ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

観測天文学

索引 観測天文学

観測天文学(Observational astronomy)は、理論天文学に対して、データの記録に関連する天文学の一分野である。望遠鏡やその他の機器を用いた天体の観測の実践である。 科学としての天文学は、遠い宇宙の性質の直接的な実験が不可能であることが、いくらか妨げになる。しかしこれは、膨大な量の恒星現象の観測結果があることで部分的に緩和される。これにより、観測データをグラフにプロットすることが可能となり、一般的な傾向が導かれる。変光星等の特定の現象の近くの例は、より遠い場所での現象の振る舞いを推測するのに用いられる。.

107 関係: 原始星原子核反応偏光はるか (人工衛星)反射望遠鏡天体写真天体観測天王星天文台天文学太陽系外惑星太陽核変光星宇宙宇宙マイクロ波背景放射宇宙線宇宙探査機宇宙望遠鏡小惑星中性子星干渉法二重星位置天文学彗星地球の大気地球の自転地質学マイクロメータマイクロ波マウナ・ケア山チャナントール天文台チリハッブル宇宙望遠鏡バルカン (仮説上の惑星)ラ・パルマラ・シヤ天文台ラジオトランシットヘリウムヘール望遠鏡プリズムパラナル天文台ビッグバンドップラー効果ニュートリノニュートリノ天文学ニュートリノ検出器分光器周波数アマチュア天文学...アリゾナ州イギリスガリレオ・ガリレイガンマ線天文学コロナシーイングスペックル・イメージングセロ・トロロ汎米天文台冥王星写真フィルム光学フィルター光害回折格子固有運動CCDCMOS球状星団球面天文学空気シャワー紫外線天文学熱膨張率銀河の形成と進化銀河団補償光学高エネルギー天文学超新星赤外線天文学赤道儀式架台赤方偏移開口合成肉眼重力波量子収率酸化チタン(IV)電磁波電波天文学電波天文衛星電波望遠鏡連星OWL望遠鏡SN 1987AX線天文学恒星大気標準光源 (天文)水蒸気水星気象学活動銀河測光 (天文)満月月の裏望遠鏡惑星科学海王星日食摂動 (天文学)放出スペクトル インデックスを展開 (57 もっと) »

原始星

原始星(げんしせい)(protostar)とは、誕生初期の恒星のことで、暗黒星雲の一部が自己の重力で収縮しはじめ、可視光でも観測できるおうし座T型星になる前の状態までを指す。 暗黒星雲が近くの超新星爆発などによる衝撃波を受けると、それによって物質の濃淡ができる。濃くなった部分は重力が強くなるので、周囲の物質を引きつけさらに物質の濃度が濃くなる。するとさらに重力が強くなり、加速度的に濃度が濃くなっていく。このようにして原始星が誕生する。 原始星には周囲からさらに物質が集積してくるので、降着円盤が形成され、原始星に取り込まれきれなかった物質は、円盤に垂直な方向へ宇宙ジェットとして放出される。この宇宙ジェットが周囲の星雲の物質と衝突して輝いているのがハービッグ・ハロー天体である。 原始星には周囲の物質が超音速で落下していき衝撃波面が形成されている。その面で落下物質の運動エネルギーが一気に熱に変わっている。そのため、原始星は主系列星よりも非常に明るく輝いている。この時は原始星はまだ周囲を暗黒星雲に覆われているため、星雲の外からは可視光では観測できず赤外線だけが観測される。この状態は、それを理論的に導出した日本の宇宙物理学者・林忠四郎にちなんで林フェイズと呼ばれる。 原始星は自己の重力でゆっくりと収縮していき、その際の重力エネルギーの解放で徐々に中心核の温度を上げていく。また、恒星風により周囲の暗黒星雲を吹き飛ばす。こうして可視光でも観測可能になった星がおうし座T型星である。さらに中心核の温度が上昇し、水素の核融合反応が開始されると主系列星となる。 原始星フレアの温度はおよそ1億度で、エネルギーは太陽フレアの約1万倍にもなる。.

新しい!!: 観測天文学と原始星 · 続きを見る »

原子核反応

原子核物理学における原子核反応(げんしかくはんのう、nuclear reaction)または核反応とは、入射粒子が標的核(原子核)と衝突して生じる現象の総称を言う。大別して、吸収、核分裂、散乱の三つがあるが、その反応過程は多彩で統一的に記述する理論はまだない。 核反応においては、電荷、質量数、全エネルギー、全運動量が保存される。.

新しい!!: 観測天文学と原子核反応 · 続きを見る »

偏光

偏光(へんこう、polarization)は、電場および磁場が特定の(振動方向が規則的な)方向にのみ振動する光のこと。電磁波の場合は偏波(へんぱ)と呼ぶ。光波の偏光に規則性がなく、直交している電界成分の位相関係がでたらめな場合を非偏光あるいは自然光と呼ぶ。 光電界の振幅は直交する2方向の振動成分に分解できることが分かっている。普通の光は、あらゆる方向に振動している光が混合しており、偏光と自然光の中間の状態(部分偏光)にある。このような光は一部の結晶や光学フィルターを通すことによって偏光を得ることができる。.

新しい!!: 観測天文学と偏光 · 続きを見る »

はるか (人工衛星)

はるか(第16号科学衛星MUSES-B)とは、宇宙科学研究所(現宇宙航空研究開発機構宇宙科学研究所)が開発し、打ち上げた電波天文衛星である。1997年2月12日にM-Vロケット初号機によって打ち上げられた。 はるかという愛称は実験関係者による投票の結果、「はるかな宇宙の謎に挑む」事から命名された。また、英名愛称であるHALCAは、Highly Advanced Laboratory for Communications and Astronomy(通信と天文学のための非常に高度な研究所)の略とされている。.

新しい!!: 観測天文学とはるか (人工衛星) · 続きを見る »

反射望遠鏡

反射望遠鏡(はんしゃぼうえんきょう、Reflecting telescope )は鏡を組み合わせた望遠鏡である。.

新しい!!: 観測天文学と反射望遠鏡 · 続きを見る »

天体写真

リオン大星雲の天体写真 天体写真(てんたいしゃしん、英:astrophotography )とは、天体(惑星、衛星、恒星、彗星、星座、星雲、星団など)を撮影した写真のこと。天文写真と呼ばれることもある。.

新しい!!: 観測天文学と天体写真 · 続きを見る »

天体観測

天体観測(てんたいかんそく)は、天体そのものや天体の運行、変化などを観測することである。天体観測は肉眼で夜空を見上げることから始まり、双眼鏡や小さな望遠鏡を使って趣味的に行う観測から、天文台において大望遠鏡および特殊な観測機器を用いた観測まで幅広く行われる。観測は主に地球上から行われるほか、人工衛星の軌道上からも行われる。主たる観測対象は星座や恒星、流星、火星や金星などの惑星、あるいは月の満ち欠け、星の動きなど。天文学は天体観測から始まり、天体現象の物理学的探求はデータ解析や仮説検証などによって行われる。.

新しい!!: 観測天文学と天体観測 · 続きを見る »

天王星

天王星(てんのうせい、Uranus)は、太陽系の太陽に近い方から7番目の惑星である。太陽系の惑星の中で木星・土星に次ぎ、3番目に大きい。1781年3月13日、イギリスの天文学者ウィリアム・ハーシェルにより発見された。名称のUranusは、ギリシア神話における天の神ウーラノス(Ουρανός、ラテン文字転写: Ouranos)のラテン語形である。 最大等級+5.6等のため、地球最接近時は肉眼で見えることもある。のちにハーシェル以前に恒星として20回以上の観測記録(肉眼観測も含む)があることが判明した。.

新しい!!: 観測天文学と天王星 · 続きを見る »

天文台

天文台の一例(札幌市天文台) 天文台(てんもんだい)は、天体や天文現象の観測を行ったり、観測結果を解析して天文学の研究を行うための施設。現代では学術研究目的以外に、宇宙の観察や学習といった天文教育・普及活動の拠点としての性格を持つ天文台もある。.

新しい!!: 観測天文学と天文台 · 続きを見る »

天文学

星空を観察する人々 天文学(てんもんがく、英:astronomy, 独:Astronomie, Sternkunde, 蘭:astronomie (astronomia)カッコ内は『ラランデ歴書』のオランダ語訳本の書名に見られる綴り。, sterrenkunde (sterrekunde), 仏:astronomie)は、天体や天文現象など、地球外で生起する自然現象の観測、法則の発見などを行う自然科学の一分野。主に位置天文学・天体力学・天体物理学などが知られている。宇宙を研究対象とする宇宙論(うちゅうろん、英:cosmology)とは深く関連するが、思想哲学を起源とする異なる学問である。 天文学は、自然科学として最も早く古代から発達した学問である。先史時代の文化は、古代エジプトの記念碑やヌビアのピラミッドなどの天文遺産を残した。発生間もない文明でも、バビロニアや古代ギリシア、古代中国や古代インドなど、そしてイランやマヤ文明などでも、夜空の入念な観測が行われた。 とはいえ、天文学が現代科学の仲間入りをするためには、望遠鏡の発明が欠かせなかった。歴史的には、天文学の学問領域は位置天文学や天測航法また観測天文学や暦法などと同じく多様なものだが、近年では天文学の専門家とはしばしば天体物理学者と同義と受け止められる。 天文学 (astronomy) を、天体の位置と人間界の出来事には関連があるという主張を基盤とする信念体系である占星術 (astrology) と混同しないよう注意が必要である。これらは同じ起源から発達したが、今や完全に異なるものである。.

新しい!!: 観測天文学と天文学 · 続きを見る »

太陽系外惑星

太陽系外惑星(たいようけいがいわくせい、Extrasolar planet, Exoplanet)とは、太陽系にとっての系外惑星、つまり、太陽系の外にある惑星である。 多くは(太陽以外の)恒星の周りを公転するが、白色矮星や中性子星(パルサー)、褐色矮星などを回るものも見つかっており、他にもさまざまな星を回るものが想定される。自由浮遊惑星(いかなる天体も回らない惑星大の天体)を惑星に含めるかどうかは議論があるが、発見法が異なることなどから、系外惑星についての話題の中では自由浮遊惑星は別扱いすることが多い。 観測能力の限界から実際に発見されずにきたが、1990年代以降、多くの系外惑星が実際に発見されている。 ドップラー法.

新しい!!: 観測天文学と太陽系外惑星 · 続きを見る »

太陽核

太陽核(たいようかく、Solar core)は、太陽の中心から太陽半径のおよそ0.2倍から0.25倍の範囲に広がっていると考えられている。太陽系で最も高温の場所である。密度は15万kg/m3で、温度は1500万ケルビンに迫る(これに対して、太陽の表面の温度は6000ケルビンである)。中心の圧力は2.4×1016Pa、中心から0.2太陽半径では4.3×1015Paである。 太陽の核は、プラズマ状態にある高温で高密度のガスからできている。0.24太陽半径以内の核は太陽のエネルギーの99%を産み出している。.

新しい!!: 観測天文学と太陽核 · 続きを見る »

変光星

変光星(へんこうせい)は、天体の一種で、明るさ(等級)が変化するもののことである。大まかに爆発型変光星、脈動変光星、回転変光星、激変星、食変光星(食連星)、X線変光星の6種類に分類される。.

新しい!!: 観測天文学と変光星 · 続きを見る »

宇宙

宇宙(うちゅう)とは、以下のように定義される。.

新しい!!: 観測天文学と宇宙 · 続きを見る »

宇宙マイクロ波背景放射

cmあたりの波数。横軸の5近辺の波長1.9mm、160.2Ghzにピークがあることが読み取れる WMAPによる宇宙マイクロ波背景放射の温度ゆらぎ。 宇宙マイクロ波背景放射(うちゅうマイクロははいけいほうしゃ、cosmic microwave background; CMB)とは、天球上の全方向からほぼ等方的に観測されるマイクロ波である。そのスペクトルは2.725Kの黒体放射に極めてよく一致している。 単に宇宙背景放射 (cosmic background radiation; CBR)、マイクロ波背景放射 (microwave background radiation; MBR) 等とも言う。黒体放射温度から3K背景放射、3K放射とも言う。宇宙マイクロ波背景輻射、宇宙背景輻射などとも言う(輻射は放射の同義語)。.

新しい!!: 観測天文学と宇宙マイクロ波背景放射 · 続きを見る »

宇宙線

宇宙線(うちゅうせん、Cosmic ray)は、宇宙空間を飛び交う高エネルギーの放射線のことである名越 2011 p.3。主な成分は陽子であり、アルファ粒子、リチウム、ベリリウム、ホウ素、鉄などの原子核が含まれている。地球にも常時飛来している。.

新しい!!: 観測天文学と宇宙線 · 続きを見る »

宇宙探査機

宇宙探査機(うちゅうたんさき、英語:space probe)は、探査機の一種で、地球以外の天体などを探査する目的で地球軌道外の宇宙に送り出される宇宙機であり、ほとんどが無人機である。宇宙空間そのものの観測(太陽風や磁場など)、あるいは、惑星、衛星、太陽、彗星、小惑星などの探査を目的とする。現在は技術の限界から太陽系内の探査にとどまっているが、遠い将来は太陽系の外へ探査機を飛ばすことを考える科学者もいる。.

新しい!!: 観測天文学と宇宙探査機 · 続きを見る »

宇宙望遠鏡

宇宙望遠鏡(うちゅうぼうえんきょう)とは、地球の衛星軌道上などの宇宙空間に打ち上げられた天体望遠鏡のことである。地上に設置された望遠鏡に対して多額の費用がかかることと、打ち上げを要する困難さはあるが、地球大気に邪魔されず観測できるため、現代観測天文学の重要な設備となっている。.

新しい!!: 観測天文学と宇宙望遠鏡 · 続きを見る »

小惑星

光分(左)と天文単位(右)。 ケレス(右)、そして火星(下)。小さな物ほど不規則な形状になっている。 メインベルト小惑星の分布。縦軸は軌道傾斜角。 軌道長半径 6 AU までの小惑星の分布。縦軸は軌道傾斜角。赤い点はメインベルト小惑星。 小惑星(しょうわくせい、独: 英: Asteroid)は、太陽系小天体のうち、星像に拡散成分がないものの総称。拡散成分(コマやそこから流出した尾)があるものは彗星と呼ばれる。.

新しい!!: 観測天文学と小惑星 · 続きを見る »

中性子星

'''中性子星''' 右上方向にジェットを放出するほ座のベラ・パルサー。中性子星自体は内部に存在し、ガスに遮蔽されて見えない 中性子星(ちゅうせいしせい、)とは、質量の大きな恒星が進化した最晩年の天体の一種である。.

新しい!!: 観測天文学と中性子星 · 続きを見る »

干渉法

2波干渉 単色光源による波面を距離を変えてぶつけてやると、こうなる。 干渉法(かんしょうほう)は複数の波を重ね合わせるとき、それぞれの波の位相が一致した部分では波が強め合い、位相が逆転している部分では弱めあうことを利用して、波長(周波数)や位相差を測定する技術のこと。この原理を利用した機器を主に干渉計とよぶ。 ガンマ線から可視光線、電波・音波領域に及ぶ電磁波工学の研究・製品の製造管理(および較正)・動作原理においては基礎的技術であり、この原理を利用する機器・分野は極めて多岐に渡る。.

新しい!!: 観測天文学と干渉法 · 続きを見る »

二重星

二重星(にじゅうせい)は地球上から見る恒星が同じ方向に近接して見える物を指す。肉眼では1つの星に見えるが、望遠鏡などで観測する事によって2つに分解する。お互いの星が引力で引き合って軌道を描いている物は「連星」と言う。連星には、実視連星、分光連星、食連星などがある。また、地球から見た方向のみが一致している物を「見かけの二重星」と言う。.

新しい!!: 観測天文学と二重星 · 続きを見る »

位置天文学

位置天文学 (いちてんもんがく、英語:position(al) astronomy) は天文学の一分野。恒星や他の天体の位置、距離、運動を扱う。位置天文学の成果の一部は宇宙の距離梯子を決めるのに役立っている。 位置天文学には天文学者が観測結果を記述する際の座標系を与えるという基本的な役割があるが、これとは別に、天体力学、恒星系力学、銀河天文学といった分野において根本的に重要な役割を果たしている。観測天文学においては、移動する恒星状天体を同定する際に位置天文学の手法が欠かせない。位置天文学はまた時刻を管理する際にも使われる。現在の協定世界時 (UTC) は、国際原子時 (TAI) を地球の自転に同期させることで得られているが、この地球の自転は位置天文学の手法を用いて精密に観測されている。.

新しい!!: 観測天文学と位置天文学 · 続きを見る »

彗星

アメリカ合衆国アリゾナ州のカタリナ天文台で1974年11月1日に撮影されたコホーテク彗星 クロアチアのパジンで1997年3月29日に撮影されたヘール・ボップ彗星 彗星(すいせい、comet)は、太陽系小天体のうち主に氷や塵などでできており、太陽に近づいて一時的な大気であるコマや、コマの物質が流出した尾(テイル)を生じるものを指す。.

新しい!!: 観測天文学と彗星 · 続きを見る »

地球の大気

上空から見た地球の大気の層と雲 国際宇宙ステーション(ISS)から見た日没時の地球の大気。対流圏は夕焼けのため黄色やオレンジ色に見えるが、高度とともに青色に近くなり、さらに上では黒色に近くなっていく。 MODISで可視化した地球と大気の衛星映像 大気の各層の模式図(縮尺は正しくない) 地球の大気(ちきゅうのたいき、)とは、地球の表面を層状に覆っている気体のことYahoo! Japan辞書(大辞泉) 。地球科学の諸分野で「地表を覆う気体」としての大気を扱う場合は「大気」と呼ぶが、一般的に「身近に存在する大気」や「一定量の大気のまとまり」等としての大気を扱う場合は「空気()」と呼ぶ。 大気が存在する範囲を大気圏(たいきけん)Yahoo! Japan辞書(大辞泉) 、その外側を宇宙空間という。大気圏と宇宙空間との境界は、何を基準に考えるかによって幅があるが、便宜的に地表から概ね500km以下が地球大気圏であるとされる。.

新しい!!: 観測天文学と地球の大気 · 続きを見る »

地球の自転

地球の自転の様子 地球の自転(ちきゅうのじてん、Earth's rotation)とは、地球が自身の地軸の周りを回転すること(自転)である。 回転方向は東向きであり、地軸の北方向を正とすると右手回りである。北極星からは反時計回りに見える。 地球の自転は、国際地球回転・基準系事業(IERS)によって監視されている。.

新しい!!: 観測天文学と地球の自転 · 続きを見る »

地質学

地球の外観 地質学時標図 地質学(ちしつがく、)とは、地面より下(生物起源の土壌を除く)の地層・岩石を研究する、地球科学の学問分野である。広義には地球化学を含める場合もある。 1603年、イタリア語でgeologiaという言葉がはじめてつかわれた。当時はまれにしか使用されていなかったが、1795年以降一般に受け入れられた。.

新しい!!: 観測天文学と地質学 · 続きを見る »

マイクロメータ

マイクロメータ マイクロメータ (micrometer) とは、精密なねじ機構を使って、ねじの回転角に変位を置き換えることによって拡大し、精密な長さの測定に用いる測定器。ノギスよりも精度の高い測定に用いられる。 一般的なものは目盛は0.01mm。マイクロメータヘッドと呼ばれる基本構造部がネジ機構のため、測定圧力の差が測定値のばらつきや個人差となって現れる。これを是正し、より一定の圧力で測定を行えるよう考案されたのが定圧機構。定圧機構の中で現在最も普及しているのがラチェットストップ式と呼ばれるタイプである。 いろいろな用途に合わせて、測定先端(アンビルなどと呼ぶ)の形状などの異なるマイクロメータがある。 その機構は2つのねじを組み合わせた差動装置によっており、ピッチの差を利用した微細な動作が可能となっている。.

新しい!!: 観測天文学とマイクロメータ · 続きを見る »

マイクロ波

マイクロ波(マイクロは、Microwave)は、電波の周波数による分類の一つである。「マイクロ」は、電波の中で最も短い波長域であることを意味する。.

新しい!!: 観測天文学とマイクロ波 · 続きを見る »

マウナ・ケア山

マウナ・ケア山(マウナ・ケアさん、Mauna Kea)は、ハワイ諸島にある火山であり、ハワイ島を形成する5つの火山のうちの1つである。ハワイ語でマウナ・ケアとは「白い山」の意であり、冬になると山頂が雪に覆われることから名づけられた。 マウナケア山山頂付近は天候が安定し、空気が澄んでいることもあり、世界11ヶ国の研究機関が合計13基の天文台(マウナケア天文台群)を設置している。日本の国立天文台が設置したすばる望遠鏡もここにある。また、ハワイ原住民との取り決めから、13基以上の天文台を建設しないことになっており、今後新たに建設する場合は、既存のものを取り壊すか新たな了承を取り付ける必要がある。 この火山は比較的液体に近い溶岩の噴火で出来たため平たい形になっている。噴火の周期は短い。.

新しい!!: 観測天文学とマウナ・ケア山 · 続きを見る »

チャナントール天文台

チャナントール天文台(Llano de Chajnantor Observatory)とはチリのアタカマ砂漠の標高5104m地点、サンペドロ・デ・アタカマの50km南に位置する天文台である。湿度が低く、人の居住には適さない場所ではあるが、水蒸気による減衰が少ないため、サブミリ波等、短波長での電波観測には適している。観測波長域では、世界最大級相当になる高価なサブミリ波電波望遠鏡がいくつか設置されている。10億ドル相当がこの計画の為に投入されている。.

新しい!!: 観測天文学とチャナントール天文台 · 続きを見る »

チリ

チリ共和国(チリきょうわこく、República de Chile)、通称チリは、南アメリカ南部に位置する共和制国家である。東にアルゼンチン、北東にボリビア、北にペルーと隣接しており、西と南は太平洋に面している。首都はサンティアゴ・デ・チレ。 1818年にスペインより独立した。アルゼンチンと共に南アメリカ最南端に位置し、国土の大部分がコーノ・スールの域内に収まる。太平洋上に浮かぶフアン・フェルナンデス諸島や、サン・フェリクス島、サン・アンブロシオ島及びポリネシアのサラ・イ・ゴメス島、パスクア島(イースター島)などの離島も領有しており、さらにアルゼンチンやイギリスと同様に「チリ領南極」として125万平方キロメートルにも及ぶ南極の領有権を主張している。.

新しい!!: 観測天文学とチリ · 続きを見る »

ハッブル宇宙望遠鏡

ハッブル宇宙望遠鏡(ハッブルうちゅうぼうえんきょう、Hubble Space Telescope、略称:HST)は、地上約600km上空の軌道上を周回する宇宙望遠鏡であり、グレートオブザバトリー計画の一環として打ち上げられた。名称は宇宙の膨張を発見した天文学者・エドウィン・ハッブルに因む。長さ13.1メートル、重さ11トンの筒型で、内側に反射望遠鏡を収めており、主鏡の直径2.4メートルのいわば宇宙の天文台である。大気や天候による影響を受けないため、地上からでは困難な高い精度での天体観測が可能。.

新しい!!: 観測天文学とハッブル宇宙望遠鏡 · 続きを見る »

バルカン (仮説上の惑星)

バルカン(英語:Vulcan)は、19世紀に水星の更に内側軌道を公転しているとされた想定上の惑星である。水星の近日点移動を解決できるものとして、その存在が考えられたが確認されず、現在では存在しないとされる。.

新しい!!: 観測天文学とバルカン (仮説上の惑星) · 続きを見る »

ラ・パルマ

ラ・パルマ (La Palma).

新しい!!: 観測天文学とラ・パルマ · 続きを見る »

ラ・シヤ天文台

ラ・シヤ天文台(ラ・シヤてんもんだい、ラ・シリャ-とも、La Silla Observatory)は、チリにある天文台。18基の望遠鏡を擁する。9基はヨーロッパ南天天文台 (ESO) が建造、その他も部分的にESOが関わっている。.

新しい!!: 観測天文学とラ・シヤ天文台 · 続きを見る »

ラジオ

ラジオ()とは、.

新しい!!: 観測天文学とラジオ · 続きを見る »

トランシット

トランシット (transit) とは角度を計測する測量機器の一つ。セオドライト (theodolite)、経緯儀(けいいぎ)とも。 ニコン製のセオドライト.

新しい!!: 観測天文学とトランシット · 続きを見る »

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

新しい!!: 観測天文学とヘリウム · 続きを見る »

ヘール望遠鏡

ヘール望遠鏡 ヘール望遠鏡(ヘールぼうえんきょう)はアメリカ合衆国・パロマー天文台にある望遠鏡である。直径は200インチ(以降in).

新しい!!: 観測天文学とヘール望遠鏡 · 続きを見る »

プリズム

プリズム()とは、光を分散・屈折・全反射・複屈折させるための、周囲の空間とは屈折率の異なるガラス・水晶などの透明な媒質でできた多面体。 光学部品の1つであり、もとは「角柱」という意味。日本語では三稜鏡(さんりょうきょう)とも呼ばれた。.

新しい!!: 観測天文学とプリズム · 続きを見る »

パラナル天文台

パラナル天文台(パラナルてんもんだい、Paranal Observatory)は、チリのアタカマ砂漠にある山・セロパラナルに設置された天体観測所で、ヨーロッパ南天天文台によって運営されている。超大型望遠鏡VLT (Very Large Telescope) はパラナルで最大の望遠鏡である。4台の口径8.2mの望遠鏡によって構成される。4台の望遠鏡で観測した光を干渉させ、Very Large Telescope干渉計 (VLTI) として観測を行うこともできる。干渉計としての撮像能力を向上させるため、4台の1.8m補助望遠鏡が追加されている。 さらに、掃天観測に用いられる口径2.6mのVLT掃天望遠鏡 (VST) と口径 4.1mのVISTAが運用されている。.

新しい!!: 観測天文学とパラナル天文台 · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

新しい!!: 観測天文学とビッグバン · 続きを見る »

ドップラー効果

ドップラー効果(ドップラーこうか、Doppler effect)またはドップラーシフト(Doppler shift)とは、波(音波や電磁波など)の発生源(音源・光源など)と観測者との相対的な速度の存在によって、波の周波数が異なって観測される現象をいう。.

新しい!!: 観測天文学とドップラー効果 · 続きを見る »

ニュートリノ

ニュートリノ()は、素粒子のうちの中性レプトンの名称。中性微子とも書く。電子ニュートリノ・ミューニュートリノ・タウニュートリノの3種類もしくはそれぞれの反粒子をあわせた6種類あると考えられている。ヴォルフガング・パウリが中性子のβ崩壊でエネルギー保存則と角運動量保存則が成り立つように、その存在仮説を提唱した。「ニュートリノ」の名はβ崩壊の研究を進めたエンリコ・フェルミが名づけた。フレデリック・ライネスらの実験により、その存在が証明された。.

新しい!!: 観測天文学とニュートリノ · 続きを見る »

ニュートリノ天文学

ニュートリノ天文学(ニュートリノてんもんがく、英語:neutrino astronomy)は、天文学の一分野。太陽や超新星爆発で生成されるニュートリノを観測し、天文現象の解明に役立てることを目的とする。ニュートリノ天文学はまだ発展途上の分野であり、確認されている地球外のニュートリノ源は太陽と超新星SN 1987Aのみである。 観測装置としてはカミオカンデ(解体済み)、スーパーカミオカンデ、カムランド、サドベリー・ニュートリノ天文台 (SNO)、ANTARES、BDUNT、 アイスキューブなどがある。 東京大学名誉教授の小柴昌俊、ペンシルベニア大学名誉教授のレイモンド・デービスがニュートリノ天文学のさきがけとなる成果をあげたとして、2002年にノーベル物理学賞を受賞した。.

新しい!!: 観測天文学とニュートリノ天文学 · 続きを見る »

ニュートリノ検出器

MiniBooNEニュートリノ検出器の内部 ニュートリノ検出器はニュートリノの研究のために設計された物理装置である。ニュートリノは弱い相互作用によってしか他の粒子の物質と反応しないため、有意な数のニュートリノを検出するためにはニュートリノ検出器は非常に大きくなければならない。ニュートリノ検出器は宇宙線やその他のバックグラウンド放射線を避けるためにしばしば地下に建設される。ニュートリノ天文学はまだ発展途上の分野であり、確認されている地球外のニュートリノ源は太陽と超新星SN1987Aのみである。ニュートリノ天文台は「天文学者に宇宙を研究するための新たな目を与える」だろう。 検出には様々な方法が用いられている。スーパーカミオカンデは大量の水を光電子増倍管で取り囲み、入射したニュートリノが水中で電子やミュオンを生成したときに放出されるチェレンコフ放射を観測する。 サドベリー・ニュートリノ天文台も同様の手法だが、検出媒体として重水を用いる。その他の検出器は大量の塩素やガリウムで構成され、元の物質に対してそれぞれニュートリノ相互作用によって生成されるアルゴンやゲルマニウムの過剰量を定期的に確認する。MINOSでは固体プラスチックシンチレータを用い光電子増倍管で観測し、Borexinoではプソイドクメン液体シンチレータを用い同じく光電子増倍管で観測し、NOνA検出器では液体シンチレータ中に通した光ファイバーでシンチレーション光を拾い、それをアバランシェフォトダイオードで検出する。 新たに提案された熱音響効果によるニュートリノの音響検出は、ANTARES、IceCube、KM3NeTの各共同研究が取り組む研究課題である。.

新しい!!: 観測天文学とニュートリノ検出器 · 続きを見る »

分光器

分光器(ぶんこうき、Spectrometer)は、一般には光の電磁波スペクトルを測定する光学機器の総称である。分光器によって得られるスペクトルは、横軸に電磁波の波長又は光のエネルギーに比例した物理量(例えば波数、周波数、電子ボルト)を用い、縦軸には光の強度や強度から導かれる物理量(偏光度)が用いられる。例えば、分光学において、原子や分子の線スペクトルを測定し、その波長と強度を測定するのに用いられる。 分光器という用語は遠赤外からガンマ線・エックス線といった広範囲に渡って、このような目的で用いられる光学機器一般に用いられる。それぞれのエネルギー領域(X線・紫外・可視・近赤外・赤外・遠赤外)においては異なった技術が用いられるので、一つ一つの分光器には、用いることができる特定の領域がある。 光の領域より長波長(マイクロ波、などの電波領域)においてはスペクトラムアナライザが同様の働きをする。.

新しい!!: 観測天文学と分光器 · 続きを見る »

周波数

周波数(しゅうはすう 英:frequency)とは、工学、特に電気工学・電波工学や音響工学などにおいて、電気振動(電磁波や振動電流)などの現象が、単位時間(ヘルツの場合は1秒)当たりに繰り返される回数のことである。.

新しい!!: 観測天文学と周波数 · 続きを見る »

アマチュア天文学

アマチュア天文家達がペルセウス座流星群を観測する様子 アマチュア天文学(アマチュアてんもんがく)とは、天体を観測し、理解を深めることを楽しむ趣味である。 アマチュア天文家達は、一般的に、夜、天体イベントを見るが、日食のように日中行われるイベントもある。観測機材は望遠鏡、双眼鏡等で冷却CCDカメラを使用する者もいる。彗星や小惑星、超新星の発見、流星、掩蔽の観測等、プロの天文学者に劣らない学術的貢献をしている者も少なくない。 一般的なアマチュア天文家達は、本職の天文学者とは異なり、支援や収入を得ない。.

新しい!!: 観測天文学とアマチュア天文学 · 続きを見る »

アリゾナ州

アリゾナ州(State of Arizona 、hoozdo hahoodzo )は、アメリカ合衆国の南西部にある州である。地域区分としてはロッキー山脈西部およびアメリカ合衆国西部にも含められる。世界遺産のグランド・キャニオンを擁することで知られる。元来銅と綿花の生産がさかんで、1980年代に南部サンベルトの一角として発展したが、1990年代に入るまで、ハイテク産業の発展に追いつけなかった。今日ではハイテク産業の一大拠点となっており、カリフォルニア州からの企業流入が著しい。 州都および最大都市はフェニックス市である。第2の都市はツーソンであり、その後に続くのはフェニックス都市圏に入っている8都市、すなわちメサ、グレンデール、チャンドラー、スコッツデール、ギルバート、テンピ、ピオリア、サプライズ、さらにユマ郡のユマである。 アメリカ合衆国の州になったのは1912年2月14日で、48番目の州であり、合衆国本土では最後の州だった。非常に暑い夏と温暖な冬の砂漠気候が特徴であるが、北部の松林や山岳部では低地の砂漠よりもかなり涼しい気候になる。 アリゾナ州はいわゆるフォー・コーナーズと呼ばれる4州の1つである。ニューメキシコ州、ユタ州、ネバダ州およびカリフォルニア州と境を接しており、コロラド州とは州北東部のフォーコーナーズの1点で接している。メキシコのソノラ州とバハ・カリフォルニア州とも国境で接しており、その総延長は389マイル (626 km) になる。人口規模はアメリカ合衆国の内陸州としては最大である。州内にはグランド・キャニオン国立公園がある他、多くの国立の森、公園、保護地域がある。領域の4分の1以上は連邦信託地となっており、ナバホ族、ホピ族、トホノ・オーダム族とアパッチ族、さらにはヤヴァパイ族、クチャン族、フアラパイ族などユマン部族の土地になっている。.

新しい!!: 観測天文学とアリゾナ州 · 続きを見る »

イギリス

レートブリテン及び北アイルランド連合王国(グレートブリテンおよびきたアイルランドれんごうおうこく、United Kingdom of Great Britain and Northern Ireland)、通称の一例としてイギリス、あるいは英国(えいこく)は、ヨーロッパ大陸の北西岸に位置するグレートブリテン島・アイルランド島北東部・その他多くの島々から成る同君連合型の主権国家である。イングランド、ウェールズ、スコットランド、北アイルランドの4つの国で構成されている。 また、イギリスの擬人化にジョン・ブル、ブリタニアがある。.

新しい!!: 観測天文学とイギリス · 続きを見る »

ガリレオ・ガリレイ

リレオ・ガリレイ(Galileo Galilei、ユリウス暦1564年2月15日 - グレゴリオ暦1642年1月8日)は、イタリアの物理学者、天文学者、哲学者。 パドヴァ大学教授。その業績から天文学の父と称され、ロジャー・ベーコンとともに科学的手法の開拓者の一人としても知られている。1973年から1983年まで発行されていた2000イタリア・リレ(リラの複数形)紙幣にガリレオの肖像が採用されていた。.

新しい!!: 観測天文学とガリレオ・ガリレイ · 続きを見る »

ガンマ線天文学

ンマ線天文学(ガンマせんてんもんがく、英語:gamma-ray astronomy)は観測天文学の一分野で、宇宙から飛来するガンマ線を研究する。ガンマ線を放射する天体は超新星残骸、パルサー、活動銀河核等がある。.

新しい!!: 観測天文学とガンマ線天文学 · 続きを見る »

コロナ

1999年8月11日の皆既日食で見られたコロナ コロナ (Corona) とは、太陽の周りに見える自由電子の散乱光のこと。もしくは、太陽表面にあるもっとも外縁にある電気的に解離したガス層。「太陽コロナ」との呼び方もある。.

新しい!!: 観測天文学とコロナ · 続きを見る »

シーイング

ーイング()とは、望遠鏡などで天体を観たときに発生する、星像の位置の揺らぎ(シンチレーション)の程度を表す尺度である。観測記録をつける際に、しばしば5段階や10段階評価でこれを併記する。記入の際は(評価)/(満点)のような記法をとる(たとえば、3/5や2/10)。評価が高いほど数字は大きくなる(揺らぎが少なくなる)。 シンチレーションの主な原因は、大気の揺らぎなどによる空気の屈折率の微小な変化によるものである。近いものは望遠鏡内部の対流や人の体温による対流から、遠いものはジェット気流に至るまで、至る所に発生原因が潜んでおり、予測しにくいことから、望遠鏡の地上からの観測精度の限界のボトルネックになっている。また、現在ではこれを克服するために、補償光学系が開発されており、実際、すばる望遠鏡などに装備されている。.

新しい!!: 観測天文学とシーイング · 続きを見る »

スペックル・イメージング

ペックル・イメージング (英:Speckle imaging、別名 video astronomy) は、一般にシフト・アンド・アッド法 (別名「イメージ・スタッキング法」; image stacking) または スペックル干渉法 (speckle interferometry) を用いる高分解能の天体撮像技術を指す用語である。この技術は地上設置天体望遠鏡の分解能を劇的に改善する。.

新しい!!: 観測天文学とスペックル・イメージング · 続きを見る »

セロ・トロロ汎米天文台

・トロロ・汎米天文台(Cerro Tololo Inter-American Observatory、CTIO, IAU code 807)とは各種の天体望遠鏡・天体観測器具が設置された施設で、南緯30.169度、西経70.804度、チリのラ・セレナからおおよそ80 km東、標高2200mに位置する。この施設はアリゾナ州のキットピーク天文台と同じくアメリカ国立光学天文台(NOAO)に所属する。設置されている望遠鏡は口径4mの ビクター M. ブランコ 望遠鏡と4.1-m SOAR 望遠鏡 (SOAR) である。 NOAOは宇宙望遠鏡科学研究所やジェミニ天文台と同様、大学天文研究機構 (AURA)によって運営されている。ジェミニ天文台の2台の8m望遠鏡のうちの1台はチリに設置されており、CTIOと並んでチリにおけるAURAの研究拠点を形成している。 全米科学財団 (NSF)がNOAOを管理している。 Image:CTIO.jpg Image:Tololo_b.jpg|Aerial view Image:Tololo_a.JPG|Aerial view Image:4m-Victor M. Blanco Telescope.jpg.

新しい!!: 観測天文学とセロ・トロロ汎米天文台 · 続きを見る »

冥王星

冥王星(めいおうせい、134340 Pluto)は、太陽系外縁天体内のサブグループ(冥王星型天体)の代表例とされる、準惑星に区分される天体である。1930年にクライド・トンボーによって発見され、2006年までは太陽系第9惑星とされていた。離心率が大きな楕円形の軌道を持ち、黄道面から大きく傾いている。直径は2,370kmであり、地球の衛星である月の直径(3,474km)よりも小さい。冥王星の最大の衛星カロンは直径が冥王星の半分以上あり、それが理由で二重天体とみなされることもある。.

新しい!!: 観測天文学と冥王星 · 続きを見る »

写真フィルム

35mmスチールカメラ用のパトローネ入りフィルムの例 写真フィルム(しゃしんフィルム)とは写真(映画も含む)において、カメラから得られた光の情報を記録する感光材料であり、現像されることにより記録媒体となるフィルムのこと。透明な薄い膜状のベース(支持体)に感光剤(主として銀化合物.

新しい!!: 観測天文学と写真フィルム · 続きを見る »

光学フィルター

光学フィルター(こうがく—)は、入射光のうち所定の性質を持つ光(例えば、特定の波長範囲の光)だけを透過し、それ以外の光を透過しない光学素子である。これは、写真撮影、多くの光学器具、照明などで広く使われている。カラーフィルタなどが代表例であろう。 光学フィルターのうち、透過しない光を反射することにより光を二方向に分けることを目的とする素子は、ビームスプリッターと呼ばれることも多い。また、写真レンズなどに使うレンズフィルターのほとんどは、光学フィルターである。.

新しい!!: 観測天文学と光学フィルター · 続きを見る »

光害

光害(こうがい、ひかりがい、)とは、過剰または不要な光による公害のことである。夜空が明るくなり、天体観測に障害を及ぼしたり、生態系を混乱させたり、あるいはエネルギーの浪費の一因になるというように、様々な影響がある。光害は、夜間も経済活動が活発な都市化され、人口が密集したアメリカ、ヨーロッパ、日本などで特に深刻である。.

新しい!!: 観測天文学と光害 · 続きを見る »

回折格子

実験用の超大型回折格子 回折格子(かいせつこうし)とは、格子状のパターンによる回折を利用して干渉縞を作るために使用される光学素子の総称。グレーティング()とも呼ばれる。格子パターンは直線状の凹凸がマイクロメートルサイズの周期で平行に並んで構成されていることが多い。ただしその周期、材質やパターン厚(凹凸の差厚)などは用途や使用する波長域によって適宜異なる。主に物理・化学分野で分光素子として用いられるものの用途は一概には言えない。 回折格子による干渉縞が見られる身近な例としては、CDが挙げられる。(後述)(ただしCDは、構造的に回折格子になっているものの、回折を利用しているわけではない) チャンドラのスペクトロメーターに使用された回折格子.

新しい!!: 観測天文学と回折格子 · 続きを見る »

固有運動

固有運動(こゆううんどう、proper motion)とは天体(主に恒星)の天球上の位置の移動を指す名称である。(固有運動には方向の変化のみを含み、奥行方向の運動(視線速度)は考慮しない。)固有運動は、以下のような「その星固有のものでない運動」を除いた後の位置変化を指す。これらは天体の位置を観測した際の座標値に影響を与えるが、天体自身の真の運動ではない。.

新しい!!: 観測天文学と固有運動 · 続きを見る »

CCD

CCD Colony Collapse Disorder.

新しい!!: 観測天文学とCCD · 続きを見る »

CMOS

CMOS(シーモス、Complementary MOS; 相補型MOS)とは、P型とN型のMOSFETをディジタル回路(論理回路)の論理ゲート等で相補的に利用する回路方式(論理方式)、およびそのような電子回路やICのことである。また、そこから派生し多義的に多くの用例が観られる(『#その他の用例』参照)。.

新しい!!: 観測天文学とCMOS · 続きを見る »

球状星団

ハッブル宇宙望遠鏡が撮影したさそり座の球状星団NGC6093(M80) 球状星団(きゅうじょうせいだん、globular cluster)は恒星が互いの重力で球形に集まった天体。銀河の周りを軌道運動している。球状星団は重力的に非常に強く束縛されており、そのために形状は球対称となり、中心核に向かって非常に密度が高くなっている。.

新しい!!: 観測天文学と球状星団 · 続きを見る »

球面天文学

球面天文学(きゅうめんてんもんがく)は地球上の特定の日時、観測位置を与えて天球上の天体の位置を決定するのに使用される天文学の部門。これは天文学の最も古い部門の1つで、球面幾何学の数学的手法と位置天文学の観測に拠る。 球面天文学の起源は古代までさかのぼる。天体観測の必要性は宗教や占星術にとってずっと重要であり、また時刻の決定と航海にとっても同様である。実際に天球上の天体の位置測定の科学は位置天文学として知られている。 球面天文学の基本要素は座標系と時刻である。天体の座標には赤道座標が使われる。これは地球の赤道の天球への投射面を基準としている。この座標系では赤経(α)と赤緯(δ)で天体の位置を表す。必要なら観測地点の緯度と地方時を使って地平座標に変換できる。これは高度と方位で天体の位置を表す。 星や銀河などの天体の座標は星表に記載されている。そこには特定の年での天体の位置に表にまとめられている。しかし時間がたつにつれて歳差と章動によって座標はわずかに移動する。地球の動きによるこれらの変化のため、星表は定期的に発行される。 天体暦は太陽と惑星の位置を決定するのに使用される。これには特定の日時での天球上での位置が記載されていて、必要なら適当な座標に変換をする。 半分は常に地平線下あって一度には見えないが、人間は通常裸眼で約6000個の恒星を見ることができる。現代の星図では天球は88の星座に分割され、すべての星がどれかの星座に属している。星座は航海の役に立つ。現在、ポラリス(現在の北極星)は北半球では観測者から真北の方向近くにあり、1日中天の北極近くに位置する。.

新しい!!: 観測天文学と球面天文学 · 続きを見る »

空気シャワー

気シャワー(くうきシャワー)は物理現象の一つ。.

新しい!!: 観測天文学と空気シャワー · 続きを見る »

紫外線天文学

紫外線天文学(しがいせんてんもんがく、英語:ultraviolet astronomy)は、天文学や天体物理学の一分野で、紫外線の波長で観測できる天体を扱うものである。 紫外線は、およそ10nm(極外紫外線)から380nm(近紫外線)までの波長域に分布する。 紫外線のスペクトル線測定は、星間物質の化学的組成、密度そして温度、さらに若い恒星の温度と組成を識別するために使われている。紫外線の観測によって、宇宙の進化についての極めて重要な情報を得ることも可能である。 紫外線で観測する宇宙は、可視光線で見た馴染み深い恒星や銀河とはかなり異なって見える。大部分の恒星は、実際のところスペクトルの可視範囲の電磁波を多く放射する比較的低温の天体である。紫外線は、より高温の天体の兆候であり、典型的には恒星の進化の初期又は晩期の段階である。もし、我々が紫外線の光で空を見ることができれば、大部分の恒星は目立つものの光に溶け込むだろう。我々は、誕生か死に近くて、熱くなり高エネルギー放射線を生み出している、とても若く巨大な恒星やとても古い恒星や銀河をいくつか見ることができるだろう。また、ガスと塵の雲が、天の川に沿って多くの方向で我々の視野をさえぎることになる。 科学者は、たいてい(鏡、レンズ、半導体デジタル検出機等の)光学用の部品が使われるので、紫外線天文学を光学天文学 の一部として分類する。 ハッブル宇宙望遠鏡やFUSEは、上空の近紫外線と遠紫外線のスペクトルを観測するための主要な宇宙望遠鏡である。.

新しい!!: 観測天文学と紫外線天文学 · 続きを見る »

熱膨張率

熱膨張率(ねつぼうちょうりつ、、略: )は、温度の上昇によって物体の長さ・体積が膨張(熱膨張)する割合を、温度当たりで示したものである。熱膨張係数(ねつぼうちょうけいすう)とも呼ばれる。温度の逆数の次元を持ち、単位は毎ケルビン(記号: )である。.

新しい!!: 観測天文学と熱膨張率 · 続きを見る »

銀河の形成と進化

銀河の形成と進化(Galaxy formation and evolution)に関する研究は、均質な始まりから不均質な宇宙が形成される過程、銀河の経時的な変化、近傍の銀河で観察されるような多様な構造の形成過程等に関して行われてきた。宇宙物理学の領域においても、最も活発な分野の一つである。 銀河の形成は、ビッグバン後の小さな量子的ゆらぎの結果として構造形成理論に従って生じたと考えられている。観測される現象と適合するこれの最も単純なモデルは、Λ-CDMモデルであり、銀河の集合や融合によって銀河は質量を獲得し、また形や構造が決まったとされる。.

新しい!!: 観測天文学と銀河の形成と進化 · 続きを見る »

銀河団

銀河団(ぎんがだん、cluster of galaxies、galaxy cluster)は、多数の銀河が互いの重力の影響によって形成された銀河の集団であり、銀河の数は数百から1万におよぶ。規模の小さいものは銀河群と呼称される。.

新しい!!: 観測天文学と銀河団 · 続きを見る »

補償光学

通常の鏡による反射。空気によるゆらぎがそのまま反射されている。 補償光学に従った鏡の変形による波面補正。空気によるゆらぎが補償される。 補償光学(ほしょうこうがく、Adaptive Optics(適応光学))は、宇宙から地球を撮影したり、地球から宇宙を撮影したりするときに問題となる大気の揺らぎを光電子的に解決するために開発された光学技術である。その構成から「波面補償光学」といった言われかたもしている。 宇宙望遠鏡に頼ることなく望遠鏡の回折限界までの高精度な観測が可能になるため、惑星や小惑星などの観測に用いられて衛星の発見など新たな発見がもたらされた。.

新しい!!: 観測天文学と補償光学 · 続きを見る »

高エネルギー天文学

ネルギー天文学(こうエネルギーてんもんがく)とは、高エネルギー物理学で取り扱うのと同じ領域の観測を行う天文学の名称。.

新しい!!: 観測天文学と高エネルギー天文学 · 続きを見る »

超新星

プラーの超新星 (SN 1604) の超新星残骸。スピッツァー宇宙望遠鏡、ハッブル宇宙望遠鏡およびチャンドラX線天文台による画像の合成画像。 超新星(ちょうしんせい、)は、大質量の恒星が、その一生を終えるときに起こす大規模な爆発現象である。.

新しい!!: 観測天文学と超新星 · 続きを見る »

赤外線天文学

赤外線天文学(せきがいせんてんもんがく、英語:infrared astronomy)は天文学や天体物理学の一分野で、赤外線の波長で観測できる天体を扱うものである。可視光線はおよそ400nm(紫)から700nm(赤)までの波長域に分布するが、700nm よりも波長が長く、マイクロ波よりも短い波長の電磁波を赤外線と呼ぶ(赤外線の波長域の中でも比較的長波長のものはサブミリ波と呼ぶ場合もある)。 研究者は赤外線天文学を光学天文学の一部として分類している。これは、赤外線天文学でも可視光の天文学と同様の観測装置(鏡、レンズ、固体撮像素子など)が通常用いられるためである。.

新しい!!: 観測天文学と赤外線天文学 · 続きを見る »

赤道儀式架台

ドイツ式赤道儀 赤道儀式架台(Equatorial mount )は天体望遠鏡専用の架台である。.

新しい!!: 観測天文学と赤道儀式架台 · 続きを見る »

赤方偏移

赤方偏移(せきほうへんい、redshift)とは、主に天文学において、観測対象からの光(可視光だけでなく全ての波長の電磁波を含む)のスペクトルが長波長側(可視光で言うと赤に近い方)にずれる現象を指す。 波長λのスペクトルがΔλだけずれている場合、赤方偏移の量 z を と定義する。.

新しい!!: 観測天文学と赤方偏移 · 続きを見る »

開口合成

開口合成(かいこうごうせい、英語:aperture synthesis)とは、複数の受信機を利用して、高分解能な情報を取得するための技術である。開口とは、電磁波を受信する素子、すなわち受信機を意味する言葉であり、複数の受信機を1つの大きな受信機に合成したような効果が得られるため、このように呼ぶ。.

新しい!!: 観測天文学と開口合成 · 続きを見る »

肉眼

肉眼(にくがん)とは光学機器を付けずに観測すること。 またその行為である。.

新しい!!: 観測天文学と肉眼 · 続きを見る »

重力波

重力波(じゅうりょくは) 次の2つの現象は異なるものだが、日本語ではどちらも重力波と呼ばれる。.

新しい!!: 観測天文学と重力波 · 続きを見る »

量子収率

光化学反応を起こした原子または分子の個数mと、吸収された光子の個数nとの比m/nを、量子収率(または量子収量)という。なお蛍光・リン光や光電子放出の場合には、放出された光子や光電子の個数をmとして、m/nを量子収率という。量子収率は照射光の波長にも依るが、特に反応の種類・条件に著しく左右される。 この量を問題にするときは、光吸収の初期段階とそれに続く反応過程とをはっきり区別する必要がある。なぜなら光によって活性化された分子が必ず反応に関与するとは限らないし、また逆に光を吸収していない分子が反応を起こすこともあるからである。したがって量子収率の値が1になることは滅多に無く、通常はそれ以下である。しかし活性化された分子が連鎖反応を引き起こすような場合には、その値が1に比べて著しく大きくなる。例えばH2とCl2の光化学反応の場合には量子収率が106にも達する。 Category:光化学.

新しい!!: 観測天文学と量子収率 · 続きを見る »

酸化チタン(IV)

酸化チタン(IV)(さんかチタン よん、titanium(IV) oxide)は組成式 TiO2、式量79.9の無機化合物。チタンの酸化物で、二酸化チタン(titanium dioxide)や、単に酸化チタン(titanium oxide)、およびチタニア(titania)とも呼ばれる。 天然には金紅石(正方晶系)、鋭錐石(正方晶系)、板チタン石(斜方晶系)の主成分として産出する無色の固体で光電効果を持つ金属酸化物。屈折率はダイヤモンドよりも高い。.

新しい!!: 観測天文学と酸化チタン(IV) · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: 観測天文学と電磁波 · 続きを見る »

電波天文学

電波天文学(でんぱてんもんがく、英語:radio astronomy)は、電波を天体の観測手段として用い、天体に関する研究を行う天文学の一分野。.

新しい!!: 観測天文学と電波天文学 · 続きを見る »

電波天文衛星

電波天文衛星(でんぱてんもんえいせい、)とは、電波天文学観測を専門的に行う衛星のこと。.

新しい!!: 観測天文学と電波天文衛星 · 続きを見る »

電波望遠鏡

'''電波望遠鏡''' アメリカ合衆国ニューメキシコ州ソコロに並ぶ超大型干渉電波望遠鏡群。直径25mのパラボラアンテナを27台集積し、直径130mの電波望遠鏡として機能する '''アレシボ電波望遠鏡''' 自然の窪地を利用した、305mの巨大球面アンテナ。ただしアンテナの向きは変更できない。プエルトリコ、アレシボ 電波望遠鏡(でんぱぼうえんきょう、radio telescope)は、可視光線を集光して天体を観測する光学式の天体望遠鏡に対して、電波を収束させて天体を観測する装置の総称。これを専門に用いる電波天文学という分野がある。.

新しい!!: 観測天文学と電波望遠鏡 · 続きを見る »

連星

連星(れんせい、)とは2つの恒星が両者の重心の周りを軌道運動している天体である。双子星(ふたごぼし)とも呼ばれる。連星は、地球から遠距離にあると、一つの恒星と思われ、その後に連星である事が判明する場合もある。この2世紀間の観測で、肉眼で見える恒星の半数以上が連星である可能性が示唆されている。通常は明るい方の星を主星、暗い方を伴星と呼ぶ。また、3つ以上の星が互いに重力的に束縛されて軌道運動している系もあり、そのような場合にはn連星またはn重連星などと呼ばれる。 また、二重星という言葉も連星を示す場合が多い。しかし、実際には、複数の恒星が地球から見て、同じ方向に位置しており、「見かけ上、連星のように見える」場合を表す。それぞれの恒星の、地球からの距離は全く異なり、物理的にも何の関連性も無い。二重星は、距離が異なるので、光度の差から、年周視差や視線速度を正確に求める事が出来る。しかし、中にはアルビレオのように、二重星か真の連星かが分かっていないものもある。.

新しい!!: 観測天文学と連星 · 続きを見る »

OWL望遠鏡

OWL望遠鏡(英:Overwhelmingly Large Telescope)とは、ESO(ヨーロッパ南天天文台)にて検討が行われた、単一口径100m鏡相当を持つ次世代大型光赤外望遠鏡のこと。その後、より実現可能なサイズである口径39mの"E-ELT計画(European Extremely Large Telescope)"の準備が行われている。 本項では、その検討が進められていたOWL望遠鏡計画と、実現に向けて進められているE-ELT計画について概要のみを記載する。.

新しい!!: 観測天文学とOWL望遠鏡 · 続きを見る »

SN 1987A

SN 1987A すなわち1987年超新星A は、大マゼラン雲内に発見された超新星である。初めて観測されたのが1987年2月23日であり、これが同年最初に観測された超新星であることから 1987A という符号が付けられている。「SN」は「超新星」を意味する "supernova" の略である。地球からは16.4万光年離れている。23日午前10時30分(UT)に撮影された大マゼラン雲の写真に写っており、可視光で捉えられたのはこれが最初とされる。超新星発見の報告が最初になされたのは24日のことである。超新星の明るさは5月にピークを迎え、視等級にして最大3等級となったあと、数ヵ月かけて徐々に減光した。肉眼で観測された超新星としては1604年に観測された SN 1604(ケプラーの超新星)以来383年ぶりであり、現代の天文学者にとっては初めて超新星を間近に観察する機会となった。 日本では陽子崩壊の観測のために建設されたカミオカンデがこのニュートリノを捉えており、精密な観測を行うことができた成果により建設を主導した東京大学名誉教授の小柴昌俊が2002年にノーベル物理学賞を受賞している。 SN 1987A の超新星爆発を起こした恒星はサンデュリーク-69° 202という質量が太陽の20倍ほどの青色超巨星であることが分かっている。また爆発後には超新星残骸として三重リング構造を持つ星雲状の天体が観測されている。 この三重リングは過去に放出されたガスに光が反射して見えたものと考えられている。.

新しい!!: 観測天文学とSN 1987A · 続きを見る »

X線天文学

X線天文学(エックスせんてんもんがく、X-ray astronomy)は、観測天文学の一分野で、天体から放射されるX線の研究を行なう。X線放射は地球の大気によって吸収されるため、X線の観測装置は高い高度へ運ばなければならない。そのためにかつては気球やロケットが用いられた。現在ではX線天文学は宇宙探査の一分野となっており、X線検出器は人工衛星に搭載されるのが普通である。 X線は一般に、100万~1億Kという極端な高温のガスから放射される。このような天体では原子や電子が非常に高いエネルギーを持っている。1962年の最初の宇宙X線源の発見は驚くべきものであった。このX線源はさそり座で最初に発見されたX線源であることからさそり座X-1と呼ばれ、天の川の中心方向に位置していた。発見者のリカルド・ジャコーニはこの発見によって2002年のノーベル物理学賞を受賞した。後に、このX線源から放出されているX線は可視光での放射強度より1万倍も強いことが明らかになった。さらに、このX線の放射エネルギーは太陽の全波長での放射エネルギーの10万倍に達するものであった。現在では、このようなX線源は中性子星やブラックホールといったコンパクト星であることが分かっている。このような天体のエネルギー源は重力エネルギーである。天体の強い重力場によって落ち込んだガスが加熱されて高エネルギーのX線を放射している。 現在までに数千個のX線源が知られている。加えて、銀河団にある銀河同士の間の空間は約1億Kという非常に高温でしかも非常に希薄なガスで満たされているらしいことが分かっている。この高温ガスの総量は観測できる銀河の質量の5~10倍に達する。この意味で我々はまさに高温の宇宙に住んでいると言える。.

新しい!!: 観測天文学とX線天文学 · 続きを見る »

恒星大気

1999年8月11日の日食の際にフランスで撮影された太陽の大気 恒星大気(Stellar atmosphere)は、恒星の外層領域であり、核、放射層、対流層の外側にある。異なった特徴を持ついくつかの領域に分けることができる。.

新しい!!: 観測天文学と恒星大気 · 続きを見る »

標準光源 (天文)

標準光源(ひょうじゅんこうげん、standard candle)とは天文学で距離を推定する際に用いられる天体で、絶対的な光度が分かっている天体を指す。銀河系外を対象とする天文学や宇宙論の分野では、距離を導出する重要な手法のいくつかが標準光源に基づく方法を採っている。既に分かっている標準光源の絶対光度(またはその対数をとった絶対等級)と、実際に観測される見かけの明るさ(見かけの等級)とを比較することで、その天体までの距離を以下のように計算することができる。 ここで D は天体までの距離、kpc は1キロパーセク、m は天体の見かけの等級、M は天体の絶対等級である(m と M は静止系で同じ波長域について測光した値を用いる)。 標準光源として用いられる天体には以下のようなものがある。.

新しい!!: 観測天文学と標準光源 (天文) · 続きを見る »

水蒸気

水蒸気(すいじょうき、稀にスチームともいう)は、水が気化した蒸気。空気中の水蒸気量、特に飽和水蒸気量に対する水蒸気量の割合を湿度という。.

新しい!!: 観測天文学と水蒸気 · 続きを見る »

水星

水星(すいせい、英:Mercury マーキュリー、Mercurius メルクリウス)は、太陽系にある惑星の1つで、太陽に最も近い公転軌道を周回している。岩石質の「地球型惑星」に分類され、太陽系惑星の中で大きさ、質量ともに最小のものである以前最小の惑星だった冥王星は2006年に準惑星へ分類変更された。。.

新しい!!: 観測天文学と水星 · 続きを見る »

気象学

気象学(きしょうがく、meteorology)は、地球の大気で起こる諸現象(気象)や個々の流体現象を研究する学問。自然科学あるいは地球科学の一分野。 気象を長期的な傾向から、あるいは地理学的観点から研究する気候学は、気象学の一分野とされる場合もあるが、並列する学問とされる場合もある。現代では気象学と気候学をまとめて大気科学(atmospheric science)と呼ぶこともある。 なお、将来の大気の状態の予測という実用に特化した分野を天気予報(気象予報)という。.

新しい!!: 観測天文学と気象学 · 続きを見る »

活動銀河

活動銀河(かつどうぎんが、active galaxy)は、星、星間塵、星間ガスといった通常の銀河の構成要素とは別の部分からエネルギーの大半が放出されている特殊な銀河。このエネルギーは、活動銀河の種類によって若干異なるが、電波、赤外線、紫外線、X線、γ線など、電磁波のほぼ全ての波長域で放出されている。このエネルギーの大半を、銀河の中心1%程度のコンパクトな領域から放出しており、この部分を活動銀河核 (active galactic nucleus) と呼ぶ。 活動銀河 M87(画面左上の黄色の天体)から5000光年の長さにわたるジェットが放出されている様子。光速近くまで加速された電子が青白い光を放ちながら放出されている。.

新しい!!: 観測天文学と活動銀河 · 続きを見る »

測光 (天文)

測光(そっこう、photometry)とは、天体の明るさを測定するための観測手法である。通常、特定の波長域の電磁波だけを透過するフィルターを通して観測を行い、多くの場合、複数のフィルターを使用して、明るさに加えて色の情報を得て、天体の大まかな性質を調べることを目的としている。多数の波長域で観測すれば、スペクトルエネルギー分布(SED)を推定することもでき、そのような観測手法は分光測光とも言われる。 eso0528。各フィルターの波長感度特性が重ねて描かれている。 測光を意味する単語"photometry"は、ギリシャ語で「光」を意味する"photos"と「測定」を意味する"metron"からできている。.

新しい!!: 観測天文学と測光 (天文) · 続きを見る »

満月

Schmidt-Cassegrainを通して見ました。 月はその最大の北部黄道緯度の近くにあったので、南のクレーターは特に顕著です。 満月(まんげつ)とは、月と太陽の黄経差が180度となること、あるいはその瞬間。これを望(ぼう)ともいう。またこの時に見られる月の形をも指す。これを望月(ぼうげつ・もちづき)、盈月(えいげつ)ともいう。月齢は13.8〜15.8であることが多く、平均では14.8である。月相は14。太陰暦では15日か16日であることが多いので、満月の日の晩を十五夜とも呼んだ。満月は、ほぼ日没とともに東の空に昇り、明け方には西の空に沈むこれ以降は月の出がおよそ50分ずつ遅くなる(即ち新月では、太陽と同じく朝に出てきて夕方には沈む)。。.

新しい!!: 観測天文学と満月 · 続きを見る »

月の裏

月の裏(つきのうら)は、月の、地球とは反対側の半球である。月は自転と公転が同期し常に地球に同じ側を向けているため、地球から見て「表と裏」の区別がある。.

新しい!!: 観測天文学と月の裏 · 続きを見る »

望遠鏡

望遠鏡(ぼうえんきょう)とは、遠くにある物体を可視光線・赤外線・X線・電波などの電磁波を捕えて観測する装置である。古くは「遠眼鏡(とおめがね)」とも呼ばれた。 観測に用いられる電磁波の波長により、光学望遠鏡と電波望遠鏡に大別される。電磁波を捕える方式による分類では反射望遠鏡と屈折望遠鏡がある。.

新しい!!: 観測天文学と望遠鏡 · 続きを見る »

惑星科学

惑星科学(わくせいかがく、planetary science)は、惑星について研究する学問である。地球科学と天文学をつなぐ学問であるといえるが、天文学が中学校・高等学校においては地学分野に、大学では物理学の一分野として位置づけられているのに対し、惑星科学は中学・高校・大学のいずれでも地学=地球科学の一分野とされている。それは惑星科学が地球科学の他惑星への応用という一面を持っているからである。 なお、惑星科学のうち特に物理学的手法を用いるものを惑星物理学と呼ぶ。.

新しい!!: 観測天文学と惑星科学 · 続きを見る »

海王星

海王星(かいおうせい、Neptunus、Neptune)は、太陽系の太陽に近い方から8番目の惑星である。太陽系惑星の中では最も太陽から遠い位置を公転している。名称のNeptuneは、ローマ神話における海神ネプトゥーヌスにちなむ。.

新しい!!: 観測天文学と海王星 · 続きを見る »

日食

2006年3月29日のトルコでの皆既日食 2012年5月21日に茨城県鹿嶋市で観測された金環日食 日食(にっしょく、solar eclipse)とは太陽が月によって覆われ、太陽が欠けて見えたり、あるいは全く見えなくなる現象である。 日蝕と表記する場合がある。 朔すなわち新月の時に起こる。.

新しい!!: 観測天文学と日食 · 続きを見る »

摂動 (天文学)

重力シミュレーターによって計算された水星(赤)、金星(黄)、地球(黒)、火星(ピンク)の軌道離心率。2007年を0として5万年後まで計算。左側の目盛りは地球と金星の離心率を、右側の目盛りは水星と火星の離心率の値を示している。 摂動(せつどう)は、天文学の用語で、ある天体とその母天体(例えば恒星と惑星、または惑星と衛星)の作る系に対し、外部の物体との重力作用によって、その軌道が乱されること。太陽系では、彗星の軌道が特にガス惑星の重力場によってしばしば乱される。例として、1996年4月に木星の重力によって、ヘール・ボップ彗星の軌道周期は4206年から2380年に減少した。 惑星の継続的な摂動は軌道要素に小さな変化をもたらす。海王星は天王星の軌道の摂動の観測に基づいて発見された。金星の軌道は現在、惑星の中で最も円形の軌道であるが、2万5000年のうちに地球は金星より円形の軌道に、つまり軌道離心率がより小さくなるだろう。 その他、摂動の自然原因として、他の彗星、小惑星、太陽フレアなどがある。人工衛星では、空気抵抗や太陽輻射圧が原因となることもある。.

新しい!!: 観測天文学と摂動 (天文学) · 続きを見る »

放出スペクトル

放出スペクトル(ほうしゅつスペクトル、)は、原子や分kが低いエネルギー準位に戻る時に放出する電磁波の周波数のスペクトルである。 それぞれの原子の放出スペクトルは固有のものであり、そのため分光法によって、未知の化合物に含まれる元素を同定することができる。同様に、分子の放出スペクトルは、物質の化学分析に用いることができる。.

新しい!!: 観測天文学と放出スペクトル · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »