ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

代数方程式と固有値

ショートカット: 違い類似点ジャカード類似性係数参考文献

代数方程式と固有値の違い

代数方程式 vs. 固有値

数学において、代数方程式 (だいすうほうていしき、algebraic equation) とは(一般には多変数の)多項式を等号で結んだ形で表される方程式の総称で、式で表せば の形に表されるもののことである。言い換えれば、代数方程式は多項式の零点を記述する数学的対象である。. 線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

代数方程式と固有値間の類似点

代数方程式と固有値は(ユニオンペディアに)共通で6ものを持っています: 二次曲面代数的閉包レオンハルト・オイラーシャルル・エルミート固有値零点

二次曲面

二次超曲面(にじちょうきょくめん、quadric surface)とは、円錐曲線の概念を一般次元ユークリッド空間 Rn に拡張したものであり、2次多項式の零点集合として表されるような超曲面のことをさす。3次元空間における二次超曲面は二次曲面ともよばれる。.

二次曲面と代数方程式 · 二次曲面と固有値 · 続きを見る »

代数的閉包

数学、特に抽象代数学において、体 K の代数的閉包(だいすうてきへいほう、algebraic closure)は、代数的に閉じている K の代数拡大である。数学においてたくさんある閉包のうちの1つである。 ツォルンの補題を使って、すべての体は代数的閉包をもつMcCarthy (1991) p.21Kaplansky (1972) pp.74-76ことと、体 K の代数的閉包は K のすべての元を固定するような同型の違いを除いてただ1つであることを証明できる。この本質的な一意性のため、an algebraic closure of K よりむしろ the algebraic closure of K と呼ばれることが多い。 体 K の代数的閉包は K の最大の代数拡大と考えることができる。このことを見るためには、次のことに注意しよう。L を K の任意の代数拡大とすると、L の代数的閉包は K の代数的閉包でもあり、したがって L は K の代数的閉包に含まれる。K の代数的閉包はまた K を含む最小の代数的閉体でもある。なぜならば、M が K を含む任意の代数的閉体であれば、K 上代数的な M の元全体は K の代数的閉包をなすからだ。 体 K の代数的閉包の濃度は、K が無限体ならば K と同じで、K が有限体ならば可算無限である。.

代数方程式と代数的閉包 · 代数的閉包と固有値 · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

レオンハルト・オイラーと代数方程式 · レオンハルト・オイラーと固有値 · 続きを見る »

シャルル・エルミート

ャルル・エルミート(Charles Hermite、1822年12月24日-1901年1月14日)は、フランスの数学者。1869年からエコール・ポリテクニークの教授、1876年からソルボンヌ大学の教授を務めた。 エルミートは、エルミート内積、エルミート行列やエルミート作用素(エルミート演算子)、エルミート多項式などにその名を残している。また、オイラー、ラグランジュ、アーベル、ガロア等、数多くの偉大な数学者が挑んだ五次方程式の解法を見つけるという難問に挑み、1858年に楕円関数を用いて、初めて一般的な五次方程式を解くことに成功した。1873年にネイピア数 が超越数であることを証明したことでも知られる。この結果を引き継いで、1882年にフェルディナント・フォン・リンデマンにより円周率 が超越数であることが証明され、円積問題が否定的に解決された(エルミート.

シャルル・エルミートと代数方程式 · シャルル・エルミートと固有値 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

代数方程式と固有値 · 固有値と固有値 · 続きを見る »

零点

複素解析における正則函数 の零点(れいてん、ぜろてん、zero)は函数が非自明でない限り孤立する。零点が孤立することは、一致の定理あるいは解析接続の一意性の成立において重要である。 孤立零点には重複度 (order of multiplicity) が定まる。代数学における類似の概念として非零多項式の根の重複度(あるいは重根)が定義されるが、多項式函数はその不定元を複素変数と見れば整函数を定めるから、これはその一般化である。.

代数方程式と零点 · 固有値と零点 · 続きを見る »

上記のリストは以下の質問に答えます

代数方程式と固有値の間の比較

固有値が86を有している代数方程式は、57の関係を有しています。 彼らは一般的な6で持っているように、ジャカード指数は4.20%です = 6 / (57 + 86)。

参考文献

この記事では、代数方程式と固有値との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »