ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

誤差

索引 誤差

誤差(ごさ、error)は、測定や計算などで得られた値 M と、指定値あるいは理論的に正しい値あるいは真値 T の差 ε であり、 で表される。.

44 関係: 半値幅定規定量的研究岡村総吾不確かさ (測定)不確定性丸善雄松堂平均二乗平均平方根作用ランダムデータカール・フリードリヒ・ガウスコロナ社 (出版社)円周率公差光速確率分布端数処理級数紀伊國屋書店統計的ばらつき絶対値無理数物理量設計計算機イプシロン較正量子力学技術評論社推計統計学東京化学同人標準偏差標準誤差標本 (統計学)標本調査正確度と精度温度測定湿度有効数字最小二乗法浮動小数点数

半値幅

半値幅(はんちはば、half width)は、山形の関数の広がりの程度を表す指標。半値全幅 (はんちぜんはば、full width at half maximum, FWHM) と、その半分の値の半値半幅 (half width at half maximum, HWHM) とがある。単に半値幅と言うと半値全幅のことが多い。.

新しい!!: 誤差と半値幅 · 続きを見る »

升(しょう)とは、尺貫法における体積(容積)の基準となる単位である。10合(ごう)が1升、10升が1斗(と)となる。その量は時代や地域により異なる。日本では、メートル法採用後の1891年(明治24年)に、立方メートル(立米、m3)を基準にして1升を 立方メートルと定めた(後述)。これは、約 リットル (L) に当たる。 中華人民共和国では、1 升 = 1 リットルと定義し、また、SI単位としてのリットルにも「升」の字を宛てている。一応区別のために、前者を市升、後者を公升と称するが、同じ値であることから単に升と呼ばれることが多い(市制も参照)。 升は元々は両手で掬った量に由来する身体尺であった。当時の升は 200 ミリリットル程度、現在の升の10分の1程度であった。それが時代とともに大きくなっていき、現在は元々の量の10倍程度になっている。 「升」という文字は柄杓の中に物を入れた形をかたどったものである。そこから量を量る「ます」の意味、およびそれによって量られる容積の単位を意味するようになった(これとは別に、柄杓で物を掬い上げることから「のぼる」の意味もある)。後に容器の方は「升」に木篇をつけて「枡」と書き分けるようになったが、実際にはあまり区別されていなかったようである。上述のように、1升という量があってそれを量る枡が作られたのではなく、先に物を量る枡が定められ、その量が「升」と定められた。.

新しい!!: 誤差と升 · 続きを見る »

定規

さまざまな素材の定規 定規(じょうぎ、定木)は、直線や曲線、角を引くために用いる文房具。物を切断する時にあてがって用いることもある。素材は主に合成樹脂、アルミニウムやステンレスなどの金属、竹など伸縮や狂いの少ない素材が用いられる。.

新しい!!: 誤差と定規 · 続きを見る »

定量的研究

定量的研究(ていりょうてきけんきゅう、quantitative research)は、対象の量的な側面に注目し、数値を用いた記述、分析を伴う研究。対象の質的側面に注目した定性的研究の対概念である。.

新しい!!: 誤差と定量的研究 · 続きを見る »

岡村総吾

岡村 総吾(おかむら そうご、1918年(大正7年)3月18日 - 2013年(平成25年)10月26日)は、電子工学者。東京大学名誉教授。東京電機大学名誉学長。工学博士。東京生まれ。.

新しい!!: 誤差と岡村総吾 · 続きを見る »

不確かさ (測定)

不確かさ(ふたしかさ、)とは、計測値のばらつきの程度を数値で定量的に表した尺度である。不確かさは通常、0 以上の非負の有効数字で表現され、不確かさの絶対値が大きいほど、測定結果として予想されるばらつきの程度も大きい。測定に不確かさを添付する場合には、それぞれの測定量または測定器などに、その測定の不確かさが添付される。「不確かさ」のかわりに、「相対不確かさ」という、不確かさを測定した値で割った量が用いられる場合もある。すべての測定は、不確かさの対象となる。.

新しい!!: 誤差と不確かさ (測定) · 続きを見る »

不確定性

不確定性とは確定性を持たないこと、あるいはその程度を指す。分野によって(不)確定性の定義や対象は異なり、文脈に応じて様々な意味で用いられる。 不確定性は英語ないしそれに対応する他言語による用語の訳として用いられるが、必ずしも用語や用語の用法と翻訳が一対一に対応づけられているわけではなく、同じ用語に対して「不確定性」以外の語が充てられることがしばしばである。従って、本項目においては同じ用語を指す類義語についても触れる。なお以下に述べる用語は必ずしも定訳ではない。; 不確定性.

新しい!!: 誤差と不確定性 · 続きを見る »

丸善雄松堂

丸善雄松堂株式会社(まるぜんゆうしょうどう、)は、日本の大手書店、出版社、専門商社。文化施設の建築・内装、図書館業務のアウトソーシング等も行い、幅広い業務を手がけている。大日本印刷の子会社である丸善CHIホールディングスの完全子会社である。 なお、かつての丸善石油(後のコスモ石油)、「チーかま」など珍味メーカーの丸善、業務用厨房機器メーカーのマルゼン、エアソフトガンメーカーのマルゼンとは無関係である。 本店は東京都中央区日本橋二丁目に、本社事務所は港区海岸一丁目にある。.

新しい!!: 誤差と丸善雄松堂 · 続きを見る »

平均

平均(へいきん、mean, Mittelwert, moyenne)または平均値(へいきんち、mean value)は、観測値の総和を観測値の個数で割ったものである。 例えば A、B、C という3人の体重がそれぞれ 55 kg、60 kg、80 kg であったとすると、3人の体重の平均値は (55 kg + 60 kg + 80 kg)/3.

新しい!!: 誤差と平均 · 続きを見る »

二乗平均平方根

二乗平均平方根(にじょうへいきんへいほうこん、root mean square, RMS)はある統計値や確率変数を二乗した値の平均値の平方根である。結果として単位が元の統計値・確率変数と同じという点が特徴である。また、計算が積和演算であるため高速化が容易である。絶対値の平均より、用いられることがある。 ある量 に対して 個のデータが得られたとして、各データの の値を と名付けると、 の二乗平均平方根 は次のように定義される。 つまり、 の算術平均の平方根が の二乗平均平方根 となる。 例として、 個のデータがあり、それぞれ だったとすると、その二乗平均平方根は次のように計算できる。 \operatorname &.

新しい!!: 誤差と二乗平均平方根 · 続きを見る »

作用

作用(さよう)は、一般にはある物が他の物に及ぼす何らかの影響・効果のこと。物理学や数学で用いられる。分野によって、いくつかの異なる意味で用いられている。.

新しい!!: 誤差と作用 · 続きを見る »

ランダム

ランダム(random)とは、事象の発生に法則性(規則性)がなく、な状態である。ランダムネス(randomness)、無作為性(むさくいせい)ともいう。 事象・記号などのランダムな列には秩序がなく、理解可能なパターンや組み合わせに従わない。個々のランダムな事象は定義上予測不可能であるが、多くの場合、何度も試行した場合の結果の頻度は予測可能である。例えば、2つのサイコロを投げるとき、1回ごとの出目は予測できないが、合計が7になる頻度は4になる頻度の2倍になる。この見方では、ランダム性とは結果の不確実性の尺度であり、確率・情報エントロピーの概念に適用される。 数学、確率、統計の分野では、ランダム性の正式な定義が使用される。統計では、事象空間の起こり得る結果に数値を割り当てたものを確率変数(random variable)という。この関連付けは、事象の確率の識別および計算を容易にする。確率変数の列を(random sequence)という。ランダム過程(不規則過程、確率過程)は、結果が決定論的パターンに従わず、確率分布によって記述される進化に従う確率変数の列である。これらの構造と他の構造は、確率論や様々なランダム性の応用に非常に有用である。 ランダム性は、よく定義された統計的特性を示すために統計で最も頻繁に使用される。ランダムな入力(や擬似乱数発生器など)に依存するモンテカルロ法は、計算科学などの科学において重要な技術である。これに対し、では乱数列ではなく一様分布列を使用している。 無作為抽出(random selection)は、ある項目を選択する確率が母集団内におけるその項目の割合と一致している集団から項目を選択する方法である。例えば、赤い石10個と青い石90個を入れた袋に入れた場合、この袋から何らかのランダム選択メカニズムによって石を1個選択した時にそれが赤い石である確率は1/10である。しかし、ランダム選択メカニズムによって実際に10個の石を選択したときに、それが赤1個・青9個であるとは限らない。母集団が識別可能な項目で構成されている状況では、ランダム選択メカニズムは、選択される項目に等しい確率を必要とする。つまり、選択プロセスが、母集団の各メンバー(例えば、研究対象)が選択される確率が同じである場合、選択プロセスはランダムであると言うことができる。.

新しい!!: 誤差とランダム · 続きを見る »

データ

データ(data)とは、事実や資料をさす言葉。言語的には複数形であるため、厳密には複数の事象や数値の集まりのことを指し、単数形は datum(データム)である。.

新しい!!: 誤差とデータ · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 誤差とカール・フリードリヒ・ガウス · 続きを見る »

コロナ社 (出版社)

ナ社(ころなしゃ、英称:CORONA PUBLISHING CO.,LTD.)は、理学、工学などの大学・高専向け教科書、その他専門書を専門とする出版社。文部科学省検定済教科書の発行を行う。.

新しい!!: 誤差とコロナ社 (出版社) · 続きを見る »

円周率

円周率(えんしゅうりつ)は、円の周長の直径に対する比率として定義される数学定数である。通常、ギリシア文字 (パイ、ピー、ラテン文字表記: )で表される。数学をはじめ、物理学、工学といった様々な科学分野に出現し、最も重要な数学定数とも言われる。 円周率は無理数であり、その小数展開は循環しない。円周率は、無理数であるのみならず、超越数でもある。 円周率の計算において功績のあったルドルフ・ファン・コーレンに因み、ルドルフ数とも呼ばれる。ルドルフは、小数点以下35桁までを計算した。小数点以下35桁までの値は次の通りである。.

新しい!!: 誤差と円周率 · 続きを見る »

公差

公差(こうさ、tolerance)とは、機械工学に代表される工学において許容される差のこと。 基準値と許容される範囲の最大値および最小値の差を許容差、最大値と最小値の差を公差と呼ぶ。.

新しい!!: 誤差と公差 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: 誤差と光速 · 続きを見る »

確率分布

率分布(かくりつぶんぷ, probability distribution)は、確率変数の各々の値に対して、その起こりやすさを記述するものである。日本工業規格では、「確率変数がある値となる確率,又はある集合に属する確率を与える関数」と定義している。.

新しい!!: 誤差と確率分布 · 続きを見る »

端数処理

端数処理(はすうしょり)または丸め(まるめ)とは、与えられた数値を、ある一定の丸め幅の整数倍の数値に置き換えることである。常用的には、10の累乗(…、100、10、1、0.1、0.01、…)が丸め幅とされることが多い。.

新しい!!: 誤差と端数処理 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: 誤差と級数 · 続きを見る »

紀伊國屋書店

株式会社紀伊國屋書店(きのくにやしょてん、KINOKUNIYA COMPANY, LTD.)は、日本の書店、出版社である。.

新しい!!: 誤差と紀伊國屋書店 · 続きを見る »

統計的ばらつき

統計的ばらつき(とうけいてきばらつき、Statistical Dispersion, Statistical Variability)は、データ群の様々な観点でのばらつきの尺度を表す。データの傾向を表す要約統計量は様々である。換言すれば、ばらつきとは母集団の各メンバーの測定値の差異の定量化である。.

新しい!!: 誤差と統計的ばらつき · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 誤差と絶対値 · 続きを見る »

無理数

無理数(むりすう、 irrational number)とは、有理数ではない実数、つまり分子・分母ともに整数である分数(比.

新しい!!: 誤差と無理数 · 続きを見る »

物理量

物理量(ぶつりりょう、physical quantity)とは、.

新しい!!: 誤差と物理量 · 続きを見る »

設計

設計(せっけい、design)とは、建築物や工業製品等といったシステムの具現化のため、必要とする機能を検討するなどの準備であり、その成果物としては仕様書や設計図・設計書等、場合によっては模型などを作ることもある。.

新しい!!: 誤差と設計 · 続きを見る »

計算機イプシロン

計算機イプシロン(けいさんきいぷしろん、machine epsilon)は、浮動小数点数において、「1より大きい最小の数」と1との差のことである。機械イプシロン(きかいいぷしろん)とも言う。また、それぞれの「イプシロン」はエプシロンとも表記される。.

新しい!!: 誤差と計算機イプシロン · 続きを見る »

較正

の較正 thumb 較正(こうせい、Calibration )は、測定器の読み(出力)と、入力または測定の対象となる値との関係を比較する作業である。較正が本来の表記だが、「較」(コウ)は常用漢字の音訓表にない読みのため、校正(こうせい)またはこう正と表記することもある。「かくせい」とは読まない。 例えば、ある機器に流れる電流について、「ある測定器で測ったら1Aだったのに別な測定器では5Aになる」というならば、それらの測定は用をなさない。較正は、それぞれの測定器の読みのずれを把握し、共通の測定の基盤を作る行為である。 上の例では、安定的に既知のアンペア数の電流を流すことができるような機器(標準器)を測定することで、個々の測定器の読みが期待する値からどれだけずれているかを知ることができる。この行為が較正であり、較正の結果(ずれている量)を加味することで、測定は適正に行われる。較正の結果は測定器に固有のデータとして保管され、必要に応じて測定などの際に参照されることが多い。.

新しい!!: 誤差と較正 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 誤差と量子力学 · 続きを見る »

技術評論社

株式会社技術評論社(ぎじゅつひょうろんしゃ)は、日本の出版社。主にコンピュータ関連の書籍・雑誌を発行している。.

新しい!!: 誤差と技術評論社 · 続きを見る »

推計統計学

推計統計学(すいけいとうけいがく、inferential statistics)とは、無作為抽出された部分集団(抽出集団、標本集団)から抽出元全体(母集団)の特徴、性質を推定する統計学の分野を言う。推測統計学または推計学とも呼ばれる。.

新しい!!: 誤差と推計統計学 · 続きを見る »

東京化学同人

株式会社 東京化学同人(とうきょうかがくどうじん)は、主に理・工・農・薬・医・家政学系などの教科書類、専門書、辞典類および雑誌を出版・販売する日本の出版社。.

新しい!!: 誤差と東京化学同人 · 続きを見る »

標準偏差

標準偏差(ひょうじゅんへんさ、)は、日本工業規格では、分散の正の平方根と定義している。データや確率変数の散らばり具合(ばらつき)を表す数値のひとつ。物理学、経済学、社会学などでも使う。例えば、ある試験でクラス全員が同じ点数、すなわち全員が平均値の場合、データにはばらつきがないので、標準偏差は 0 になる。 母集団や確率変数の標準偏差を σ で、標本の標準偏差を s で表すことがある。二乗平均平方根 (RMS) と混同されることもある。両者の差異については、二乗平均平方根を参照。.

新しい!!: 誤差と標準偏差 · 続きを見る »

標準誤差

標準誤差(ひょうじゅんごさ)は、母集団からある数の標本を選ぶとき、選ぶ組み合わせに依って統計量がどの程度ばらつくかを、全ての組み合わせについての標準偏差で表したものをいう。Standard errorを略してSEともいう。 統計量を指定せずに単に「標準誤差」と言った場合、標本平均の標準誤差(standard error of the mean、SEM)のことを普通は指す。以下ではこれについて述べる。.

新しい!!: 誤差と標準誤差 · 続きを見る »

標本 (統計学)

統計学における標本(ひょうほん、sample)とは、母集団の部分集合を言う。推測統計学においては、標本と母集団は明確に区別される。.

新しい!!: 誤差と標本 (統計学) · 続きを見る »

標本調査

標本調査(ひょうほんちょうさ)とは、母集団をすべて調査対象とする全数調査(悉皆調査)に対して、母集団から標本を抽出して調査し、それから母集団の性質を統計学的に推定する方法である。 例としては、商品などの抜き取り調査、一般の社会調査や世論調査などがある。国勢調査は全数調査であり、選挙の投票も建前上は全数調査である。別の視点から言えば、投票行為そのものが標本作成であるということができる。社会調査は調査そのものが対象に影響を与えるため動機づけのひずみ(motivational bias)を考慮する必要がある。 全数調査は一般に、以下のような理由により不可能なことが多いため、標本調査が必要になる。.

新しい!!: 誤差と標本調査 · 続きを見る »

正確度と精度

正確度と精度(せいかくどとせいど)では、科学、工学、産業、統計学の分野における正確度と精度について記述する。 科学、工学、産業、統計学の分野において、測定、推定または計算値に関し、.

新しい!!: 誤差と正確度と精度 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: 誤差と温度 · 続きを見る »

測定

測定(そくてい、Messung、mesure physique、measurement)は、様々な対象の量を、決められた一定の基準と比較し、数値と符号で表すことを指すJIS Z8103「計測用語」今井(2007)、p1-3 はじめに。人間の五感では環境や体調また錯視など不正確さから免れられず、また限界があるが、測定は機器を使うことでこれらの問題を克服し、科学の基本となる現象の数値化を可能とする。ただし、得られた値には常に測定誤差がつきまとい、これを斟酌した対応が必要となる。 ルドルフ・カルナップは1966年の著書『物理学の哲学的基礎』にて科学における主要な概念として、分類概念・比較概念・量的概念の3つを提示した。このうち、量的概念 (quantitative concept) を「対象が数値を持つ概念」と規定し、その把握には規則と客観的な手続きに則った判断が求められるとした。そしてこの物理学的測定は、測定する対象の性質や状態のメカニズム理論に基づいた尺度構成が重要になる。測定に関する理論および実践についての科学は、計量学(metrology)と呼ばれる。 測定の対象は自然科学だけにとどまらない。会計学においても貨幣的尺度を用いた評価や、企業の財務会計と適切なモデルを対応づけることなどを「測定」とするAmey,L.R.,A.ConceptualApproachtoManagement.NewYork:Prager,1986, p.130.

新しい!!: 誤差と測定 · 続きを見る »

湿度

湿度(しつど、humidity)とは大気中に、水蒸気の形で含まれる水の量を、比率で表した数値。空気のしめり具合を表す。 空気が水蒸気の形で包含できる水分量(飽和水蒸気量)は、温度により一定している。この限度を100として、実際の空気中の水分量が最大限度の何%に当たるかを比率で表した数値が、湿度である。 湿度にも数種類の指標があるが、気象予報などで一般的に使用されるのは相対湿度である。絶対湿度()とは、国際的には容積絶対湿度のことである。しかし、日本では空気調和工学の分野では重量絶対湿度(混合比)が「絶対湿度」と呼ばれている。.

新しい!!: 誤差と湿度 · 続きを見る »

有効数字

n 桁の有効数字(ゆうこうすうじ)で丸めるとは、端数処理での一形式である。 n 桁の有効数字で丸めるという作業は、単に n 桁に丸めるというだけではなく、異なるスケールの数字を統合して取り扱う点でより重要な技法である。 浮動小数表示というのは、コンピュータ上での有効数字表現に丸める典型例であるが、2進数である点がポイントである。.

新しい!!: 誤差と有効数字 · 続きを見る »

最小二乗法

データセットを4次関数で最小二乗近似した例 最小二乗法(さいしょうにじょうほう、さいしょうじじょうほう;最小自乗法とも書く、)は、測定で得られた数値の組を、適当なモデルから想定される1次関数、対数曲線など特定の関数を用いて近似するときに、想定する関数が測定値に対してよい近似となるように、残差の二乗和を最小とするような係数を決定する方法、あるいはそのような方法によって近似を行うことである。.

新しい!!: 誤差と最小二乗法 · 続きを見る »

浮動小数点数

浮動小数点数(ふどうしょうすうてんすう、英: floating point number)は、浮動小数点方式による数のことで、もっぱらコンピュータの数値表現において、それぞれ固定長の仮数部と指数部を持つ、数値の表現法により表現された数である。.

新しい!!: 誤差と浮動小数点数 · 続きを見る »

ここにリダイレクトされます:

けた落ち丸め誤差偶然誤差桁落ち測定誤差情報落ち系統誤差真値計算誤差誤差伝播

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »