ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

接線

索引 接線

初等幾何学において接する(せっする、tangent)とは、その名を「触れること」を意味するtangere に由来し、「ただ触れるだけ」という直観的概念を定式化するものである。特に、曲線の接線(せっせん、tangent line, tangent)は、平面曲線に対しては、曲線上の一点が与えられたとき、その点において曲線に「ただ触れるだけ」の直線を意味する。ライプニッツは接線を、曲線上の無限に近い二点を通る直線として定義した。より具体的に解析幾何学において、与えられた直線が曲線 の (あるいは曲線上の点 )における接線であるとは、その直線が曲線上の点 を通り、傾きが の微分係数 に等しいときに言う。同様の定義は空間曲線やより高次のユークリッド空間内の曲線に対しても適用できる。 曲線と接線が相接する点は接点 (point of tangency) と言い、曲線との接点において接線は曲線と「同じ方向へ」進む。その意味において接線は、接点における曲線の最適直線近似である。 同様に、曲面の接平面は、接点においてその曲線に「触れるだけ」の平面である。このような意味での「接する」という概念は微分幾何学において最も基礎となる概念であり、接空間として大いに一般化される。.

43 関係: 垂直半径双曲線多様体変曲点射影平面三角形三次関数平面二次曲面 (射影幾何学)代数螺旋弦 (数学)微分可能微分幾何学微分法ペルガのアポロニウスユークリッド原論ユークリッド空間ルネ・デカルトピエール・ド・フェルマードット積ニュートン法初等幾何学アルキメデスアイザック・バローアイザック・ニュートンエウクレイデスゴットフリート・ライプニッツジョン・ウォリスジル・ド・ロベルヴァル傾き (数学)円周無限小直線解析幾何学接ベクトル空間楕円法線ベクトル有限幾何学放物線曲線曲面17世紀

垂直

初等幾何学において、垂直(すいちょく、perpendicular)であること、すなわち垂直性 は直角に交わる二つの直線の間の関係性を言う。この性質は関連するほかの幾何学的対象に対しても拡張される。 垂線 に関連して垂線の「足」() という術語がしばしば用いられる。考える図形の向きは如何様にも変えることができるから、足と謂えどもそれが必ずしも図形の下方にあるわけではない。 垂直性はより一般の数学概念である直交性の特別の場合と考えられる。すなわち、垂直性とは古典的な幾何学的対象に関する直交性を言うものである。ゆえに、より進んだ数学において、より複雑な幾何学的直交性(例えば曲面とその法線の関係など)に対して「垂直」あるいは「垂線」のような語を用いることもある。.

新しい!!: 接線と垂直 · 続きを見る »

半径

球の半径 半径(はんけい、radius)は、円や球体など中心(あるいは中心軸)をもつ図形の、中心(中心軸)から周に直交するように引いた線分のこと。また、その線分の長さを指すこともあり、この長さを数学や物理学では小文字の r で表すことがある。 円や球の場合は、差し渡しの長さを意味する径の半分の長さを持つために、これを半径といい、対して区別のために径を直径と呼ぶ。一方で、半径は中心に関する対称性を持つ図形にしか定義できないという特徴を持つため、半径と径とは直接的な関係を持つわけではない。.

新しい!!: 接線と半径 · 続きを見る »

双曲線

双曲線(そうきょくせん、hyperbola)とは、2次元ユークリッド空間 R2 上で定義され、ある2点 P, Q からの距離の差が一定であるような曲線の総称である。この P, Q は焦点と呼ばれる。双曲線は、次の陰関数曲線の直交変換によって決定することができる。 この場合、焦点の座標は と書ける。このとき、2焦点から曲線への距離の差は 2a となる。また、双曲線には2つの漸近線が存在しており、 である。漸近線が直交している、すなわち a.

新しい!!: 接線と双曲線 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: 接線と多様体 · 続きを見る »

変曲点

変曲点(へんきょくてん)とは、平面上の曲線で曲がる方向が変わる点のこと。幾何学的にいえば、曲線上で曲率の符号(プラス・マイナス)が変化する点(この点では0となる)をいう。これは幾何学的または解析学的に、次の各定義と同値である。.

新しい!!: 接線と変曲点 · 続きを見る »

射影平面

数学における射影平面(しゃえいへいめん、projective plane)は、初等的な平面の概念を拡張する幾何学的な構成である。通常の平面においては、二直線は典型的には一つの点で交わるが、特定の直線の組(平行線)については交わりを持たない。一つの見方として、射影平面は、通常の平面に平行線の交点として「無限遠点」を追加したものになっている。従って、射影平面では任意の相異なる二直線がただ一点において交わる。 射影平面の定義としてよく用いられるものが二種類ある。ひとつは線型代数学から来るもので、この場合の射影平面は、適当なに対する等質空間として与えられる。この場合の重要な例として、 および が挙げられる。後者はもっと一般のおよび有限幾何学の立場で定義することもできる。これは平面幾何学の接続的性質の研究に適している。 射影平面の概念は、もっと高次元の射影空間の概念に一般化される。射影平面は二次元の射影空間である。.

新しい!!: 接線と射影平面 · 続きを見る »

三角形

200px 三角形(さんかくけい、さんかっけい、拉: triangulum, 独: Dreieck, 英, 仏: triangle, (古風) trigon) は、同一直線上にない3点と、それらを結ぶ3つの線分からなる多角形。その3点を三角形の頂点、3つの線分を三角形の辺という。.

新しい!!: 接線と三角形 · 続きを見る »

三次関数

x-軸と交わる点である。このグラフは二つの極値を持つ。 1.

新しい!!: 接線と三次関数 · 続きを見る »

平面

平面(へいめん、plane)とは、平らな表面のことである広辞苑 第五版、p.2395「平面」。平らな面。 一般的には曲面や立体などと対比されつつ理解されている。.

新しい!!: 接線と平面 · 続きを見る »

二次曲面 (射影幾何学)

射影幾何学における二次曲面(にじきょくめん、quadric)とは、何らかの二次形式の斉次座標系における零点集合として与えられるような射影空間内の点集合を言う。これはまた、射影幾何学における双対性を考えれば、双対超平面上の点全体の成す集合としても定義できる。.

新しい!!: 接線と二次曲面 (射影幾何学) · 続きを見る »

代数螺旋

代数螺旋(だいすうらせん)は代数的な式によって表される螺旋である。アルキメデスの螺旋、放物螺旋、双曲螺旋、リチュースなどがある。対数螺旋は代数螺旋には含まれない。.

新しい!!: 接線と代数螺旋 · 続きを見る »

弦 (数学)

弦(げん、chord)とは、曲線上の2点を結ぶ線分のことである。 弦の両端の2点を A, B としたとき、直線AB をその曲線の割線 (secant) という。また、弦AB と、曲線の弧AB からなる閉曲線およびその内部を弓形という。.

新しい!!: 接線と弦 (数学) · 続きを見る »

微分可能

微分可能(びぶんかのう).

新しい!!: 接線と微分可能 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: 接線と微分幾何学 · 続きを見る »

微分法

数学における微分法(びぶんほう、differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 微分は量を扱うほとんど全ての分野に応用を持つ。たとえば物理学において、動く物体の変位の時間に関する導函数はその物体の速度であり、速度の時間に関する導函数は加速度である。物体の運動量の導函数はその物体に及ぼされた力に等しい(この微分に関する言及を整理すればニュートンの第二法則に結び付けられる有名な方程式 が導かれる)。化学反応の反応速度も導函数である。オペレーションズ・リサーチにおいて導函数は物資転送や工場設計の最適な応報の決定に用いられる。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。.

新しい!!: 接線と微分法 · 続きを見る »

ペルガのアポロニウス

ペルガのアポロニウス(Ἀπολλώνιος, Apollonius Pergaeus, Apollonius of Perga、紀元前262年頃 - 紀元前190年頃)はギリシャの数学者・天文学者である。小アジアの町ペルガに生まれた。アレキサンドリアでプトレマイオス3世およびプトレマイオス4世の時代に活躍した。現トルコのペルガモンでしばらく暮らしたとされる。アレキサンドリアで没した。.

新しい!!: 接線とペルガのアポロニウス · 続きを見る »

ユークリッド原論

ュリュンコスで発見された『ユークリッド原論』のパピルスの写本断片。紀元100年ごろの作。図は『原論』第2巻の命題5に添えられたもの。 ユークリッド原論(ユークリッドげんろん)は、紀元前3世紀ごろにエジプトのアレクサンドリアの数学者ユークリッドによって編纂されたと言われる数学書『原論』(げんろん、Στοιχεία, ストイケイア、Elements)のことである。著者のユークリッドに関する資料は乏しく実在性を疑う説もあり、原論執筆の地がアレクサンドリアであることに対する明確な根拠も無い。プラトンの学園アカデメイアで知られていた数学の成果を集めて体系化した本と考えられており、論証的学問としての数学の地位を確立した古代ギリシア数学を代表する名著である。古代の書物でありながらその影響は古代に留まらず、後世の人々によって図や注釈が加えられたり翻訳された多種多様な版が作られ続け、20世紀初頭に至るまで標準的な数学の教科書の一つとして使われていたため、西洋の書物では聖書に次いで世界中で読まれてきた本とも評される。英語の数学「Mathematics」の語源といわれているラテン語またはギリシア語の「マテーマタ」(Μαθήματα)は「レッスン(学ばれるべきことども)」という意味であり、このマテーマタを集大成したものが『原論』である。.

新しい!!: 接線とユークリッド原論 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 接線とユークリッド空間 · 続きを見る »

ルネ・デカルト

ルネ・デカルト(René Descartes、1596年3月31日 - 1650年2月11日)は、フランス生まれの哲学者、数学者。合理主義哲学の祖であり、近世哲学の祖として知られる。.

新しい!!: 接線とルネ・デカルト · 続きを見る »

ピエール・ド・フェルマー

ピエール・ド・フェルマー ピエール・ド・フェルマー(Pierre de Fermat、1607年末または1608年初頭 - 1665年1月12日)はフランスの数学者。「数論の父」とも呼ばれる。ただし、職業は弁護士であり、数学は余暇に行ったものである。.

新しい!!: 接線とピエール・ド・フェルマー · 続きを見る »

ドット積

数学あるいは物理学においてドット積(ドットせき、dot product)あるいは点乗積(てんじょうせき)とは、ベクトル演算の一種で、2つの同じ長さの数列から一つの数値を返す演算。代数的および幾何的に定義されている。幾何的定義では、(デカルト座標の入った)ユークリッド空間 において標準的に定義される内積のことである。.

新しい!!: 接線とドット積 · 続きを見る »

ニュートン法

数値解析の分野において、ニュートン法(ニュートンほう、Newton's method)またはニュートン・ラフソン法(Newton-Raphson method)は、方程式系を数値計算によって解くための反復法による求根アルゴリズムの1つである。対象とする方程式系に対する条件は、領域における微分可能性と2次微分に関する符号だけであり、線型性などは特に要求しない。収束の速さも2次収束なので古くから数値計算で使用されていた。名称はアイザック・ニュートンとに由来する。.

新しい!!: 接線とニュートン法 · 続きを見る »

初等幾何学

初等幾何学(しょとうきかがく、elementary geometry矢野健太郎編、東京理科大学数学教育研究所第2版 編集『』、共立出版、2010年、「初等幾何学」より。ISBN 978-4-320-01931-7)は、二次元(点や直線や円など)・三次元(錘体や球など)の図形をユークリッド幾何学的に扱う数学、幾何学の分野である。.

新しい!!: 接線と初等幾何学 · 続きを見る »

アルキメデス

アルキメデス(Archimedes、Ἀρχιμήδης、紀元前287年? - 紀元前212年)は、古代ギリシアの数学者、物理学者、技術者、発明家、天文学者。古典古代における第一級の科学者という評価を得ている。.

新しい!!: 接線とアルキメデス · 続きを見る »

アイザック・バロー

アイザック・バロー(Isaac Barrow、 1630年10月 - 1677年5月4日)はイギリスの聖職者、数学者である。ケンブリッジ大学の初代のルーカス教授職を務めた。アイザック・ニュートンを指導したことで知られる。バローの業績は積分と微分がお互いに逆操作である(微分積分学の基本定理)ことを幾何学的な方法で証明したこと、またメルカトル図法における赤道から任意緯線までの距離算出に必要となる、正割関数の積分(今日でいうところのグーデルマン関数の逆関数)を初めて閉じた式で表現したことなどがある。 ロンドンで生まれ、ケンブリッジ大学トリニティ・カレッジで学んだ。1659年まで海外を4年ほど旅行し、1660年にケンブリッジ大学のギリシャ語の教授となり、1662年からの幾何学の教授、1663年に新しく設けられたルーカス教授職に任じられた。ルーカス教授職にある間に幾何学と光学の著書を発表した。1669年にニュートンの才能を認め、ルーカス教授職を譲り自らは神学教授に転身した。.

新しい!!: 接線とアイザック・バロー · 続きを見る »

アイザック・ニュートン

ウールスソープの生家 サー・アイザック・ニュートン(Sir Isaac Newton、ユリウス暦:1642年12月25日 - 1727年3月20日、グレゴリオ暦:1643年1月4日 - 1727年3月31日ニュートンの生きていた時代のヨーロッパでは主に、グレゴリオ暦が使われ始めていたが、当時のイングランドおよびヨーロッパの北部、東部ではユリウス暦が使われていた。イングランドでの誕生日は1642年のクリスマスになるが、同じ日がグレゴリオ暦では1643年1月4日となる。二つの暦での日付の差は、ニュートンが死んだときには11日にも及んでいた。さらに1752年にイギリスがグレゴリオ暦に移行した際には、3月25日を新年開始の日とした。)は、イングランドの自然哲学者、数学者、物理学者、天文学者。 主な業績としてニュートン力学の確立や微積分法の発見がある。1717年に造幣局長としてニュートン比価および兌換率を定めた。ナポレオン戦争による兌換停止を経て、1821年5月イングランド銀行はニュートン兌換率により兌換を再開した。.

新しい!!: 接線とアイザック・ニュートン · 続きを見る »

エウクレイデス

ラファエロの壁画「アテナイの学堂」に画かれたエウクレイデス アレクサンドリアのエウクレイデス(、、(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。 プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。線の定義について、「線は幅のない長さである」、「線の端は点である」など述べられている。基本的にその中で今日ユークリッド幾何学と呼ばれている体系が少数の公理系から構築されている。エウクレイデスは他に光学、透視図法、円錐曲線論、球面天文学、誤謬推理論、図形分割論、天秤などについても著述を残したとされている。 なお、エウクレイデスという名はギリシア語で「よき栄光」を意味する。その実在を疑う説もあり、その説によると『原論』は複数人の共著であり、エウクレイデスは共同筆名とされる。 確実に言えることは、彼が古代の卓越した数学者で、アレクサンドリアで数学を教えていたこと、またそこで数学の一派をなしたことである。ユークリッド幾何学の祖で、原論では平面・立体幾何学、整数論、無理数論などの当時の数学が公理的方法によって組み立てられているが、これは古代ギリシア数学の一つの成果として受け止められている。.

新しい!!: 接線とエウクレイデス · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: 接線とゴットフリート・ライプニッツ · 続きを見る »

ジョン・ウォリス

ョン・ウォリス(John Wallis、1616年11月23日 - 1703年10月28日)は、イングランドの数学者で、微分積分学への貢献で知られている。1643年から1689年までイングランド議会(後には王宮)に暗号研究者として雇われた。また、小惑星 31982 Johnwallis は彼の名を冠している。.

新しい!!: 接線とジョン・ウォリス · 続きを見る »

ジル・ド・ロベルヴァル

ジル・ド・ロベルヴァル ジル・ド・ロベルヴァルまたはロベルヴァルのジル・ペルセンヌ(Gilles Personne de Roberval、1602年8月10日 - 1675年10月27日)はフランスの数学者。運動力学に業績があり、微積分学の先駆者の一人である。 ルネ・デカルトと同じく1627年のラ・ロシェルの包囲戦に参加した。同じ年パリにでて、1631年にジェルヴェ・コレージュ(Gervais College)の自然科学の教授に任じられた。その2年後、フランス王立学院の数学者となり、1675年に没するまでその地位にあった。 微積分学が確立される直前の数学者の一人で曲線の接線を求める解法に”Method of Indivisibles“という方法を用いた。 数学以外の分野では、コペルニクスの地動説を擁護する宇宙論を記し、「ロベルヴァルの秤」と呼ばれる、秤の機構を発明した。 Category:フランスの数学者 Category:コレージュ・ド・フランスの教員 Category:パリ大学の教員 Category:1602年生 Category:1675年没 Category:数学に関する記事.

新しい!!: 接線とジル・ド・ロベルヴァル · 続きを見る »

傾き (数学)

数学における平面上の直線の傾き(かたむき、slope)あるいは勾配(こうばい、gradient)は、その傾斜の具合を表す数値である。ただし、鉛直線に対する傾きは定義されない。 傾きは普通、直線上の2点間の変化の割合、すなわち x の増加量に対する y の増加量の比率として定義される。また、同値な定義として、傾き m は傾斜角を θ として と書くことができる。 曲線上の微分可能な1点に対しても、傾斜の具合を表す数値(微分係数)が、傾きの考え方により定義できる。 傾きの概念は、地理学および土木工学における斜度や勾配(たとえば道路など)に直接応用される。.

新しい!!: 接線と傾き (数学) · 続きを見る »

円周

円周(えんしゅう、circumference)とは、円の周囲もしくは周長のこと。円周と直径の比率を円周率という。.

新しい!!: 接線と円周 · 続きを見る »

無限小

数学における無限小(むげんしょう、infinitesimal)は、測ることができないほど極めて小さい「もの」である。無限小に関して実証的に観察されることは、それらが定量的にいくら小さかろうと、角度や傾きといったある種の性質はそのまま有効であることである。 術語 "infinitesimal" は、17世紀の造語 infinitesimus(もともとは列の「無限番目」の項を意味する言葉)に由来し、これを導入したのは恐らく1670年ごろ、メルカトルかライプニッツである。無限小はライプニッツがやなどをもとに展開した無限小解析における基本的な材料である。よくある言い方では、無限小対象とは「可能な如何なる測度よりも小さいが零でない対象である」とか「如何なる適当な意味においても零と区別することができないほど極めて小さい」などと説明される。故に形容(動)詞的に「無限小」を用いるときには、それは「極めて小さい」という意味である。このような量が意味を持たせるために、通常は同じ文脈における他の無限小対象と比較をすること(例えば微分商)が求められる。無限個の無限小を足し合わせることで積分が与えられる。 シラクサのアルキメデスは、自身の (機械的定理証明法)においてと呼ばれる手法を応分に用いて領域の面積や立体の体積を求めた。正式に出版された論文では、アルキメデスは同じ問題を取り尽くし法を用いて証明している。15世紀にはニコラウス・クザーヌスの業績として(17世紀にはケプラーがより詳しく調べているが)、特に円を無限個の辺を持つ多角形と見做して円の面積を計算する方法が見受けられる。16世紀における、任意の実数の十進表示に関するシモン・ステヴィンの業績によって、実連続体を考える下地はすでにでき上がっていた。カヴァリエリの不可分の方法は、過去の数学者たちの結果を拡張することに繋がった。この不可分の方法は幾何学的な図形を 1 の量に分解することと関係がある。ジョン・ウォリスの無限小は不可分とは異なり、図形をもとの図形と同じ次元の無限に細い構成要素に分解するものとして、積分法の一般手法の下地を作り上げた。面積の計算においてウォリスは無限小を 1/∞ と書いている。 ライプニッツによる無限小の利用は、「有限な数に対して成り立つものは無限な数に対しても成り立ち、逆もまた然り」有限/無限というのは個数に関して言うのではない(有限個/無限個ではない)ことに注意せよ。ここでいう「有限」とは無限大でも無限小でもないという意味である。や(割り当て不能な量を含む式に対して、それを割り当て可能な量のみからなる式で置き換える具体的な指針)というような、経験則的な原理に基づくものであった。18世紀にはレオンハルト・オイラーやジョゼフ=ルイ・ラグランジュらの数学者たちによって無限小は日常的に使用されていた。オーギュスタン=ルイ・コーシーは自身の著書 (解析学教程)で、無限小を「連続量」(continuity) ともディラックのデルタ函数の前身的なものとも定義した。カントールとデデキントがスティーヴンの連続体をより抽象的な対象として定義したのと同様に、は函数の増大率に基づく「無限小で豊饒化された連続体」(infinitesimal-enriched continuum) に関する一連の論文を著した。デュ・ボア=レーモンの業績は、エミール・ボレルとトアルフ・スコーレムの両者に示唆を与えた。ボレルは無限小の増大率に関するコーシーの仕事とデュ・ボア=レーモンの仕事を明示的に結び付けた。スコーレムは、1934年に最初の算術の超準モデルを発明した。連続の法則および無限小の数学的に厳密な定式化は、1961年にアブラハム・ロビンソンによって達成された(ロビンソンは1948年にが、および1955年にが成した先駆的研究に基づき超準解析を展開した)。ロビンソンの超実数 (hyperreals) は無限小で豊饒化された連続体の厳密な定式化であり、がライプニッツの連続の法則の厳密な定式化である。また、はフェルマーの (adequality, pseudo-equality) の定式化である。 ウラジーミル・アーノルドは1990年に以下のように書いている.

新しい!!: 接線と無限小 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 接線と直線 · 続きを見る »

解析幾何学

初等幾何学における解析幾何学(かいせききかがく、analytic geometry)あるいは座標幾何学(ざひょうきかがく、coordinate geometry)、デカルト幾何学(デカルトきかがく、Cartesian geometry)は、座標を用いて代数的解析幾何学という名称における接頭辞「解析」は、微積分学を含む現代的な解析学という意味の「解析」ではなく、発見的な代数的手法によるものであることを示唆するものである。(解析幾何学 - コトバンク)に図形を調べる幾何学をいう。座標を用いるという点において、(より古典的な、ユークリッドの原論にもあるような)点や直線などがどのような公理に従うかということのみによって図形を調べる とは対照的である。座標を利用することにより、図形のもつ性質を座標のあいだにあらわれる関係式として特徴づけたり、数や式として図形を取り扱ったりすることができる。 ふつうは(二次元)平面上の点、直線などを扱う(平面解析幾何)か(三次元)空間内のそれらを扱う(立体解析幾何)。.

新しい!!: 接線と解析幾何学 · 続きを見る »

接ベクトル空間

多様体上の接ベクトル空間(せつベクトルくうかん、英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。.

新しい!!: 接線と接ベクトル空間 · 続きを見る »

楕円

楕円(だえん、橢円とも。ellipse)とは、平面上のある2定点からの距離の和が一定となるような点の集合から作られる曲線である。基準となる2定点を焦点という。円錐曲線の一種である。 2つの焦点が近いほど楕円は円に近づき、2つの焦点が一致したとき楕円はその点を中心とした円になる。そのため円は楕円の特殊な場合であると考えることもできる。 楕円の内部に2焦点を通る直線を引くとき、これを長軸という。長軸の長さを長径という。長軸と楕円との交点では2焦点からの距離の差が最大となる。また、長軸の垂直二等分線を楕円の内部に引くとき、この線分を短軸という。短軸の長さを短径という。.

新しい!!: 接線と楕円 · 続きを見る »

法線ベクトル

法線ベクトル(ほうせんベクトル、normal vector)は、2次元ではある線に垂直なベクトル、3次元ではある面に垂直なベクトル。法線(ほうせん、normal)はある接線に垂直な線のことである。.

新しい!!: 接線と法線ベクトル · 続きを見る »

有限幾何学

有限幾何学(ゆうげんきかがく)とは有限個の点から構成される幾何学の体系である。例えばユークリッド幾何学は有限幾何学でない。ユークリッド空間における「線」は無限に多くの(実際は実数と同じ濃度の)「点」を含むからである。 ユークリッド幾何は任意の次元で存在することと同様に、有限幾何も任意の(有限)次元で存在する。ただし、ユークリッド幾何とは異なり、有限幾何の場合は同じ次元でも各種の異なった(幾何学的)構造が存在し得る。.

新しい!!: 接線と有限幾何学 · 続きを見る »

放物線

放物線(ほうぶつせん、希:παραβολή「parabolē」、羅、英: parabola、独: Parabel)とは、その名の通り地表(つまり重力下)で投射した物体の運動(放物運動)が描く軌跡のことである。 放物線をその対称軸を中心として回転させた曲面を放物面という。.

新しい!!: 接線と放物線 · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: 接線と曲線 · 続きを見る »

曲面

数学、特に位相幾何学における曲面(きょくめん、surface)は二次元位相多様体である。最もよく知られた曲面の例は、古典的な三次元ユークリッド空間 R3 内の立体の境界として得られる曲面である。例えば、球体の境界としての球面はそのようなものの例になっている。他方でクラインの壷などの、特異点や自己交叉を持つことなしに三次元ユークリッド空間に埋め込み不可能な曲面というものも存在する。 曲面が「二次元」であるというのは、それが二次元の座標系を入れた「座標付きのきれはし」の貼り合せになっているということを指し示している。例えば、「地球の表面」は(理想的には)二次元球面であり、経線と緯線はその球面上の二次元座標系を与えている(ただし、両極を180度子午線で結んだ部分を除く)。.

新しい!!: 接線と曲面 · 続きを見る »

17世紀

ルイ14世の世紀。フランスの権勢と威信を示すために王の命で壮麗なヴェルサイユ宮殿が建てられた。画像は宮殿の「鏡の間」。 スペインの没落。国王フェリペ4世の時代に「スペイン黄金時代」は最盛期を過ぎ国勢は傾いた。画像は国王夫妻とマルガリータ王女を取り巻く宮廷の女官たちを描いたディエゴ・ベラスケスの「ラス・メニーナス」。 ルネ・デカルト。「我思う故に我あり」で知られる『方法序説』が述べた合理主義哲学は世界の見方を大きく変えた。画像はデカルトとその庇護者であったスウェーデン女王クリスティナ。 プリンキピア』で万有引力と絶対空間・絶対時間を基盤とするニュートン力学を構築した。 オランダの黄金時代であり数多くの画家を輩出した。またこの絵にみられる実験や観察は医学に大きな発展をもたらした。 チューリップ・バブル。オスマン帝国からもたらされたチューリップはオランダで愛好され、その商取引はいつしか過熱し世界初のバブル経済を生み出した。画像は画家であり園芸家でもあったエマヌエル・スウェールツ『花譜(初版は1612年刊行)』の挿絵。 三十年戦争の終結のために開かれたミュンスターでの会議の様子。以後ヨーロッパの国際関係はヴェストファーレン体制と呼ばれる主権国家を軸とする体制へと移行する。 チャールズ1世の三面肖像画」。 ベルニーニの「聖テレジアの法悦」。 第二次ウィーン包囲。オスマン帝国と神聖ローマ帝国・ポーランド王国が激突する大規模な戦争となった。この敗北に続いてオスマン帝国はハンガリーを喪失し中央ヨーロッパでの優位は揺らぐことになる。 モスクワ総主教ニーコンの改革。この改革で奉神礼や祈祷の多くが変更され、反対した人々は「古儀式派」と呼ばれ弾圧された。画像はワシーリー・スリコフの歴史画「貴族夫人モローゾヴァ」で古儀式派の信仰を守り致命者(殉教者)となる貴族夫人を描いている。 スチェパン・ラージン。ロシアではロマノフ朝の成立とともに農民に対する統制が強化されたが、それに抵抗したドン・コサックの反乱を率いたのがスチェパン・ラージンである。画像はカスピ海を渡るラージンと一行を描いたワシーリー・スリコフの歴史画。 エスファハーンの栄華。サファヴィー朝のシャー・アッバース1世が造営したこの都市は「世界の半分(エスファハーン・ネスフェ・ジャハーン・アスト)」と讃えられた。画像はエスファハーンに建てられたシェイク・ロトフォラー・モスクの内部。 タージ・マハル。ムガル皇帝シャー・ジャハーンが絶世の美女と称えられた愛妃ムムターズ・マハルを偲んでアーグラに建てた白亜の霊廟。 アユタヤ朝の最盛期。タイでは中国・日本のみならずイギリスやオランダの貿易船も来訪し活況を呈した。画像はナーラーイ王のもとで交渉をするフランス人使節団(ロッブリーのプラ・ナーライ・ラーチャニーウエート宮殿遺跡記念碑)。 イエズス会の中国宣教。イエズス会宣教師は異文化に対する順応主義を採用し、中国の古典教養を尊重する漢人士大夫の支持を得た。画像は『幾何原本』に描かれたマテオ・リッチ(利瑪竇)と徐光啓。 ブーヴェの『康熙帝伝』でもその様子は窺える。画像は1699年に描かれた読書する40代の康熙帝の肖像。 紫禁城太和殿。明清交代の戦火で紫禁城の多くが焼亡したが、康熙帝の時代に再建がなされ現在もその姿をとどめている。 台湾の鄭成功。北京失陥後も「反清復明」を唱え、オランダ人を駆逐した台湾を根拠地に独立政権を打ち立てた。その母が日本人だったこともあり近松門左衛門の「国姓爺合戦」などを通じて日本人にも広く知られた。 江戸幕府の成立。徳川家康は関ヶ原の戦いで勝利して征夷大将軍となり、以後260年余にわたる幕府の基礎を固めた。画像は狩野探幽による「徳川家康像」(大阪城天守閣蔵)。 日光東照宮。徳川家康は死後に東照大権現の称号を贈られ日光に葬られた。続く三代将軍徳川家光の時代までに豪奢で絢爛な社殿が造営された。画像は「日暮御門」とも通称される東照宮の陽明門。 歌舞伎の誕生。1603年に京都北野社の勧進興業で行われた出雲阿国の「かぶき踊り」が端緒となり、男装の女性による奇抜な演目が一世を風靡した。画像は『歌舞伎図巻』下巻(名古屋徳川美術館蔵)に描かれた女歌舞伎の役者采女。 新興都市江戸。17世紀半ばには江戸は大坂や京都を凌ぐ人口を擁するまでとなった。画像は明暦の大火で焼失するまで威容を誇った江戸城天守閣が描かれた「江戸図屏風」(国立歴史民俗博物館蔵)。 海を渡る日本の陶磁器。明清交代で疲弊した中国の陶磁器産業に代わり、オランダ東インド会社を通じて日本から陶磁器が数多く輸出された。画像は1699年に着工されたベルリンのシャルロッテンブルク宮殿の「磁器の間」。 海賊の黄金時代。西インド諸島での貿易の高まりはカリブ海周辺に多くの海賊を生み出した。画像はハワード・パイルが描いた「カリブ海のバッカニーア」。 スペイン副王支配のリマ。リマはこの当時スペインの南米支配の拠点であり、カトリック教会によるウルトラバロックとも呼ばれる壮麗な教会建築が並んだ。画像は1656年の大地震で大破したのちに再建されたリマのサン・フランシスコ教会・修道院。 17世紀(じゅうしちせいき、じゅうななせいき)は、西暦1601年から西暦1700年までの100年間を指す世紀。.

新しい!!: 接線と17世紀 · 続きを見る »

ここにリダイレクトされます:

切線接する接する (数学)接点 (数学)

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »