ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

定理

索引 定理

定理(ていり、theorem)とは、数理論理学および数学において、証明された真なる命題をいう。 文脈によっては公理も定理に含む。また、数学においては論説における役割等から、補題(ほだい、lemma)あるいは補助定理(ほじょていり、helping theorem)、系(けい、corollary)、命題(めいだい、proposition)などとも呼ばれることがある。ここでの「命題」と冒頭文に言う命題とは意味が異なることに注意。 一般的に定理は、まずいくつかの条件を列挙し、次にその下で成り立つ結論を述べるという形をしている。例えば、次は代数学の基本定理の述べ方の1つである。 ある一定の条件(公理系)下で定理を述べそれを証明すること、というのが数学という分野の中心的な研究の形態である。 数学の多くの分野には、各々「基本定理」という名で呼ばれる中心的な定理が存在している。なお定理という名称と証明という手続きは、数学のみならず、物理や工学においても使用される。.

51 関係: 多項式多項式の根定数多項式工学不動点予想代数学の基本定理余弦定理微分積分学の基本定理係数ミルマンの定理ミニマックス法ノートンの定理ラグランジュの定理ロルの定理ボヤイの定理ブロッホの定理ビリアル定理ピタゴラスの定理ツォルンの補題テレゲンの定理テブナンの定理テイラーの定理フロベニウスの定理フェルマーの小定理フェルマーの最終定理ド・モアブルの定理ベルヌーイの定理命題アローの不可能性定理アーベル群オイラーの定理 (数論)キルヒホッフの法則グスタフ・キルヒホフケイリー・ハミルトンの定理ゲーム理論ゲーデルの不完全性定理公式公理社会選択理論系 (数学)物理学発散定理補題複素数証明正弦定理演繹数学...数理論理学 インデックスを展開 (1 もっと) »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 定理と多項式 · 続きを見る »

多項式の根

数学における多項式 の根(こん、root)は、 を満たす値 を言う。すなわち、根は未知数 の多項式方程式 の解であり、また対応する多項式函数の零点である。例えば、多項式 の根は および となる。 ある体に係数を持つ非零多項式は、「より大きい」体の中にしか根を持たないこともあるが、根の数はその多項式の次数より多くなることはない。例えば は次数 で有理数係数だが、有理根を持たず、二つの根を実数体 に(したがって 複素数体 の中に)おいて持つ。ダランベール–ガウスの定理は次数 の任意の複素係数多項式が(必ずしも異ならない) 個の根を持つことを述べるものである。 多項式の根の概念は、多変数多項式の零点の概念に一般化される。.

新しい!!: 定理と多項式の根 · 続きを見る »

定数多項式

数学における定数多項式(ていすうたこうしき、constant polynomial)は、以外の全ての項に関して、その係数が零であるような多項式を言う。 零多項式は定数項も含めたすべての項の係数が零となるような多項式で、もちろん定数多項式に含む。.

新しい!!: 定理と定数多項式 · 続きを見る »

工学

工学(こうがく、engineering)とは、.

新しい!!: 定理と工学 · 続きを見る »

不動点

不動点を三つ持つ関数 数学において写像の不動点(ふどうてん)あるいは固定点(こていてん、fixed point, fixpoint)とは、その写像によって自分自身に写される点のことである。.

新しい!!: 定理と不動点 · 続きを見る »

予想

予想(よそう、expectation, forecast, conjecture)とは、.

新しい!!: 定理と予想 · 続きを見る »

代数学の基本定理

代数学の基本定理(だいすうがくのきほんていり、fundamental theorem of algebra)は「次数が 1 以上の任意の複素係数一変数多項式には複素根が存在する」 という定理である。.

新しい!!: 定理と代数学の基本定理 · 続きを見る »

余弦定理

余弦定理(よげんていり、law of cosines, cosine formula)とは、平面上の三角法において三角形の辺の長さと内角の余弦の間に成り立つ関係を与える定理である。余弦定理を証明するために用いられる補題はときに第一余弦定理と呼ばれ、このとき証明される定理は第二余弦定理と呼ばれ区別されることがある。単に余弦定理と言った場合、第二定理を指す。 三角形の角と辺の関係.

新しい!!: 定理と余弦定理 · 続きを見る »

微分積分学の基本定理

微分積分学の基本定理(びぶんせきぶんがくのきほんていり、fundamental theorem of calculus)とは、「微分と積分が互いに逆の操作・演算である」 ということを主張する解析学の定理である。微分積分法の基本定理ともいう。ここで「積分」は、リーマン積分のことを指す。 この事実こそ、発見者のニュートンやライプニッツらを微分積分学の創始者たらしめている重要な定理である。 この定理は主に一変数の連続関数など素性の良い関数に対するものである。これを多変数(高次元)の場合に拡張する方法は一つではないが、ベクトル解析におけるストークスの定理はその一例として挙げられるだろう。また、どの程度病的な関数について定理が成り立つのかというのも意味のある疑問であるといえる。 現在では微分積分学の初期に学ぶ基本的な定理であるが、この定理が実際に発見されたのは比較的最近(17世紀)である。この定理が発見されるまでは、微分法(曲線の接線の概念)と積分法(面積・体積などの求積)はなんの関連性も無い全く別の計算だと考えられていた。.

新しい!!: 定理と微分積分学の基本定理 · 続きを見る »

係数

係数(けいすう、coefficient)は、多項式の各項(単項式)を構成する因子において、変数(不定元)を除いた、定数等の因子である。例えば、4α+3β+2における、4と3と2である。この例では2がそれであるが、それ自体で項全体となっている項(あるいは、形式的には 1に掛かっている係数)を、特に定数項と呼ぶ。.

新しい!!: 定理と係数 · 続きを見る »

ミルマンの定理

ミルマンの定理(みるまんのていり、Millman's theorem)は、全電圧の定理、帆足-ミルマンの定理ともいい、直列アドミタンスをもつ複数の電圧源が並列接続された電気回路の出力電圧(開放電圧)を求める定理である。 各電圧源の電圧をVi 、電源を除いたときの電源部の各アドミタンスをYi とすると、電気回路の出力電圧(開放電圧)V0 は各電圧源電圧を各アドミタンスで重み付けした加重平均で表される:.

新しい!!: 定理とミルマンの定理 · 続きを見る »

ミニマックス法

ミニマックス法(みにまっくすほう、minimax)またはミニマックス探索とは、想定される最大の損害が最小になるように決断を行う戦略のこと。将棋、チェス、オセロなどといった完全情報ゲームをコンピュータに思考させるためのアルゴリズムとしても用いられるが、元々はフォン・ノイマンが中心となって数学的に理論化されたゲーム理論において、打ち手を決定する際に適用されるルールの一つ。 これに対し、想定される最小の利益が最大になるように決断を行う戦略はマクシミン戦略という。.

新しい!!: 定理とミニマックス法 · 続きを見る »

ノートンの定理

ノートンの定理(ノートンのていり、Norton's theorem) は、多数の電源を含む電気回路に負荷を接続したときに得られる電圧や負荷に流れる電流を、単一の内部コンダクタンスのある電流源に変換して、求める方法である。「ノルトンの定理」とも表記する。.

新しい!!: 定理とノートンの定理 · 続きを見る »

ラグランジュの定理

ラグランジュの定理(ラグランジュのていり).

新しい!!: 定理とラグランジュの定理 · 続きを見る »

ロルの定理

微分可能であり、さらに区間の端点で ''ƒ''(''a'').

新しい!!: 定理とロルの定理 · 続きを見る »

ボヤイの定理

ボヤイの定理(―のていり、Bolyai's theorem)またはボヤイ=ゲルヴィンの定理 (Bolyai–Gerwien theorem)は、1833年にボヤイ・ファルカシュによって示された『面積の等しい二つの多角形A,Bが存在した時、Aを有限回分割し組みなおすことで、Bと合同な図形を作ることが出来る』という定理である。 この問題を三次元に拡張した予想がヒルベルトの23の問題の第3問題に挙げられていたが、1900年に否定的に解決された。 Category:多角形 Category:初等数学 Category:数学に関する記事.

新しい!!: 定理とボヤイの定理 · 続きを見る »

ブロッホの定理

量子力学や物性物理学におけるブロッホの定理(ブロッホのていり、Bloch's theorem)とは、ハミルトニアンが空間的な周期性(並進対称性)をもつ場合に、その固有関数が満たす性質を表した定理のこと。1928年に、フェリックス・ブロッホによって導出された。 結晶は基本格子ベクトルだけ並進すると自分自身と重なり合うため、並進対称性を持つ。よって結晶のエネルギーバンドを計算する際にブロッホの定理は重要となる。.

新しい!!: 定理とブロッホの定理 · 続きを見る »

ビリアル定理

ビリアル定理(ビリアルていり、virial theorem)とは、多粒子系において、粒子が動き得る範囲が有限である場合に、古典力学、量子力学系のいずれにおいても成立する以下の関係式のことである。 は系の粒子数、 は系全体の運動エネルギー で、 は粒子 の運動量、 は粒子 の位置座標、 は粒子 に働く力、 は粒子 の質量である。 は物理量の平均操作(ここでは長時間平均)を意味する。 粒子 に働く力 が、系全体のポテンシャルエネルギー を用いて と表せるならば、ビリアル定理は、 という形で表せる。 ポテンシャルエネルギー が中心力ポテンシャルで、粒子間の距離の乗に比例する形 で表せる(ここでべき指数は力の法則がr^nになるように選んだ)ならば、 となる。中心力が電磁気力や重力の場合を考えると、 であるから、 となる。ビリアル定理から次のことが言える。.

新しい!!: 定理とビリアル定理 · 続きを見る »

ピタゴラスの定理

90 度回転し、緑色の部分は裏返して橙色に重ねる。 視覚的証明 初等幾何学におけるピタゴラスの定理(ピタゴラスのていり、Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す。斜辺の長さを, 他の2辺の長さを とすると、定理は が成り立つという等式の形で述べられる。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 ピタゴラスの定理によって、直角三角形をなす3辺の内、2辺の長さを知ることができれば、残りの1辺の長さを知ることができる。例えば、直交座標系において原点と任意の点を結ぶ線分の長さは、ピタゴラスの定理に従って、その点の座標成分を2乗したものの総和の平方根として表すことができる2次元の座標系を例に取ると、ある点 の 軸成分を, 軸成分を とすると、原点から までの距離は と表すことができる。ここで は平方根を表す。。このことは2次元の座標系に限らず、3次元の系やより大きな次元の系についても成り立つ。この事実から、ピタゴラスの定理を用いて任意の2点の間の距離を測ることができる。このようにして導入される距離はユークリッド距離と呼ばれる。 「ピタゴラスが直角二等辺三角形のタイルが敷き詰められた床を見ていて、この定理を思いついた」など幾つかの逸話が知られているものの、この定理はピタゴラスが発見したかどうかは分からない。バビロニア数学のプリンプトン322や古代エジプトなどでもピタゴラス数については知られていたが、彼らが定理を発見していたかどうかは定かではない。 中国古代の数学書『九章算術』や『周髀算経』でもこの定理が取り上げられている。中国ではこの定理を勾股定理、商高定理等と呼び、日本の和算でも中国での名称を用いて鉤股弦の法(こうこげんのほう)等と呼んだ。三平方の定理という名称は、敵性語が禁じられていた第二次世界大戦中に文部省の図書監修官であった塩野直道の依頼を受けて、数学者末綱恕一が命名したものである。.

新しい!!: 定理とピタゴラスの定理 · 続きを見る »

ツォルンの補題

集合論においてツォルンの補題(ツォルンのほだい、Zorn's lemma)またはクラトフスキ・ツォルンの補題(クラトフスキ・ツォルンのほだい)とは次の定理をいう。; 命題 (Zorn の補題) この定理は数学者マックス・ツォルンとカジミェシュ・クラトフスキに因む。.

新しい!!: 定理とツォルンの補題 · 続きを見る »

テレゲンの定理

テレゲンの定理(Tellegen's theorem) は、電気回路において各枝を流れる電流と、枝間の電位差の積の和が0となることを意味する定理である。 以下では N 本の枝を持つ回路で i 番目の枝を流れる電流を I_i(t) 、枝間の電位差を V_i(t) とし、電流の流れる方向に電圧降下が起こると決める。 \sum^ _ V_i(t) \cdot I_i(t).

新しい!!: 定理とテレゲンの定理 · 続きを見る »

テブナンの定理

テブナンの定理(テブナンのていり、Thevenin's theorem)は、多数の直流電源を含む電気回路に負荷を接続したときに得られる電圧や負荷に流れる電流を、単一の内部抵抗のある電圧源に変換して求める方法である。 1883年にフランス郵政・電信省の技術者、 (Léon Charles Thévenin) により発表され、「テブナンの定理」と呼ばれていたが、それより前の1853年にドイツの物理学者、ヘルマン・フォン・ヘルムホルツにより発表されていたことが、1950年にドイツの物理学者 (Hans Ferdinand Mayer) により指摘されたため、ヘルムホルツ-テブナンの定理 (Helmholtz–Thevenin's theorem) とも呼ばれる。また、ヘルムホルツが最初の発表者であることを尊重する立場から、数学(ベクトル解析)におけるヘルムホルツの定理と区別して、「ヘルムホルツ等価回路」と呼ばれることもある。 日本では等価電圧源表示(とうかでんあつげんひょうじ)、また交流電源の場合に成立することを1922年に発表した鳳秀太郎の名を取って、鳳-テブナンの定理(ほう・テブナンのていり)ともいう。これは早稲田大学教授だった黒川兼三郎の発意による。.

新しい!!: 定理とテブナンの定理 · 続きを見る »

テイラーの定理

''n''(''x'' − 1)''k''''f''(''k'')(1)/''k''! による近似 微分積分学において、テイラーの定理(テイラーのていり、Taylor's theorem)は、k 回微分可能な関数の与えられた点のまわりでの近似を k 次のテイラー多項式によって与える。解析関数に対しては、与えられた点におけるテイラー多項式は、そのテイラー級数を有限項で切ったものである。テイラー級数は関数を点のある近傍において完全に決定する。「テイラーの定理」の正確な内容は1つに定まっているわけではなくいくつかのバージョンがあり、状況に応じて使い分けられる。バージョンのいくつかは関数のテイラー多項式による近似誤差の明示的な評価を含んでいる。 テイラーの定理は1712年に1つのバージョンを述べた数学者ブルック・テイラー (Brook Taylor) にちなんで名づけられている。しかし誤差の明示的な表現はかなり後になってジョゼフ=ルイ・ラグランジュ (Joseph-Louis Lagrange) によってはじめて与えられた。結果の初期のバージョンはすでに1671年にジェームス・グレゴリー (James Gregory) によって言及されている。 テイラーの定理は微分積分学の入門レベルで教えられ、解析学の中心的な初等的道具の1つである。純粋数学ではより進んだの入り口であり、より応用的な分野の数値計算や数理物理学においてよく使われている。テイラーの定理は任意次元 n, m の多変数ベクトル値関数 にも一般化する。テイラーの定理のこの一般化は微分幾何学や偏微分方程式において現れるいわゆるの定義の基礎である。 n の大きさを評価することで、近似がどれだけ正確であるかが分かる。f が無限回微分可能であり、Rn が0に収束する場合、すなわち である場合、f(x) はテイラー展開が可能である。そのとき f は解析的(analytic)であるといわれる。 テイラーの定理は平均値の定理を一般化したものになっている。実際、上の式において n.

新しい!!: 定理とテイラーの定理 · 続きを見る »

フロベニウスの定理

フロベニウスの名にちなむ定.

新しい!!: 定理とフロベニウスの定理 · 続きを見る »

フェルマーの小定理

数論において、フェルマーの小定理(フェルマーのしょうていり、Fermat's little theorem)は素数の性質についての定理であり、実用としてもRSA暗号に応用されている定理である。.

新しい!!: 定理とフェルマーの小定理 · 続きを見る »

フェルマーの最終定理

算術』。 フェルマーの最終定理(フェルマーのさいしゅうていり、Fermat's Last Theorem)とは、 以上の自然数 について、 となる自然数の組 は存在しない、という定理のことである。フェルマーの大定理とも呼ばれる。フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、360年後にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。.

新しい!!: 定理とフェルマーの最終定理 · 続きを見る »

ド・モアブルの定理

ド・モアブルの定理(ド・モアブルのていり、de Moivre's theorem; ド・モアブルの公式(ド・モアブルのこうしき)とも)とは、複素数(特に実数) および整数 に対して が成り立つという、複素数と三角関数に関する定理である。定理の名称はアブラーム・ド・モアブル (Abraham de Moivre) に因むが、彼がこの定理について言及したわけではない。帰納法による証明では、三角関数の加法定理が利用される。 実数 と正の整数 に対してド・モアブルの定理を考えると、左辺を展開し右辺と実部・虚部を比較することにより、 倍角の公式が導出される。すなわち、ド・モアブルの公式は三角関数の 倍角の公式を内在的に含んでいる。 オイラーの公式: e^.

新しい!!: 定理とド・モアブルの定理 · 続きを見る »

ベルヌーイの定理

ベルヌーイの定理(ベルヌーイのていり、Bernoulli's principle)またはベルヌーイの法則とは、非粘性流体(完全流体)のいくつかの特別な場合において、ベルヌーイの式と呼ばれる運動方程式の第一積分が存在することを述べた定理である。ベルヌーイの式は流体の速さと圧力と外力のポテンシャルの関係を記述する式で、力学的エネルギー保存則に相当する。この定理により流体の挙動を平易に表すことができる。ダニエル・ベルヌーイ(Daniel Bernoulli 1700-1782)によって1738年に発表された。なお、運動方程式からのベルヌーイの定理の完全な誘導はその後の1752年にレオンハルト・オイラーにより行われた 。 ベルヌーイの定理は適用する非粘性流体の分類に応じて様々なタイプに分かれるが、大きく二つのタイプに分類できる。外力が保存力であること、バロトロピック性(密度が圧力のみの関数となる)という条件に加えて、 である。(I)の法則は流線上(正確にはベルヌーイ面上)でのみベルヌーイの式が成り立つという制限があるが、(II)の法則は全空間で式が成立する。 最も典型的な例である 外力のない非粘性・非圧縮性流体の定常な流れに対して \fracv^2 + \frac.

新しい!!: 定理とベルヌーイの定理 · 続きを見る »

命題

命題(めいだい、proposition)とは、論理学において判断を言語で表したもので、真または偽という性質をもつもの。また数学で、真偽の判断の対象となる文章または式。定理または問題のこと。西周による訳語の一つ。 厳密な意味での命題の存在は、「意味」の存在と同様に、疑問を投げかける哲学者もいる。また、「意味」の概念が許容される場合にあっても、その本質は何であるかということにはなお議論のあるところである。古い文献では、語の集まりあるいはその語の集まりの表す「意味」という意味で命題という術語を用いているかどうかということが、つねに十分に明らかにされているわけではなかった。 現在では、論争や存在論的な含みを持つことを避けるため、ある解釈の下で(真か偽のいずれであるかという)真理の担い手となる記号列自体について述べる時は、「命題」という代わりに「文 (sentence)」という術語を用いる。ストローソンは「言明 ("statement")」 という術語を用いることを提唱した。.

新しい!!: 定理と命題 · 続きを見る »

アローの不可能性定理

会選択理論において、アローの不可能性定理(アローのふかのうせいていり、)とは、投票ルールをはじめとする集合的意思決定ルールの設計の困難さに関する定理である。経済学者ケネス・アローが彼の博士論文および著書 Social choice and individual values(『社会的選択と個人的評価』)で明らかにしたこの定理は「不可能性定理」と呼ばれることが多いが、アロー自身は "General Possibility Theorem" (Arrow, 1963, page 59) と呼んでおり、歴史的にはアローの(一般)可能性定理とも訳されていた。単にアローの定理 (Arrow's theorem) と呼ばれることもある。 アローの定理は、選択肢が3つ以上あるとき、いくつか挙げられた望ましい条件 (定義域の非限定性、全会一致性、無関係な選択対象からの独立性、非独裁性) をすべて満たす「社会厚生関数」 (社会的厚生関数、social welfare function) を見つけることはできないことを主張する。この場合の社会厚生関数とは (古典的なバーグソン‐サミュエルソン型のものとは異なり) 個人の選好関係 (選択肢に関するランキング) を各人について列挙した「一覧」である「選好プロファイル」を社会全体の選好関係に移す関数である。この定理は18世紀以来知られていた投票のパラドックス (コンドルセのパラドックス)、そしてその他の望ましくない現象が多くの意思決定ルールで起こりうることを数学的に証明したものとも言える。しかしアローがとったアプローチである公理的方法は、あらゆる社会厚生関数をいっぺんにあつかうなど過去のアプローチと比べて異質であり、現代版の「社会選択理論」という学問分野 (パラダイム) は、事実上この定理によって始まったと言える。.

新しい!!: 定理とアローの不可能性定理 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 定理とアーベル群 · 続きを見る »

オイラーの定理 (数論)

数論において、オイラーの定理(Euler's theorem)は初等整数論の最も基本的な定理の一つである。.

新しい!!: 定理とオイラーの定理 (数論) · 続きを見る »

キルヒホッフの法則

ルヒホッフの法則(キルヒホッフのほうそく).

新しい!!: 定理とキルヒホッフの法則 · 続きを見る »

グスタフ・キルヒホフ

分光器を使っているキルヒホフ グスタフ・ロベルト・キルヒホフ(Gustav Robert Kirchhoff, 1824年3月12日 - 1887年10月17日)は、プロイセン(現在のロシアのカリーニングラード州)生まれの物理学者。電気回路におけるキルヒホッフの法則、放射エネルギーについてのキルヒホッフの法則、反応熱についてのキルヒホッフの法則は、どれも彼によってまとめられた法則である。 グスタフ・キルヒホフは1824年、ケーニヒスベルク(現在のカリーニングラード)で生まれた。ケーニヒスベルクにあるケーニヒスベルク大学で学び、1850年にブレスラウ大学員外教授に就任した。 学生時代にオームの法則を拡張した電気法則を提唱。1849年に電気回路におけるキルヒホフの法則として纏め上げた。この法則は電気工学において広く応用されている。 1859年、黒体放射におけるキルヒホフの放射法則を発見した。 ロベルト・ブンゼンとともに、分光学研究に取り組み、セシウムとルビジウムを発見した。フラウンホーファーが発見した太陽光スペクトルの暗線(フラウンホーファー線)がナトリウムのスペクトルと同じ位置に見られることを明らかにし、分光学的方法により太陽の構成元素を同定できることを示した。 このほか音響学、弾性論に関しても研究を行った。.

新しい!!: 定理とグスタフ・キルヒホフ · 続きを見る »

ケイリー・ハミルトンの定理

イリー・ハミルトンの定理(ケイリー・ハミルトンのていり、Cayley–Hamilton theorem)、またはハミルトン・ケイリーの定理とは、線型代数学において、(実数体や複素数体を含む)可換環上の正方行列は固有方程式を満たすという定理である。アーサー・ケイリーとウィリアム・ローワン・ハミルトンにちなむ。.

新しい!!: 定理とケイリー・ハミルトンの定理 · 続きを見る »

ゲーム理論

2007a。 ゲーム理論(ゲームりろん、)とは、社会や自然界における複数主体が関わる意思決定の問題や行動の相互依存的状況を数学的なモデルを用いて研究する学問である。数学者ジョン・フォン・ノイマンと経済学者オスカー・モルゲンシュテルンの共著書『ゲームの理論と経済行動』(1944年) によって誕生した 。元来は主流派経済学(新古典派経済学)への批判を目的として生まれた理論であったが、1980年代の「ゲーム理論による経済学の静かな革命」を経て、現代では経済学の中心的役割を担うようになった。 ゲーム理論の対象はあらゆる戦略的状況 (strategic situations)である。「戦略的状況」とは自分の利得が自分の行動の他、他者の行動にも依存する状況を意味し、経済学で扱う状況の中でも完全競争市場や独占市場を除くほとんどすべてはこれに該当する。さらにこの戦略的状況は経済学だけでなく経営学、政治学、法学、社会学、人類学、心理学、生物学、工学、コンピュータ科学などのさまざまな学問分野にも見られるため、ゲーム理論はこれらにも応用されている。 ゲーム理論の研究者やエンジニアはゲーム理論家(game theorist)と呼ばれる。.

新しい!!: 定理とゲーム理論 · 続きを見る »

ゲーデルの不完全性定理

ーデルの不完全性定理(ゲーデルのふかんぜんせいていり、)又は単に不完全性定理とは、数学基礎論における重要な定理で、クルト・ゲーデルが1930年に証明したものである。;第1不完全性定理: 自然数論を含む帰納的公理化可能な理論が、ω無矛盾であれば、証明も反証もできない命題が存在する。;第2不完全性定理: 自然数論を含む帰納的公理化可能な理論が、無矛盾であれば、自身の無矛盾性を証明できない。.

新しい!!: 定理とゲーデルの不完全性定理 · 続きを見る »

公式

数学において公式(こうしき)とは、数式で表される定理のことである。転じて比喩的に「問題を簡単に解決することができる魔法のようなもの」というような意味で用いられることがある。同様な意味で「方程式」という言葉が用いられることも多い。.

新しい!!: 定理と公式 · 続きを見る »

公理

公理(こうり、axiom)とは、その他の命題を導きだすための前提として導入される最も基本的な仮定のことである。一つの形式体系における議論の前提として置かれる一連の公理の集まりを (axiomatic system) という 。公理を前提として演繹手続きによって導きだされる命題は定理とよばれる。多くの文脈で「公理」と同じ概念をさすものとして仮定や前提という言葉も並列して用いられている。 公理とは他の結果を導きだすための議論の前提となるべき論理的に定式化された(形式的な)言明であるにすぎず、真実であることが明らかな自明の理が採用されるとは限らない。知の体系の公理化は、いくつかの基本的でよく知られた事柄からその体系の主張が導きだせることを示すためになされることが多い。 なお、ユークリッド原論などの古典的な数学観では、最も自明(絶対的)な前提を公理、それに準じて要請される前提を公準 (postulate) として区別していた。.

新しい!!: 定理と公理 · 続きを見る »

社会選択理論

会選択理論(しゃかいせんたくりろん、social choice theory)は、個人の持つ多様な選好(preference)を基に、個人の集合体としての社会の選好の集計方法、社会による選択ルールの決め方、そして社会が望ましい決定を行なうようなメカニズムの設計方法のあり方を解明する理論体系である。経済学者と政治学者の両方により研究され、資源配分ルールや投票ルールの評価や設計は一貫して主要な課題となっている。.

新しい!!: 定理と社会選択理論 · 続きを見る »

系 (数学)

数学において、ある主張(典型的には定理)の系(けい、corollary)とは、その(既知の)主張から「直ちに」従う主張をいう。「命題」や「定理」とは呼ばず、どのような主張を「系」と呼ぶかという基準は本質的には主観に基づく。すなわち、命題 B が命題 A から直ちに演繹できるとかその証明から明らかであるとかいう場合に「B は A の系である」と言うのであるが、「直ちに」あるいは「明らか」の意味は著者や文脈によって異なる。また「系」と呼ばれる主張はもとの定理の主張よりも重要性の弱い主張であると考えることが多く、導かれた B の数学的結果がもとの A のそれと同じくらい重要であれば、B が系と呼ばれることはあまりない。系が導かれることの証明を行うこともあるが、大抵は明らかであるとして証明は省略される。 Peirce, C. S., from section dated 1902 by editors in the "Minute Logic" manuscript, Collected Papers v. 4, paragraph 233, quoted in part in "" in the Commens Dictionary of Peirce's Terms, 2003–present, Mats Bergman and Sami Paavola, editors, University of Helsinki.

新しい!!: 定理と系 (数学) · 続きを見る »

真、眞(しん、まこと).

新しい!!: 定理と真 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 定理と物理学 · 続きを見る »

発散定理

散定理(はっさんていり、divergence theorem)は、ベクトル場の発散を、その場によって定義される流れの面積分に結び付けるものである。ガウスの定理(Gauss' theorem)とも呼ばれる。1762年にラグランジュによって発見され、その後ガウス(1813年)、グリーン(1825年)、オストログラツキー(1831年)によってそれぞれ独立に再発見された 。オストログラツキーはまたこの定理に最初の証明を与えた人物でもある。.

新しい!!: 定理と発散定理 · 続きを見る »

補題

数学において、「補助定理」(helping theorem) あるいは補題 (lemma))-->とは、それ自身興味あるステートメントとしてよりはむしろ、より大きな結果のための一歩として使われる、証明された命題である。.

新しい!!: 定理と補題 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 定理と複素数 · 続きを見る »

証明

証明(しょうめい)とは、ある事柄が真理もしくは事実であることを明らかにすること。また、その内容。.

新しい!!: 定理と証明 · 続きを見る »

正弦定理

正弦定理(せいげんていり、law of sines)とは三角形の内角の正弦(サイン)とその対辺の長さの関係を示したものである。正弦法則ともいう。多くの場合、平面三角法における定理を指すが、球面三角法などでも類似の定理が知られており、同じように正弦定理と呼ばれている。.

新しい!!: 定理と正弦定理 · 続きを見る »

演繹

演繹(えんえき、)は、一般的・普遍的な前提から、より個別的・特殊的な結論を得る論理的推論の方法である。 帰納に於ける前提と結論の導出関係が「蓋然的」に正しいとされるのみであるのに対し、演繹の導出関係は、その前提を認めるなら、「絶対的」「必然的」に正しい。したがって理論上は、前提が間違っていたり適切でない前提が用いられたりした場合には、誤った結論が導き出されることになる。近代では、演繹法とは記号論理学によって記述できる論法の事を指す。.

新しい!!: 定理と演繹 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 定理と数学 · 続きを見る »

数理論理学

数理論理学(mathematische Logik、mathematical logic)は、論理学(形式論理学)の数学への応用の探求ないしは論理学の数学的な解析を主たる目的とする、数学の関連分野である。局所的には数理論理学は超数学、数学基礎論、理論計算機科学などと密接に関係している。数理論理学の共通な課題としては形式体系の表現力や形式証明系の演繹の能力の研究が含まれる。 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。これらの領域はロジックのとくに一階述語論理や定義可能性に関する結果を共有している。計算機科学(とくに)における数理論理学の役割の詳細はこの記事には含まれていない。詳細はを参照。 この分野が始まって以来、数理論理学は数学基礎論の研究に貢献し、また逆に動機付けられてきた。数学基礎論は幾何学、算術、解析学に対する公理的な枠組みの開発とともに19世紀末に始まった。20世紀初頭、数学基礎論は、ヒルベルトのプログラムによって、数学の基礎理論の無矛盾性を証明するものとして形成された。クルト・ゲーデルとゲルハルト・ゲンツェンによる結果やその他は、プログラムの部分的な解決を提供しつつ、無矛盾性の証明に伴う問題点を明らかにした。集合論における仕事は殆ど全ての通常の数学を集合の言葉で形式化できることを示した。しかしながら、集合論に共通の公理からは証明することができない幾つかの命題が存在することも知られた。むしろ現代の数学基礎論では、全ての数学を展開できる公理系を見つけるよりも、数学の一部がどのような特定の形式的体系で形式化することが可能であるか(逆数学のように)ということに焦点を当てている。.

新しい!!: 定理と数理論理学 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »