定理とダニエル・ベルヌーイ · 続きを見る »

ベンチュリ

ベンチュリ(Venturi effect)は、流体の流れを絞ることによって、流速を増加させて、低速部にくらべて低い圧力を発生させる機構である。イタリアの物理学者にちなむ。ベンチュリ効果を応用した管をベンチュリ管()、計測器をベンチュリ計()という。 連続の式から、流量が一定のとき流れの断面積を狭くすると流速は増加する。流体が非圧縮性であるとき、すなわち密度が一定であるとき、右の図で となる。 ベルヌーイの定理から流速が高くなると圧力は低くなる。液体を扱う場合として、ガソリンを吸入するエンジンのキャブレター、霧吹き、エアブラシ等に使われている。.

新しい!!: ベルヌーイの定理とベンチュリ · 続きを見る »

分圧

多成分からなる混合気体において、ある1つの成分が混合気体と同じ体積を単独で占めたときの圧力を、その成分の分圧 ()という。たとえば酸素の分圧は酸素分圧と呼ばれる。 ドルトンの分圧の法則によれば、混合気体の圧力(全圧)は各成分の分圧の和に等しい。よって、分圧の法則が成り立つ混合気体であれば、ある成分 の分圧 は のように全圧 に係数としてモル分率 を使って簡単に表すことができる。混合気体が理想気体の状態方程式 に従うなら、この混合気体では分圧の法則が成り立つ。すなわち、理想混合気体の成分 の分圧は で表すことができる。それに対して混合気体が に従わないときには、ふつうは分圧の法則が成り立たないので である。.

新しい!!: ベルヌーイの定理と分圧 · 続きを見る »

エヴァンジェリスタ・トリチェリ

ヴァンジェリスタ・トリチェリ(Evangelista Torricelli、グレゴリオ暦1608年10月15日 - グレゴリオ暦1647年10月25日)は、イタリアの物理学者。ガリレオ・ガリレイの弟子。 ファエンツァに生まれ、ローマに出て最初は数学者ベネデット・カステリの秘書をした。1641年からはガリレイの弟子となり、ガリレイの死まで研究をともにした。その後はトスカーナ大公フェルディナンド2世に数学者・哲学者として招かれて、ピサ大学の数学の教授に任命された。1647年、腸チフスのため39歳の若さで没した。.

新しい!!: ベルヌーイの定理とエヴァンジェリスタ・トリチェリ · 続きを見る »

エアインテーク

アインテーク(air intake)は、空気を取り入れる入り口で、エンジンなどの空気を利用する機械の吸気のほか、空気調和機、機器の冷却、室内の換気などの目的で外気を取り入れるための開口部である。エア・インレット()、あるいは日本語で吸気口などとも表記される。形状によってはエアスクープ(Air Scoop)と呼ばれる場合もある。.

新しい!!: ベルヌーイの定理とエアインテーク · 続きを見る »

オイラー方程式 (流体力学)

流体力学におけるオイラー方程式(オイラーほうていしき、Euler equations)とは、完全流体を記述する運動方程式である巽『連続体の力学』 p.142。 この方程式は1755年にレオンハルト・オイラーにより定式化された。完全流体とは粘性を持たない流体である。粘性がないため、境界条件として壁面でのすべりを許す必要がある。 高マッハ数の圧縮性流れでは、流速が大きいことから粘性や乱流の効果は壁面近くの小さな領域にしか現れないため、オイラー方程式を用いて流れの解析が行われる。 オイラー方程式は で表される。ここで は流体の速度場、 は密度場、 は圧力場で、 は流体の質量当たりにかかる外力場(加速度場)である。これはナビエ-ストークス方程式から粘性項を省いたものと同じである。 ベクトル解析の公式から と変形されるので、オイラー方程式は となる。ここで は流体の渦度である。 さらに密度が圧力だけで決まる順圧の場合には圧力関数 を導入すれば と表される。外力が重力のような保存力である場合には、外力のポテンシャルを として であり、オイラー方程式は となる。.

新しい!!: ベルヌーイの定理とオイラー方程式 (流体力学) · 続きを見る »

クッタ・ジュコーフスキーの定理

ッタ・ジュコーフスキーの定理(クッタ・ジュコーフスキーのていり、Kutta–Joukowski theorem)は、揚力について、飛行機の翼などと、変化球などのマグヌス効果を、統一的に説明する定理。 ドイツのマルティン・ヴィルヘルム・クッタ (Martin Wilhelm Kutta 1867-1944) が 1902年に、ロシアのニコライ・ジュコーフスキー (Nikolai Zhukovsky 1847-1921) (またはJoukowski) が 1906年に、それぞれ独自に導いた。 (人名間や長音符号に表記揺れが多く統一されていないので注意が必要である。).

新しい!!: ベルヌーイの定理とクッタ・ジュコーフスキーの定理 · 続きを見る »

コアンダ効果

アンダ効果(コアンダこうか、Coandă effect)は、粘性流体の噴流(ジェット)が近くの壁に引き寄せられる効果のことである。噴流が周りの流体を引きこむ性質が原因Tritton, D.J.,『トリトン流体力学』川村哲也訳 インデックス出版 2002年4月1日初版発行 ISBN 4901092251 (原書 ISBN 0198544936), 11.6節,11.7節,12.6節。 ルーマニアの発明家アンリ・コアンダ(1886-1972)がジェット・エンジン機の実験のなかで発見したので、彼の名前にちなむ。 噴流を発生させる境界層制御装置によって翼が強い揚力を得ることができるのはコアンダ効果の重要な応用例である。 本来、コアンダ効果は噴流で発生するものだが、噴流でない流れが壁に引き寄せられる性質をもコアンダ効果と呼ぶことがある。しかし、全て同じメカニズムで働いているかは疑問である。 境界層制御装置をのせていない通常の翼においても、コアンダ効果が揚力の発生に寄与しているという説明が見られるDavid Anderson, Scott Eberhardt, "Understanding Flight, Second Edition",McGraw-Hill Professional; 2 edition (August 12, 2009), ISBN 0071626964 日本機械学会『流れの不思議』講談社ブルーバックス 2004年8月20日第一刷発行 ISBN 4062574527。ここでは「コアンダ効果によって翼の形に沿うように流れる」というように翼の流れの分布を決定する理論としてコアンダ効果が使われている。しかし、通常の翼において噴流は自然には発生しないので、通常の翼における揚力の発生をコアンダ効果で説明するのは間違いとする著者もいるhttp://newfluidtechnology.com/THE_COANDA_EFFECT_AND_LIFT.pdf Report on the Coandă Effect and lift。.

新しい!!: ベルヌーイの定理とコアンダ効果 · 続きを見る »

ジュール

ュール(joule、記号:J)は、エネルギー、仕事、熱量、電力量の単位である。その名前はジェームズ・プレスコット・ジュールに因む。 1 ジュールは標準重力加速度の下でおよそ 102.0 グラム(小さなリンゴくらいの重さ)の物体を 1 メートル持ち上げる時の仕事に相当する。.

新しい!!: ベルヌーイの定理とジュール · 続きを見る »

よどみ点

よどみ点(よどみてん、stagnation point)とは、流体力学において、流れ場の中で速度がゼロになる点のことである。岐点(きてん)とも呼ばれる。 物体の周りの完全流体のを考える。流れの中に物体を置くと、物体の前方および後方の表面に流速が 0 になる点ができる。これがよどみ点である。 よどみ点では、複数の流線が交わることがある。通常流線が交わることはないが、よどみ点は例外である。 速度がゼロで、かつ温度や密度の勾配がなく、流体が平衡状態にあることをよどみ点状態という。よどみ点状態における圧力を(または総圧、全圧)、温度を(または全温度)、エンタルピーをと呼ぶ。.

新しい!!: ベルヌーイの定理とよどみ点 · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: ベルヌーイの定理と内積 · 続きを見る »

噴流

噴流(ふんりゅう、jet flow)とは、速度を持った流体が小さな孔から空間中にほぼ一方向の流れとなって噴出する現象である。ジェットとも呼ばれる。 例として、.

新しい!!: ベルヌーイの定理と噴流 · 続きを見る »

粘度

粘度(ねんど、Viskosität、viscosité、viscosity)は、物質のねばりの度合である。粘性率、粘性係数、または(動粘度と区別する際には) 絶対粘度とも呼ぶ。一般には流体が持つ性質とされるが、粘弾性などの性質を持つ固体でも用いられる。 量記号にはμまたはηが用いられる。SI単位はPa·s(パスカル秒)である。CGS単位系ではP(ポアズ)が用いられた。 動粘度(後述)の単位として、cm/s.

新しい!!: ベルヌーイの定理と粘度 · 続きを見る »

系(けい)とは何らかの原則に基づく実績のこと。 または実績に共通する事実から導き出される何らかの原則のこと。.

新しい!!: ベルヌーイの定理と系 · 続きを見る »

メの翼。揚力を発生させる構造を見ることが出来る 翼(つばさ)は、鳥や航空機などの飛翔体が備え、空気中での飛行のために使用される構造。さらに広義の用法もある。文脈によっては「ヨク」とも読む。.

新しい!!: ベルヌーイの定理と翼 · 続きを見る »

真空

真空(しんくう、英語:vacuum)は、物理学の概念で、圧力が大気圧より低い空間状態のこと。意味的には、古典論と量子論で大きく異なる。.

新しい!!: ベルヌーイの定理と真空 · 続きを見る »

熱伝導

熱伝導(ねつでんどう、英語: thermal conduction)は、物質の移動を伴わずに高温側から低温側へ熱が伝わる移動現象のひとつである。固体中では、熱伝導は原子の振動及びが担う。特に、金属においては、.

新しい!!: ベルヌーイの定理と熱伝導 · 続きを見る »

物質微分

物質微分(ぶっしつびぶん、material derivative)とは流れに乗って移動する流体粒子の物理量 (温度や運動量)の時間変化率のことで、連続体力学の概念の一つである。固定された場所での物理量の時間変化でなく、流れに乗って動く仮想的な「観測者」が観た物理量の時間変化を記述する。 物質微分はラグランジュ描像に基づく時間変化をオイラー描像に基づく時間変化で記述したものである。物体固有の時間変化を記述するものなので物質微分 \mathrm/\mathrmt は偏微分 \partial / \partial t と違いである吉澤徴『流体力学』東京大学出版、2001年9月6日初版発行、ISBN 4130626035。 名称としては他に、物質時間微分田村武『連続体力学入門』朝倉書店、2000年2月20日初版1刷発行、ISBN 4254201028、流れに乗って移動するときの微分日野幹雄『流体力学』朝倉書店、1992年12月10日初版1刷発行、ISBN 4254200668、実質微分中村育雄『流体解析ハンドブック』共立出版、1998年3月20日初版1刷発行、ISBN 4320081188、ラグランジュ微分巽友正 『新物理学シリーズ21 流体力学』 培風館、1982年 4月15日初版発行、ISBN 4-563-02421-Xなどとも呼ばれる。.

新しい!!: ベルヌーイの定理と物質微分 · 続きを見る »

音速

緑線はより厳密な式(20.055 (''x'' + 273.15)1/2 )による。なお、331.5に替えて331.3を当てる場合もある。 音速(おんそく、speed of sound)とは、物質(媒質)中を伝わる音の速さのこと。物質自体が振動することで伝わるため、物質の種類により決まる物性値の1種(弾性波伝播速度)である。 速度単位の「マッハ」は、音速の倍数にあたるマッハ数に由来するが、これは気圧や気温に影響される。このため、戦闘機のスペックを表す際などに、標準大気中の音速 1225 km/h が便宜上使われている。なお、英語のsonicは「音の」「音波の」から転じて、音のように速い.

新しい!!: ベルヌーイの定理と音速 · 続きを見る »

音波

音波(おんぱ、acoustic wave)とは、狭義には人間や動物の可聴周波数である空中を伝播する弾性波をさす。広義では、気体、液体、固体を問わず、弾性体を伝播するあらゆる弾性波の総称を指す。狭義の音波をヒトなどの生物が聴覚器官によって捉えると音として認識する。 人間の可聴周波数より高い周波数の弾性波を超音波、低い周波数の弾性波を超低周波音と呼ぶ。 本項では主に物理学的な側面を説明する。.

新しい!!: ベルヌーイの定理と音波 · 続きを見る »

運動エネルギー

運動エネルギー(うんどうエネルギー、)は、物体の運動に伴うエネルギーである。物体の速度を変化させる際に必要な仕事である。英語の は、「運動」を意味するギリシア語の (kinesis)に由来する。この用語は1850年頃ウィリアム・トムソンによって初めて用いられた。.

新しい!!: ベルヌーイの定理と運動エネルギー · 続きを見る »

運動方程式

運動方程式(うんどうほうていしき)とは、物理学において運動の従う法則を数式に表したもの。英語の equation of motion から EOM と表記されることもある。 以下のようなものがある。.

新しい!!: ベルヌーイの定理と運動方程式 · 続きを見る »

非圧縮性流れ

非圧縮性流れ(ひあっしゅくせいながれ)とは流体力学において、流体粒子の内部で密度が一定の流体である。縮まない流体とも呼ばれる。連続体力学における非圧縮性の概念を流体に適用したものである。 言い換えると、非圧縮性とは流体の速度の発散が 0 になることである(この表現が等価である理由は後述)。 非圧縮性流れは、流体自体が非圧縮性であることを意味するものではない。圧縮性流体でも(適切な条件の下で)良い近似で非圧縮性流れとしてモデル化できる。非圧縮性流れは流体と同じ速度で移動する流体粒子の中で密度が一定であることを意味する。 非圧縮性流れに対して、密度が変化する流れを圧縮性流れという。厳密な意味での非圧縮性流れは自然界には存在しないが、一般的に流れのマッハ数(局所音速と流速との比)が小さい流れに対しては圧縮性の影響は無視できる。マッハ数が0.3を超えるか、または流体が非常に大きな圧力変化を受ける場合に、圧縮性の影響は考慮される。.

新しい!!: ベルヌーイの定理と非圧縮性流れ · 続きを見る »

静水圧平衡

静水圧平衡(せいすいあつへいこう、hydrostatic equilibrium)とは、主に流体において重力による収縮と圧力勾配による膨張とが釣り合った状態を指す。日本語では静力学平衡とも呼ばれる。.

新しい!!: ベルヌーイの定理と静水圧平衡 · 続きを見る »

順圧

流体力学において、流体が順圧(じゅんあつ)である、あるいはバロトロピック( barotropic)であるとは、圧力が密度のみに依存すること、すなわち、等圧面と等密度面が一致することをいう。 天体力学で、恒星内部の流体のモデルとして使われるポリトロピック流体(圧力が密度のべき乗で表せる流体)もバロトロピック流体のよく知られた例である。また、密度一定の流体(ρ.

新しい!!: ベルヌーイの定理と順圧 · 続きを見る »

質量保存の法則

質量保存の法則(しつりょうほぞんのほうそく、law of conservation of mass)とは「化学反応の前と後で物質の総質量は変化しない」とする化学の法則のことである。現在は自然の基本法則ではないことが知られているが、実用上広く用いられている。.

新しい!!: ベルヌーイの定理と質量保存の法則 · 続きを見る »

重力加速度

重力加速度(じゅうりょくかそくど、gravitational acceleration)とは、重力により生じる加速度である。.

新しい!!: ベルヌーイの定理と重力加速度 · 続きを見る »

量の次元

量の次元(りょうのじげん、)とは、ある量体系に含まれる量とその量体系の基本量との関係を、基本量と対応する因数の冪乗の積として示す表現である。 ISOやJISなどの規格では量 の次元を で表記することが規定されているが、しばしば角括弧で括って で表記されるISOやJISなどにおいては、角括弧を用いた は単位を表す記号として用いられている。なお、次元は単位と混同が多い概念であるが、単位の選び方に依らない概念である。。 次元は量の間の関係を表す方法であり、量方程式の乗法を保つ。ある量 が二つの量 によって量方程式 で表されているとき、それぞれの量の次元の間の関係は量方程式の形を反映して となる。基本量 と対応する因子を で表したとき、量 の次元は の形で一意に表される。このとき冪指数 は次元指数と呼ばれる。全ての次元指数がゼロとなる量の次元は指数法則により1である。次元1の量は無次元量()とも呼ばれる。.

新しい!!: ベルヌーイの定理と量の次元 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

新しい!!: ベルヌーイの定理と速度 · 続きを見る »

速度ポテンシャル

速度ポテンシャル(そくどポテンシャル、Velocity potential)は、流体力学において、渦なし流れの解析に用いられる。速度ポテンシャルを持つ流れをポテンシャル流と呼ぶ。 速度ポテンシャルΦは次式を満たすようなスカラー場である。 ただし、u は流体の速度であり、渦なし、つまり を満たす。これはベクトル解析における の性質を用いている(ナブラ#二階微分を参照)。 一般のポテンシャルと異なり、速度ポテンシャルの定義には負号がつかないことに注意。.

新しい!!: ベルヌーイの定理と速度ポテンシャル · 続きを見る »

接線

初等幾何学において接する(せっする、tangent)とは、その名を「触れること」を意味するtangere に由来し、「ただ触れるだけ」という直観的概念を定式化するものである。特に、曲線の接線(せっせん、tangent line, tangent)は、平面曲線に対しては、曲線上の一点が与えられたとき、その点において曲線に「ただ触れるだけ」の直線を意味する。ライプニッツは接線を、曲線上の無限に近い二点を通る直線として定義した。より具体的に解析幾何学において、与えられた直線が曲線 の (あるいは曲線上の点 )における接線であるとは、その直線が曲線上の点 を通り、傾きが の微分係数 に等しいときに言う。同様の定義は空間曲線やより高次のユークリッド空間内の曲線に対しても適用できる。 曲線と接線が相接する点は接点 (point of tangency) と言い、曲線との接点において接線は曲線と「同じ方向へ」進む。その意味において接線は、接点における曲線の最適直線近似である。 同様に、曲面の接平面は、接点においてその曲線に「触れるだけ」の平面である。このような意味での「接する」という概念は微分幾何学において最も基礎となる概念であり、接空間として大いに一般化される。.

新しい!!: ベルヌーイの定理と接線 · 続きを見る »

揚力

揚力(ようりょく、英語:lift)は、流体(液体や気体)中におかれた板や翼などの物体にはたらく力のうち、流れの方向に垂直な成分のこと。 通常の場合、物体と流体に相対速度があるときに発生する力(動的揚力)のみを指し、物体が静止していてもはたらく浮力(静的揚力)は含まない。.

新しい!!: ベルヌーイの定理と揚力 · 続きを見る »

比熱比

比熱比(ひねつひ、heat capacity ratio)は定圧熱容量と定積熱容量の比である。熱力学の解析に用いるのは、それぞれ1モルあたりの定圧熱容量(定圧比熱)、定積熱容量(定積比熱)の比であり、通常 \gamma または \kappa と表示される。 ただし工業的には、MKS系に単位換算された値を用いるのが一般的である。モルと kg の換算には、炭素12を基準とした炭素スケールが用いられる。 断熱圧縮膨張時の圧力P と体積V の関係は、比熱比を用いて次のように表される(ポアソンの法則)。 下表に示すように、気体の比熱容量、比熱比は、分子の構造によって決まる(エントロピーにおける分子の運動エネルギーには回転運動も含むためその差が比熱比の差になり現れる)。.

新しい!!: ベルヌーイの定理と比熱比 · 続きを見る »

水頭

水頭(すいとう、英語:hydraulic head)またはヘッド(head)は、水の持つエネルギーを水柱の高さに置き換えたものである。水の単位重量あたりのエネルギーということもできる。長さの次元を持つ。 流体のエネルギーには圧力エネルギー、運動エネルギー、位置エネルギーがあるが、これを高さに置き換えたものをそれぞれ圧力水頭(pressure head)、速度水頭(velocity head)、位置水頭(elevation head)という。このほかに、管の摩擦、曲がり、出入口などで失われるエネルギーとして各種の損失水頭がある(速度水頭に比例)。これらのすべての水頭の総和を全水頭(total head)という。特に、圧力水頭と位置水頭の和はピエゾ水頭と呼ばれる。 圧力水頭=\frac, 速度水頭=\frac, 位置水頭=h ここに、p:水圧、\rho:水の密度、g:重力加速度、v:流速、h:水深.

新しい!!: ベルヌーイの定理と水頭 · 続きを見る »

法線ベクトル

法線ベクトル(ほうせんベクトル、normal vector)は、2次元ではある線に垂直なベクトル、3次元ではある面に垂直なベクトル。法線(ほうせん、normal)はある接線に垂直な線のことである。.

新しい!!: ベルヌーイの定理と法線ベクトル · 続きを見る »

渦度

北半球における高気圧 (H) ・低気圧 (L) の回転方向 渦度(うずど、かど)は、流れの回転するありさまを表現する量である。渦度はベクトル量(さらに言えば擬ベクトル)であり、流れの速度ベクトルのなすベクトル場の回転である。 渦度ベクトル は流速ベクトル により、以下のように表される。 &.

新しい!!: ベルヌーイの定理と渦度 · 続きを見る »

測定

測定(そくてい、Messung、mesure physique、measurement)は、様々な対象の量を、決められた一定の基準と比較し、数値と符号で表すことを指すJIS Z8103「計測用語」今井(2007)、p1-3 はじめに。人間の五感では環境や体調また錯視など不正確さから免れられず、また限界があるが、測定は機器を使うことでこれらの問題を克服し、科学の基本となる現象の数値化を可能とする。ただし、得られた値には常に測定誤差がつきまとい、これを斟酌した対応が必要となる。 ルドルフ・カルナップは1966年の著書『物理学の哲学的基礎』にて科学における主要な概念として、分類概念・比較概念・量的概念の3つを提示した。このうち、量的概念 (quantitative concept) を「対象が数値を持つ概念」と規定し、その把握には規則と客観的な手続きに則った判断が求められるとした。そしてこの物理学的測定は、測定する対象の性質や状態のメカニズム理論に基づいた尺度構成が重要になる。測定に関する理論および実践についての科学は、計量学(metrology)と呼ばれる。 測定の対象は自然科学だけにとどまらない。会計学においても貨幣的尺度を用いた評価や、企業の財務会計と適切なモデルを対応づけることなどを「測定」とするAmey,L.R.,A.ConceptualApproachtoManagement.NewYork:Prager,1986, p.130.

新しい!!: ベルヌーイの定理と測定 · 続きを見る »

流体

流体(りゅうたい、fluid)とは静止状態においてせん断応力が発生しない連続体の総称である。大雑把に言えば固体でない連続体のことであり、物質の形態としては液体と気体およびプラズマが流体にあたる。.

新しい!!: ベルヌーイの定理と流体 · 続きを見る »

流体力学

流体力学(りゅうたいりきがく、fluid dynamics / fluid mechanics)とは、流体の静止状態や運動状態での性質、また流体中での物体の運動を研究する、力学の一分野。.

新しい!!: ベルヌーイの定理と流体力学 · 続きを見る »

流体粒子

流体粒子(りゅうたいりゅうし、fluid particle)とは連続体力学の枠組みの範囲で無限小で流れに乗って移動しても他の流体粒子との区別は保たれるような流体の塊(fluid parcel)を意味する流体力学の概念であるBatchelor (1973) pp.

新しい!!: ベルヌーイの定理と流体粒子 · 続きを見る »

流線

流線(りゅうせん、streamline)とは、ある瞬間における、流れ場の速度ベクトルを接線とする曲線(群)のことである。.

新しい!!: ベルヌーイの定理と流線 · 続きを見る »

流線曲率の定理

流線曲率の定理(りゅうせんきょくりつのていり、Streamline Curvature Theorem)は、非粘性流体 (完全流体) の外力が無視できる定常な流れにおいて、流線の曲率中心方向に圧力が低くなることを述べた定理である 。 ベルヌーイの定理と同様に、流線曲率の定理は定常オイラー方程式の成分分解から得られる。 流線曲率の定理は 流線が曲がると速度の方向が変化するので内向きに加速度 (向心加速度) が発生する。完全流体の外力のない流れでは加速度を生み出す力は圧力勾配以外にはないので、流線が曲がっているところでは外側から内側へと圧力が減少する。 ことを表したもので、r を流線の曲率中心 (流線の一部を円弧とする円の中心) からの距離とすると、以下のように表現できる.

新しい!!: ベルヌーイの定理と流線曲率の定理 · 続きを見る »

断熱過程

断熱過程(だんねつかてい、)とは、外部との熱のやりとり(熱接触)がない状況で、系をある状態から別の状態へと変化させる熱力学的な過程である。.

新しい!!: ベルヌーイの定理と断熱過程 · 続きを見る »

方向微分

数学において、多変数微分可能関数のある与えられた点 x におけるある与えられたベクトル v に沿った方向微分(ほうこうびぶん、)とは、直感的には、v によって特徴づけられた速度で x を通過する時の、その関数の即時的な変化率を意味する。したがって、他のすべての座標は定数として、ある一つのに沿った変化率を取るような、偏微分の概念を一般化するものである。 方向微分は、ガトー微分の特別な場合である。.

新しい!!: ベルヌーイの定理と方向微分 · 続きを見る »

曲率

曲率(きょくりつ、)とは曲線や曲面の曲がり具合を表す量である。 例えば、半径 r の円周の曲率は 1/r であり、曲がり具合がきついほど曲率は大きくなる。この概念はより抽象的な図形である多様体においても用いられる。曲面上の曲線の曲率を最初に研究したのは、ホイヘンスとされ、ニュートンの貢献もさることながら、オイラーは曲率の研究に本格的に取り組んだ。その他モンジュ、ベルヌーイ、ムーニエなども研究した。.

新しい!!: ベルヌーイの定理と曲率 · 続きを見る »

ここにリダイレクトされます:

ベルヌーイの式ベルヌーイの法則動圧拡張されたベルヌーイの定理総圧静圧

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »