ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

渦度

索引 渦度

北半球における高気圧 (H) ・低気圧 (L) の回転方向 渦度(うずど、かど)は、流れの回転するありさまを表現する量である。渦度はベクトル量(さらに言えば擬ベクトル)であり、流れの速度ベクトルのなすベクトル場の回転である。 渦度ベクトル は流速ベクトル により、以下のように表される。 &.

22 関係: 大気力学循環 (流体力学)ビオ・サバールの法則ベクトル場エディントンのイプシロンストークスの定理回転 (ベクトル解析)空間ベクトル空気砲 (科学教材)粘度緯度発散 (ベクトル解析)角速度質点自転速度流れ流線擬ベクトル数値予報慣性系曲線

大気力学

大気力学(たいきりきがく、英:Dynamic meteorology または Atmospheric dynamics)とは、地球の大気の流体としてのふるまいを研究する、気象学および流体力学の一分野。気象力学ともいう。.

新しい!!: 渦度と大気力学 · 続きを見る »

循環 (流体力学)

流体力学における循環 (じゅんかん、circulation) とは閉曲線上での流体の速度の線積分である。循環は と表されることが多い。渦の強さを表し、非粘性バロトロピック流体の保存外力下では流れにそって保存する。 閉曲線 に沿った循環 は、流体の速度を 、曲線の微小線要素ベクトルを として、線積分.

新しい!!: 渦度と循環 (流体力学) · 続きを見る »

ビオ・サバールの法則

ビオ・サバールの法則(ビオ・サバールのほうそく、Biot–Savart law)とは電流の存在によってその周りに生じる磁場を計算する為の電磁気学における法則である。この法則は静電場に対するクーロンの法則に対応する。 この法則によって磁場は距離、方向、およびその電流の大きさなどに依存することが論じられる。この法則は静的な近似の元ではアンペールの法則および磁場に対するガウスの法則と同等のものである。 1820年にフランスの物理学者ジャン=バティスト・ビオとフェリックス・サヴァールによって発見された。.

新しい!!: 渦度とビオ・サバールの法則 · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: 渦度とベクトル場 · 続きを見る »

エディントンのイプシロン

ディントンのイプシロンは、数学で用いられる記号。交代記号、レヴィ.

新しい!!: 渦度とエディントンのイプシロン · 続きを見る »

ストークスの定理

トークスの定理(ストークスのていり、Stokes' theorem)は、ベクトル解析の定理のひとつである。3次元ベクトル場の回転を閉曲線を境界とする曲面上で面積分したものが、元のベクトル場を曲面の境界である閉曲線上で線積分したものと一致することを述べるGeorge B. Arfken and Hans J. Weber (2005), chapter.1。定理の名はイギリスの物理学者ジョージ・ガブリエル・ストークスに因むVictor J. Katz (1979)Victor J. Katz (2008), chapter.16。ベクトル解析におけるグリーン・ガウス・ストークスの定理を、より一般的な向きづけられた多様体上に拡張したものも、同様にストークスの定理と呼ばれる。微分積分学の基本定理の、多様体への拡張であるともいえる。.

新しい!!: 渦度とストークスの定理 · 続きを見る »

回転 (ベクトル解析)

ベクトル解析における回転(かいてん、rotation, curl)(または )は、三次元ベクトル場の無限小回転を記述するベクトル演算子である。ベクトル場の各点において、ベクトル場の回転はベクトルとして表され、このベクトルの寄与(大きさと向き)によってその点での回転が特徴付けられる。 回転ベクトルの向きは回転軸に沿って右手系となる方にとり、回転ベクトルの大きさは回転の大きさとなる。例えば、与えられたベクトル場が、動いている流体の流速を表すものであるとき、その回転とはその流体の循環密度のことになる。回転場が 0 となるベクトル場はであると言う。場の回転はベクトル場に対する導函数に相当し、これに対応して微分積分学の基本定理に相当するのは、ベクトル場の回転場の面積分をそのベクトル場の境界曲線上での線積分と関係づけるストークスの定理(ストークス=ケルビンの定理)であると考えられる。 回転演算に相当する用語は curl, rotation の他に rotor や rotational などがあり、記法 に相当する記法は や などがある。前者の rot 系の用語・記法を用いる流儀はヨーロッパ諸国の系統に多く、ナブラや交叉積を用いる記法はそれ以外の系統で使われる傾向にある。 勾配や発散とは異なり、回転の概念を単純に高次元化することはできない。ただし、三次元に限らないある種の一般化は可能で、それはベクトル場の回転がまたベクトル場となるように幾何学的に定義される。これは三次元交叉積がそうであるのと同様の現象であり、このことは回転を "∇×" で表す記法にも表れている。 回転 "curl" の名を最初に提示したものはジェームズ・クラーク・マクスウェルで1871年のことである。.

新しい!!: 渦度と回転 (ベクトル解析) · 続きを見る »

空間ベクトル

間ベクトル(くうかんベクトル、Vektor, vector, vector, 「運搬者、運ぶもの」より)は、大きさと向きを持った量である。ベクタ、ベクターともいう。漢字では有向量と表記される。ベクトルで表される量をベクトル量と呼ぶ。 例えば、速度や加速度、力はベクトルである。平面上や空間内の矢印(有向線分)として幾何学的にイメージされる。ベクトルという用語はハミルトンによってスカラーなどの用語とともに導入された。スカラーはベクトルとは対比の意味を持つ。 この記事では、ユークリッド空間内の幾何ベクトル、とくに 3次元のものについて扱い、部分的に一般化・抽象化された場合について言及する。本項目で特に断り無く空間と呼ぶときは、3次元実ユークリッド空間のことを指す。.

新しい!!: 渦度と空間ベクトル · 続きを見る »

空気砲 (科学教材)

気砲(くうきほう)とは、比較的狭い開口部から急激に空気が押し出されるときにドーナツ状の渦輪ができるが、これを人為的に発生させて観察するための装置である。日本では、米村でんじろうが都立高校の教師時代に簡易にできる手法を開発し、学校の授業や科学館のサイエンスショーで理科実験の材料の一つとして扱い、この名前が広まった。身近にある材料で比較的簡単につくることができ、また応用実験を幅広く試すことがるため、学校の自由研究テーマとして扱われることも多い。一方で、空気砲で簡単につくることができる渦輪は、ソリトンの一種で流体力学の研究対象にもなる奥行きを持つものである。.

新しい!!: 渦度と空気砲 (科学教材) · 続きを見る »

粘度

粘度(ねんど、Viskosität、viscosité、viscosity)は、物質のねばりの度合である。粘性率、粘性係数、または(動粘度と区別する際には) 絶対粘度とも呼ぶ。一般には流体が持つ性質とされるが、粘弾性などの性質を持つ固体でも用いられる。 量記号にはμまたはηが用いられる。SI単位はPa·s(パスカル秒)である。CGS単位系ではP(ポアズ)が用いられた。 動粘度(後述)の単位として、cm/s.

新しい!!: 渦度と粘度 · 続きを見る »

緯度

緯度(いど、Latitude, Breite)とは、経緯度(=経度・緯度。すなわち天体表面上の位置を示す座標)の一つである。以下特に断らない限り、地球の緯度について述べる。余緯度とは緯度の余角。.

新しい!!: 渦度と緯度 · 続きを見る »

発散 (ベクトル解析)

ベクトル解析における発散(はっさん、divergence)は、各点においてベクトル場のの大きさを符号付きスカラーの形で測るベクトル作用素である。より技術的に言えば、発散が表すのは与えられた点の無限小近傍領域から出る流束の体積密度である。例えば、空気を熱したり冷ましたりするものとして考えると、各点において空気の移動速度を与えるベクトル場を例にとることができる。領域内で空気を熱すれば空気は全方向へ膨張していくから、速度場は領域の外側をさしていることになり、従って速度場の発散はこの領域で正の値をとり、この領域は流入(あるいは湧き出し、湧出、source)域であることが示される。空気を冷まして収縮させるなら、発散の値は負となり、この領域は流出(あるいは沈み込み、排出、sink)域と呼ばれる。.

新しい!!: 渦度と発散 (ベクトル解析) · 続きを見る »

角速度

運動学において、角速度(かくそくど、angular velocity)は、ある点をまわる回転運動の速度を、単位時間に進む角度によって表わした物理量である。言い換えれば角速度とは、原点と物体を結ぶ線分、すなわち動径が向く角度の時間変化量である。特に等速円運動する物体の角速度は、物体の速度を円の半径で割ったものとして与えられる。従って角速度の量の次元物理学などの文献においては、文脈上紛れがない限り、単に「次元」と呼ばれる。は、通常の並進運動の速度とは異なり速度の次元は長さ L に時間 T の逆数を掛けた L⋅T−1 である。、時間の逆数 T−1 となる。.

新しい!!: 渦度と角速度 · 続きを見る »

質点

質点(しつてん、point mass)とは力学的概念で、位置が一意的に定まり質量を持つ運動の要素だが、それ以外の、体積・変形・角速度などの内部自由度を一切持たないものと定義される。 点粒子の一種である。モデルであるが、初等的な積分計算で証明できるように、球対称な質量分布を持つ固い物体は、その重心運動を扱う限りにおいては、全質量をその中心に集中させた質点として扱ったとしても、近似ではなく完全に一致する。従って、例えば、惑星の公転軌道を計算する場合などにおいては、惑星を質点と見なしても、体積を持った球として計算した場合と全く同様の正確さで計算できる。ただしこの例の場合は、そもそも多体問題に厳密解が無い。結局のところ、近似か否かは、真の質点が存在するか否かの問題ではなく、扱っている問題において、対象を質点として扱っても厳密に一致するかそうでないかの問題である。 多数の質点が存在する系を質点系という。この場合の質点の数は、2から、一般の n個まで、様々である。質点系を扱う際には、個々の質点に自然数の番号をつけて「〜番目の質点」のように区別するとともに、総和記号を用いて式の見通しをよくすることがよく行われる。.

新しい!!: 渦度と質点 · 続きを見る »

自転

自転(じてん、rotation)とは、物体がその内部の点または軸のまわりを回転すること、およびその状態である。 天体の自転運動を表す言葉として用いられることが多い。力学における剛体の自転は、単に回転と呼ぶことの方が多く、オイラーの運動方程式により記述できる。英語で自転を意味する spin に由来するスピンという言葉も同義語であるが、物体の自転の意味でのスピンは自然科学以外の分野で用いられることが多い。例えばフィギュアスケートにおけるスピンや自動車がスリップして起きるスピンがある。量子力学や素粒子物理学におけるスピンも語源は自転に由来するが、物体の自転とは異なる概念と考えられている。.

新しい!!: 渦度と自転 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

新しい!!: 渦度と速度 · 続きを見る »

流れ

流れ(ながれ)は.

新しい!!: 渦度と流れ · 続きを見る »

流線

流線(りゅうせん、streamline)とは、ある瞬間における、流れ場の速度ベクトルを接線とする曲線(群)のことである。.

新しい!!: 渦度と流線 · 続きを見る »

擬ベクトル

擬ベクトル(ぎベクトル、pseudo vector)は座標の反転に対し符号が変わらない(向きが反転する)ベクトル。 擬ベクトルのことを軸性ベクトル(axial vector)とも呼ぶ。反対に座標を反転して符号が反転する(向きが変わらない)ベクトルを極性ベクトル(polar vector)と呼ぶ。.

新しい!!: 渦度と擬ベクトル · 続きを見る »

数値予報

数値予報(すうちよほう)とは、大気の状態変化を数値的に計算して将来の状態を予測する、天気予報の手法である。 数値予報は、観測データの収集・品質チェック・格子点作成(モデル化)・初期値の設定・時間積分等の計算技術・最終結果を表現するための画像処理などの技術によって支えられている。.

新しい!!: 渦度と数値予報 · 続きを見る »

慣性系

慣性系(かんせいけい、ガリレイ系とも、inertial frame of reference)は、慣性の法則(運動の第1法則)が成立する座標系である。 例えば、等速運動する座標系では、物体は外力を受けない限り等速直線運動を行うので、慣性系の1つである。 次に減速している車での座標系では、物体は外力を受けていないのに、前向きに運動を行う。よって慣性の法則が成立しないので、減速している車の座標系は慣性系ではない。.

新しい!!: 渦度と慣性系 · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: 渦度と曲線 · 続きを見る »

ここにリダイレクトされます:

渦管渦糸渦輪惑星渦度絶対渦度相対渦度

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »