ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

恒星大気

索引 恒星大気

1999年8月11日の日食の際にフランスで撮影された太陽の大気 恒星大気(Stellar atmosphere)は、恒星の外層領域であり、核、放射層、対流層の外側にある。異なった特徴を持ついくつかの領域に分けることができる。.

22 関係: 天体物理学太陽対流層巨星主系列星彩層プラズマアメリカ航空宇宙局コロナ光球磁場遷移層食変光星超巨星掩蔽恒星恒星磁場恒星黒点核 (天体)日食放射層

天体物理学

天体物理学(てんたいぶつりがく、英語:astrophysics)は、天文学及び宇宙物理学の一分野で、恒星・銀河・星間物質などの天体の物理的性質(光度・密度・温度・化学組成など)や天体間の相互作用などを研究対象とし、それらを物理学的手法を用いて研究する学問である。宇宙物理学とも。天文学の中でも19世紀以降に始まった比較的新しい分野で、天文学の近代部門の代表的な分野と目されている。 例として、宇宙論の研究は、理論天体物理学の中で最も規模の大きな対象を扱う学問であるが、逆に宇宙論(特にビッグバン理論)では、我々が知っている最も高いエネルギー領域を扱うがゆえに、宇宙を観測することがそのまま最も微小なスケールでの物理学の実験そのものにもなっている。 実際には、ほぼ全ての近代天文学の研究は、物理学の要素を多く含んでいる。多くの国の天文学系の大学院博士課程の名称は、「天文学 (Astronomy)」や「天体物理学 (Astrophysics)」などまちまちだが、これは専攻の学問内容よりもその研究室の歴史を反映しているに過ぎない。.

新しい!!: 恒星大気と天体物理学 · 続きを見る »

太陽

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。人類が住む地球を含む太陽系の物理的中心尾崎、第2章太陽と太陽系、pp. 9–10であり、太陽系の全質量の99.86%を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か。 太陽は属している銀河系の中ではありふれた主系列星の一つで、スペクトル型はG2V(金色)である。推測年齢は約46億年で、中心部に存在する水素の50%程度を熱核融合で使用し、主系列星として存在できる期間の半分を経過しているものと考えられている尾崎、第2章太陽と太陽系、2.1太陽 2.1.1太陽の概観 pp. 10–11。 また、太陽が太陽系の中心の恒星であることから、任意の惑星系の中心の恒星を比喩的に「太陽」と呼ぶことがある。.

新しい!!: 恒星大気と太陽 · 続きを見る »

対流層

太陽の構造:1. 太陽核2. 放射層3. '''対流層'''4. 光球5. 彩層6. コロナ7. 太陽黒点8. 粒状斑9. 紅炎 対流層(たいりゅうそう、Convection zone)とは、恒星の中でエネルギーが主に対流によって運ばれている領域である。放射層では、エネルギーは放射によって運ばれる。恒星の対流はプラズマの運動であり、温められたプラズマが上昇し、冷えたプラズマが下降するという円対流を形成する。恒星中では、対流は温度勾配が急な(例えば、恒星の中心からの距離によって温度が急激に変化する)時に起きる。全ての恒星は中心が最も熱く、光球が最も冷たい。そこで恒星のどの部分でも、わずかに上昇したガスの一団は周りよりも熱くなる。周囲の冷たい領域との熱交換が十分速く行われれば、すぐに冷え、それ以上上昇しなくなる。しかし、温度勾配が十分に急であれば、冷える速度よりも浮力が勝るため、温められたガスの一団はそのまま上昇を続ける。恒星の中でこのような過程が起こる領域が対流層と呼ばれる。 太陽のような低質量の主系列星では、対流層は外側の約30%を占めている。温められたガスが表面まで出てくると、冷やされて再び恒星内部に戻る。温かいガスは冷たいガスよりも多くの放射を放出し、ガスの対流は恒星の粒状斑を形成する。このような恒星では、対流層は放射層を取り巻いている。 太陽質量の1.1倍以上の恒星では、水素からヘリウムへの原子核合成は、陽子-陽子連鎖反応ではなくCNOサイクルによって進行する。CNOサイクルは温度に非常に影響されるため、核は非常に熱いが、急激に温度が低下することがある。そのため、核の領域も水素燃料と生成したヘリウムを混合する対流層を形成する。これらの恒星の核の対流層には、熱的に平衡でほぼ混合が起こらない放射層が重なっている。 赤色矮星のような低質量の主系列星や赤色巨星のような主系列後の星は、放射層を持たず全てが対流層である。.

新しい!!: 恒星大気と対流層 · 続きを見る »

巨星

ESO image.'' 巨星(きょせい、giant star)とは、同じ表面温度を持つ主系列星よりも半径および明るさが非常に大きい恒星のことである。Giant star, entry in Astronomy Encyclopedia, ed.

新しい!!: 恒星大気と巨星 · 続きを見る »

主系列星

主系列星(しゅけいれつせい、main sequence star)とは、ヘルツシュプルング・ラッセル図(HR図)上で、左上(明るく高温)から図の右下(暗く低温)に延びる線である主系列 (Main Sequence) に位置する恒星をいう。矮星ともいう。.

新しい!!: 恒星大気と主系列星 · 続きを見る »

彩層

彩層(さいそう、chromosphere)とは、太陽などの恒星の表層部分で、光球の外側、コロナの内側に位置する薄いガスによって形成される層。 太陽の場合、厚さは数千から1万km。彩層の最下層である温度最低層では光球よりやや低温(4,700-5,800K)で、高度と共に増加してコロナとの境界層(遷移層)付近では1万度ケルビンに達する。彩層では磁場が支配的であり、磁気エネルギーの解放現象である太陽フレアや、プラズマが磁力線によって太陽大気中に保持された紅炎(プロミネンス)が観測される。肉眼では地球上から視認することはできないが、皆既日食発生時や水素の出すHα線フィルターを用いることで観測する事ができる。 Category:太陽.

新しい!!: 恒星大気と彩層 · 続きを見る »

プラズマ

プラズマ(英: plasma)は固体・液体・気体に続く物質の第4の状態R.

新しい!!: 恒星大気とプラズマ · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

新しい!!: 恒星大気とアメリカ航空宇宙局 · 続きを見る »

コロナ

1999年8月11日の皆既日食で見られたコロナ コロナ (Corona) とは、太陽の周りに見える自由電子の散乱光のこと。もしくは、太陽表面にあるもっとも外縁にある電気的に解離したガス層。「太陽コロナ」との呼び方もある。.

新しい!!: 恒星大気とコロナ · 続きを見る »

光球

光球(こうきゅう、)とは、太陽などの恒星の表層部分にあり、不透明なガスによって形成される薄い層である。恒星の外部に放出される光はこの層で発生するため、視覚的な恒星の表面に相当する。光自体は内部からも発生しているが、これらの光は光球内のガスに吸収されるため、外に出ることはない。 地球上から視認できる太陽光は、太陽の光球から発せられている。厚さは300~500kmで、温度は4,500~6,000Kと深度によって変化する。太陽光は光球の各深度で発生する光が合成されたものだが、シュテファン=ボルツマンの法則に当てはめると5800Kの物体が発する光に相当するため、一般にはこの値が太陽の表面温度とされる。光球は粒状斑と呼ばれる直径1000km程度の無数の対流セルから構成され、太陽黒点、白斑が現れる事もある。 太陽以外の恒星にも光球は存在し、その温度は太陽より低温のものから高温のものまで様々である。粒状斑は小さすぎるため観測不能だが、恒星の自転に伴う周期的な光度の変化から黒点や白斑の存在が知られている天体もある。.

新しい!!: 恒星大気と光球 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: 恒星大気と磁場 · 続きを見る »

遷移層

TRACEによる波長19.5 nmの画像。遷移層は、太陽表面の上の明るい霧のように見える。 遷移層(Solar transition region)は、太陽の大気で彩層とコロナの間の領域である 。 紫外線望遠鏡を用いて宇宙から観測することができる。いくつかの無関係だが重要な遷移が起こっているため、重要である。.

新しい!!: 恒星大気と遷移層 · 続きを見る »

食変光星

アルゴル型食変光星の変光の原理(動画)。実際は、青白い主星の方が、赤色がかった伴星より半径が小さい場合がほとんどである。動画の例では、食が皆既食・金環食なので、実際の光度曲線は食の中央が平坦になる。 食変光星(しょくへんこうせい)(eclipsing variable (star))とは、共通重心の周りを回る2つの星が互いの光を覆い隠し合うことによって、みかけの明るさ(2星の合成光度)が変わるタイプの変光星である。そのため、食変光星は必ず連星系を形成している。また、地球から見てこの連星系が食変光星に見えるためには、2つの星の軌道面が、地球と連星系とを結んだ直線を含む平面の近くに存在する必要がある。一般的に、恒星自身の明るさは変わらず、規則的に変光するのが特徴である(ただし、後述するカシオペヤ座RZ星のように、連星系の一方が脈動変光星の場合はこの限りではない)。なお、「食変光星」は変光星としての分類であり、連星の分類として食連星(しょくれんせい)(eclipsing binary)と呼ばれることもある。.

新しい!!: 恒星大気と食変光星 · 続きを見る »

超巨星

超巨星(ちょうきょせい、supergiant)は、太陽よりはるかに大きく明るい恒星のこと。明るさは青色超巨星の場合は太陽の1万倍(全エネルギー放射で太陽の10万倍)以上、赤色超巨星の場合は太陽の数千倍(同3万倍)以上ある。また、直径は青色超巨星で太陽の数十倍以上、赤色超巨星では太陽の数百倍以上はある。最も巨大な恒星は、最近までおおいぬ座VY星と言われていた。 2012年の時点で直径がそれなりの精度でわかっている中では、太陽の1650倍ほどであるはくちょう座V1489星が最も大きな恒星となっている。.

新しい!!: 恒星大気と超巨星 · 続きを見る »

暈、2018年東京で観測 暈(かさ、halo、英語読み:ヘイロー)とは、太陽や月に薄い雲がかかった際にその周囲に光の輪が現れる大気光学現象のことである。特に太陽の周りに現れたものは日暈(ひがさ、にちうん)、月の周りに現れたものは月暈(つきがさ、げつうん)という。虹のようにも見えることから白虹(はっこう、しろにじ)ともいう。.

新しい!!: 恒星大気と暈 · 続きを見る »

掩蔽

1997年7月29日のアルデバランの掩蔽。アルデバランが月の暗縁から出現した直後。 掩蔽(えんぺい、)とは、ある天体が観測者と他の天体の間を通過するために、その天体が隠される現象である。.

新しい!!: 恒星大気と掩蔽 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

新しい!!: 恒星大気と恒星 · 続きを見る »

恒星磁場

恒星磁場(こうせいじば)とは恒星の内部にある伝導性をもつプラズマの運動によって形成される磁場のことである。プラズマの運動は対流に伴って形成される。対流は物質の物理的運動を含むエネルギーの移動の形態の1つである。局所的な磁場はプラズマに力を及ぼし、相当する密度の増大を伴わずに圧力を効果的に引きあげる。その結果、磁化された領域は残りのプラズマに応じてその恒星の光球に達するまで膨れ上がる。これが光球面の恒星黒点やに関連した現象を生む。.

新しい!!: 恒星大気と恒星磁場 · 続きを見る »

恒星黒点

恒星黒点(こうせいこくてん、Starspot)は、太陽以外の恒星に存在する、太陽の黒点に相当する構造である。太陽の黒点程度の大きさのものは、明るさのゆらぎが小さすぎて検出できないが、太陽の黒点の約100倍、恒星表面の30%に達するほど大きなものは検出することができる。.

新しい!!: 恒星大気と恒星黒点 · 続きを見る »

核 (天体)

核(かく)は、天体の中心部分の構造。中心核(ちゅうしんかく)文部省『学術用語集 地学編』 日本学術振興会、1984年、ISBN 4-8181-8401-2。とも。惑星・衛星・恒星などの核はコア (core) とも言う(彗星・活動銀河の核は英語ではnucleusであるため、コアとは言わない)。.

新しい!!: 恒星大気と核 (天体) · 続きを見る »

日食

2006年3月29日のトルコでの皆既日食 2012年5月21日に茨城県鹿嶋市で観測された金環日食 日食(にっしょく、solar eclipse)とは太陽が月によって覆われ、太陽が欠けて見えたり、あるいは全く見えなくなる現象である。 日蝕と表記する場合がある。 朔すなわち新月の時に起こる。.

新しい!!: 恒星大気と日食 · 続きを見る »

放射層

太陽の構造:1. 太陽核2. '''放射層'''3. 対流層4. 光球5. 彩層6. コロナ7. 太陽黒点8. 粒状斑9. 紅炎 放射層(ほうしゃそう、Radiation zone)は、太陽内部の中間の層である。生産されたエネルギーは核を出て放射層に入り、電磁波の形で放射層を通過する。放射層は密度が大きいため、波はあちこちに飛びまわり、何百年もかけて放射層を通過する。放射層は対流層の直下にあり、核のすぐ上にある。エネルギーが核からやってきて放射層を抜けるまでには、平均で17万1000年を要する。 質量の小さな赤色矮星や、主系列星段階を終えた赤色巨星などを除き、多くの恒星の内部には太陽と同様の放射層があると考えられている。.

新しい!!: 恒星大気と放射層 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »