ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

球状星団

索引 球状星団

ハッブル宇宙望遠鏡が撮影したさそり座の球状星団NGC6093(M80) 球状星団(きゅうじょうせいだん、globular cluster)は恒星が互いの重力で球形に集まった天体。銀河の周りを軌道運動している。球状星団は重力的に非常に強く束縛されており、そのために形状は球対称となり、中心核に向かって非常に密度が高くなっている。.

37 関係: きょしちょう座きょしちょう座47さそり座天の川太陽太陽質量伴銀河地球ヘルツシュプルング・ラッセル図ヘルクレス座パルサーパーセクアンドロメダ銀河ケンタウルス座シャプレー・ソーヤー集中度スターバースト光年矮小銀河球対称銀河銀河ハロー銀河バルジ銀河系青色はぐれ星重力M13 (天体)M4 (天体)M87 (天体)恒星恒星進化論楕円銀河渦巻銀河潮汐力星形成星団散開星団1930年代

きょしちょう座

きょしちょう座(巨嘴鳥座、Tucana)は、南天の星座の1つ。巨嘴鳥とは、キツツキ目オオハシ科に属する鳥類のことである。.

新しい!!: 球状星団ときょしちょう座 · 続きを見る »

きょしちょう座47

きょしちょう座47(NGC 104、Caldwell 106、、Melotte 1)は、きょしちょう座にある球状星団である。実視等級が4.0等と明るく、ケンタウルス座のω星団とともに肉眼で見ることができる球状星団の一つである。.

新しい!!: 球状星団ときょしちょう座47 · 続きを見る »

さそり座

さそり座(蠍座、Scorpius, Scorpio)は、黄道十二星座の1つ。トレミーの48星座の1つでもある。 天の川沿いにある大きくて有名な星座である。日本では夏の大三角と共に夏の星座として親しまれ、南の空に確認することができる。天の川に大きなS字型で横たわっており、特徴的な形をしている。明るい星が多く、全天でも明るい星座の一つである。 α星は、全天21の1等星の1つであり、アンタレスと呼ばれる。.

新しい!!: 球状星団とさそり座 · 続きを見る »

天の川

天の川あるいは天の河(あまのがわ)は、夜空を横切るように存在する雲状の光の帯のこと。 東アジアの神話では夜空の光の帯を、川(河)と見ている(→#東アジアの神話)。一方、ギリシャ神話では、これを乳と見ている。それが継承され英語圏でもMilky Way(ミルキーウェイ)と言うようになった。(→#ギリシャ神話) この光の帯は天球を一周しており、恒星とともに日周運動を行っている。 日本では、夏と冬に天の川が南北に頭の上を越える位置に来る。これをまたいで夏には夏の大三角が、冬には冬の大三角が見える。他の星も天の川の周辺に多いので、夏と冬の夜空はにぎやかになる。 現在では「天の川」や「Milky Way」という言葉で、天球上の(視覚的な)帯だけでなく、地球を含む星の集団、つまり天の川銀河を指すこともある。(→#天文学における天の川 ).

新しい!!: 球状星団と天の川 · 続きを見る »

太陽

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。人類が住む地球を含む太陽系の物理的中心尾崎、第2章太陽と太陽系、pp. 9–10であり、太陽系の全質量の99.86%を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か。 太陽は属している銀河系の中ではありふれた主系列星の一つで、スペクトル型はG2V(金色)である。推測年齢は約46億年で、中心部に存在する水素の50%程度を熱核融合で使用し、主系列星として存在できる期間の半分を経過しているものと考えられている尾崎、第2章太陽と太陽系、2.1太陽 2.1.1太陽の概観 pp. 10–11。 また、太陽が太陽系の中心の恒星であることから、任意の惑星系の中心の恒星を比喩的に「太陽」と呼ぶことがある。.

新しい!!: 球状星団と太陽 · 続きを見る »

太陽質量

太陽質量(たいようしつりょう、Solar mass)は、天文学で用いられる質量の単位であり、また我々の太陽系の太陽の質量を示す天文定数である。 単位としての太陽質量は、惑星など太陽系の天体の運動を記述する天体暦で用いられる天文単位系における質量の単位である。 また恒星、銀河などの天体の質量を表す単位としても用いられている。.

新しい!!: 球状星団と太陽質量 · 続きを見る »

伴銀河

ハッブルの唱えた説によって銀河系の最も大きな伴銀河であると最近まで考えられてきた大マゼラン雲 伴銀河(Satellite galaxy)は、重力の相互作用により、より大きな銀河の周囲を公転する銀河である。銀河は恒星、惑星、星雲等の互いに連絡し合わない多数の天体から構成されているが、それぞれの天体の重力の平均の場所に重心がある。 公転する銀河の組では、一方がもう一方に比べて極めて大きい時には、大きい方を「親銀河」、小さい方を伴銀河(または衛星銀河)と呼ぶ。両方が同じような大きさの時には、連星系を形成していると言う。なお、ほぼ同程度の質量を持つ銀河同士の合体をメジャー・マージャーと呼ぶのに対し、伴銀河同士の合体をマイナー・マージャーと呼ぶ。 ある方向からお互いにぶつかった銀河は、崩壊し、融合し、引き裂かれたり、内部の天体を移転させる。このような状況では、一方の銀河の終わりと他方の始めを区別することは困難である。銀河のほとんどは空の空間であるため、銀河間の「衝突」は、必ずしも互いの中の天体同士がぶつかる必要はない。 銀河系の伴銀河.

新しい!!: 球状星団と伴銀河 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

新しい!!: 球状星団と地球 · 続きを見る »

ヘルツシュプルング・ラッセル図

ヘルツシュプルング・ラッセル図 ヘルツシュプルング・ラッセル図(HR図、HRD、Hertzsprung-Russell Diagram)とは、縦軸に絶対等級もしくは光度、横軸にスペクトル型(表面温度)や有効温度をとった恒星の分布図のことである。デンマークの天文学者アイナー・ヘルツシュプルング(Ejnar Hertzsprung)とアメリカの天文学者ヘンリー・ノリス・ラッセル(Henry Norris Russell)により独立に提案された。 この図は、恒星の場所を表すものではないが、恒星進化論を理解するために重要な物である。.

新しい!!: 球状星団とヘルツシュプルング・ラッセル図 · 続きを見る »

ヘルクレス座

ヘルクレス座(Hercules)は、トレミーの48星座の1つ。ヘルクレス座は、全天で5番目に大きい星座である。あまり明るい星はない。ギリシア神話に登場する勇者ヘーラクレースにちなむが、日本語での正式な星座名は「ヘルクレス座」である。.

新しい!!: 球状星団とヘルクレス座 · 続きを見る »

パルサー

パルサー(pulsar)は、パルス状の可視光線、電波、X線を発生する天体の総称。.

新しい!!: 球状星団とパルサー · 続きを見る »

パーセク

パーセク(、記号: pc)は、距離を表す計量単位であり、約 (約3.26光年)である。主として天文学で使われる。 1981年までは天文学の分野に限り国際単位系 (SI) と併用してよい単位とされていたが、現在ではSIには含まれていない単位である。 年周視差が1秒角 (3600分の1度) となる距離が1パーセクである。すなわち、1天文単位 (au) の長さが1秒角の角度を張るような距離を1パーセクと定義する。 1 パーセクは次の値に等しい。.

新しい!!: 球状星団とパーセク · 続きを見る »

アンドロメダ銀河

アンドロメダ銀河(アンドロメダぎんが、Andromeda Galaxy、M31、NGC 224)は、アンドロメダ座に位置する地球から目視可能な渦巻銀河である。さんかく座銀河 (M33) 、銀河系(天の川銀河)、大マゼラン雲、小マゼラン雲などとともに局部銀河群を構成する。.

新しい!!: 球状星団とアンドロメダ銀河 · 続きを見る »

ケンタウルス座

ンタウルス座(Centaurus)は、トレミーの48星座の1つ。南天の明るい星座である。日本では星座の半分程度しか見えない場所が多く、全体が見えるのは沖縄県の一部や小笠原諸島の一部地域である。 α星・β星ともに、全天21の1等星の1つである。.

新しい!!: 球状星団とケンタウルス座 · 続きを見る »

シャプレー・ソーヤー集中度

ャプレー・ソーヤー集中度(Shapley–Sawyer Concentration Class)は、球状星団をその集中度で1から12に分けた分類システムである。M75のような最も集中度が高い星団はクラスIに分類され、最も集中度が小さいパロマ―12等のクラスXIIまで数字が大きくなっていく。.

新しい!!: 球状星団とシャプレー・ソーヤー集中度 · 続きを見る »

スターバースト

NASAによる画像) スターバースト(Starburst)とは、銀河どうしの衝突などで星のもととなる星間ガスが短期間に大量にできることで、一度に大量の星が形成される現象。銀河の中心に存在する巨大ブラックホールもこのスターバースト現象によってできるという説もあり、スターバーストの研究は銀河の構造を知る手がかりともなる。.

新しい!!: 球状星団とスターバースト · 続きを見る »

光年

光年(こうねん、light-year、Lichtjahr、記号 ly)は、主として天文学で用いられる距離(長さ)の単位であり、正確に 、約9.5兆キロメートルである。1981年まではSI併用単位であった。.

新しい!!: 球状星団と光年 · 続きを見る »

矮小銀河

ハッブル宇宙望遠鏡が撮影したいて座矮小銀河 矮小銀河(わいしょうぎんが、dwarf galaxy)は数十億個以下の恒星からなる小さな銀河である。我々の銀河系には2000億~4000億個の星が含まれているが、矮小銀河の規模はこの約1/100以下であり、特に小規模な矮小楕円銀河は球状星団と区別できないほどである。銀河系の伴銀河の一つである大マゼラン雲には300億個以上の星があるが、矮小銀河に分類される場合もある。 我々の銀河系が属する局部銀河群にはたくさんの矮小銀河が存在する。これらの小さな銀河は、銀河系やアンドロメダ銀河 (M31)、さんかく座銀河 (M33) など、より大きな銀河の周りを周回していることが多い。銀河系の周囲には12個の矮小銀河が周回していることが知られている。星の数が少なく絶対等級も暗いため、局部銀河群に属するもの以外はわずかしか知られていないが、宇宙全体にわたって多数存在し、多くは大型の銀河の周囲を回っているものと考えられる。 矮小銀河の大部分は星間物質をほとんど持っておらず、主として種族IIの星で構成されている。矮小銀河は質量が小さく重力も弱いため、誕生の際に起こったスターバーストにより星間物質が加熱されて銀河外へ拡散してしまったためと推測される。 矮小楕円銀河(dE)、矮小不規則銀河(dwarf irregular galaxy, dIrr)、青色コンパクト銀河(BCD)に大別される。この3タイプ以外では、矮小楕円体銀河(dSph)や矮小S0銀河(dS0)がある。.

新しい!!: 球状星団と矮小銀河 · 続きを見る »

球対称

初等幾何学における幾何学的対象が球対称(きゅうたいしょう、radial symmetric; 放射対称)あるいは回転不変(かいてんふへん、rotational invariant)であるとは、その対象が「任意の」回転変換(すなわち、対象の中心を通る任意の軸に対する任意角度の回転)に対して不変となることをいう。従って、球対称な対象を記述するための基準系は(方向成分は関係してこないため)原点の取り方のみが重要である。三次元空間内の回転に関する場合のみを「球対称」(spherical symmetry) と呼ぶ場合もある。三次元空間内の立体で球対称なものは球体に限る(中身が詰まっていないものも許すならば、同心球面の合併も入る)。 数学において適当な内積空間上で定義された函数が回転不変あるいは球対称(radial; 動径的)であるとは、その値が引数に対する任意の回転に関して不変となることを言う。例えば、函数 は原点周りの平面回転の下で不変である。より一般に、空間 上の変換あるいはそのような写像の成す写像空間上に作用する作用素に対しても、 における回転と両立する作用に関する意味で球対称性は定義できる。例えば二次元のラプラス作用素 は、任意の回転変換 に対して となる任意の写像 に対して を満たす(つまり写像に対する回転は単にそのラプラシアンに対する回転になる)という意味において球対称である。 物理学における場が球対称であるとき、放射状場 (radial field) などと呼ばれる。また物理的な系がその空間における向きに依らず同じ値を示すとき、そのラグランジアンは球対称になる。ネーターの定理によれば、物理的な系の(ラグランジアンに対する時間に関する積分の)作用は回転不変であり、従って角運動量は保存される。.

新しい!!: 球状星団と球対称 · 続きを見る »

銀河

銀河(ぎんが、galaxy)は、恒星やコンパクト星、ガス状の星間物質や宇宙塵、そして重要な働きをするが正体が詳しく分かっていない暗黒物質(ダークマター)などが重力によって拘束された巨大な天体である。英語「galaxy」は、ギリシア語でミルクを意味する「gála、γᾰ́λᾰ」から派生した「galaxias、γαλαξίας」を語源とする。英語で天の川を指す「Milky Way」はラテン語「Via Lactea」の翻訳借用であるが、このラテン語もギリシア語の「galaxías kýklos、γαλαξίας κύκλος」から来ている。 1,000万 (107) 程度の星々で成り立つ矮小銀河から、100兆 (1014) 個の星々を持つ巨大なものまであり、これら星々は恒星系、星団などを作り、その間には星間物質や宇宙塵が集まる星間雲、宇宙線が満ちており、質量の約90%を暗黒物質が占めるものがほとんどである。観測結果によれば、すべてではなくともほとんどの銀河の中心には超大質量ブラックホールが存在すると考えられている。これは、いくつかの銀河で見つかる活動銀河の根源的な動力と考えられ、銀河系もこの一例に当たると思われる。 歴史上、その具体的な形状を元に分類され、視覚的な形態論を以って考察されてきたが、一般的な形態は、楕円形の光の輪郭を持つ楕円銀河である。ほかに渦巻銀河(細かな粒が集まった、曲がった腕を持つ)や不規則銀河(不規則でまれな形状を持ち、近くの銀河から引力の影響を受けて形を崩したもの)等に分類される。近接する銀河の間に働く相互作用は、時に星形成を盛んに誘発しながらスターバースト銀河へと発達し、最終的に合体する場合もある。特定の構造を持たない小規模な銀河は不規則銀河に分類される。 観測可能な宇宙の範囲だけでも、少なくとも1,700億個が存在すると考えられている。大部分の直径は1,000から100,000パーセクであり、中には数百万パーセクにもなるような巨大なものもある。は、13当たり平均1個未満の原子が存在するに過ぎない非常に希薄なガス領域である。ほとんどは階層的な集団を形成し、これらは銀河団やさらに多くが集まった超銀河団として知られている。さらに大規模な構造では、銀河団は超空洞と呼ばれる銀河が存在しない領域を取り囲む銀河フィラメントを形成する。.

新しい!!: 球状星団と銀河 · 続きを見る »

銀河ハロー

銀河ハロー (galactic halo) は、銀河全体を包み込むように希薄な星間物質や球状星団がまばらに分布している球状の領域。ハロー (halo) またはハロとも表記される。.

新しい!!: 球状星団と銀河ハロー · 続きを見る »

銀河バルジ

銀河バルジ(ぎんがバルジ、)は、渦巻銀河や棒渦巻銀河の中心部に存在するふくらみ。「バルジ」は「膨らみ」という意味。単にバルジとも。 これらの銀河は横から見ると凸レンズ状をしており、中央に球形のふくらみが存在し、周りのディスクと比べて若干盛り上がっている。これをバルジと呼ぶ。バルジには年老いた恒星が数多く集まっていると考えられている。また、銀河の中心部には超大質量ブラックホールがあると推定され、その重力により星が集まっているのだと考えられている。 なお、銀河系のバルジは、直径1万5000光年ほどといわれている。.

新しい!!: 球状星団と銀河バルジ · 続きを見る »

銀河系

銀河系(ぎんがけい、the Galaxy)または天の川銀河(あまのがわぎんが、Milky Way Galaxy)は太陽系を含む銀河の名称である。地球から見えるその帯状の姿は天の川と呼ばれる。 1000億の恒星が含まれる棒渦巻銀河とされ、局部銀河群に属している。.

新しい!!: 球状星団と銀河系 · 続きを見る »

青色はぐれ星

accessdate.

新しい!!: 球状星団と青色はぐれ星 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: 球状星団と重力 · 続きを見る »

M13 (天体)

M13 (NGC6205) はヘルクレス座にある球状星団。「ヘルクレス座球状星団」 (Hercules Globular Cluster、Great globular cluster in Hercules )とも呼ばれる。.

新しい!!: 球状星団とM13 (天体) · 続きを見る »

M4 (天体)

M4(NGC 6121)はさそり座にある球状星団である。 ジャン=フィリップ・ロワ・ド・シェゾーが1746年に発見し、1764年にシャルル・メシエがカタログ化している。メシエはM4を「小さな星からなる星団」と表現している。シェゾーは「アンタレスに近くこれに先行する。白く丸く小さい。以前に発見されていないと思う」とした。1751~1752年にラカイユはケープタウンで見て、彗星の小さな核のようだとした。1764年メシエは「非常に小さな星から成る星団。機械が悪いと星雲状…」とした。1783年ウィリアム・ハーシェルは10フィートの反射鏡で初めて星に分けて見た。彼は200個程度の星を認めており、また南北を走る星の群れを「かなり明るい8ないし10個の星のなす尾根」と表現している。スミスはこの星の群れを「中心を走るまばゆい光」と表現している。猫の目を連想する人もいる。 アンタレスの西にあり、小型望遠鏡でも比較的、観察が行いやすい。球状星団としてはまばらである。空の条件が良ければ肉眼で天の川の中に見ることができるくらい明るい球状星団である。ただ、同じ球状星団のM2やM3よりも明るいにもかかわらず、1等星のアンタレスが西に1.5°にあるため、それらより見えにくい。球状星団としてはまばらで、黄色みがかって見えるのが特徴である。丸く対称な形をしているにもかかわらず、1ダースほどの10~12等の星の群れが北から南に走っている。これがハーシェルの言う「尾根」である。口径20cm程度の望遠鏡で中心部分の星も見えはじめるが、空の状態によって見え方が変わる星団だとも言われている。 直径は約70光年。太陽系からの距離は約7,200光年である。 多くの変光星が星団内で観測されており、1987年には3.0ミリ秒周期のパルサーも発見された。1995年にハッブル宇宙望遠鏡が星団内に130億年前に形成された白色矮星を発見し、さらにそれらを周回している系外惑星も発見されている。これは、130億年前からある古い天体で、我々の銀河系に知られている最も古い星の古さと同程度である。すなわち、ビッグバンから程ない頃からある星ということになる。.

新しい!!: 球状星団とM4 (天体) · 続きを見る »

M87 (天体)

M 87(NGC 4486、おとめ座A)は、おとめ座にある楕円銀河である。.

新しい!!: 球状星団とM87 (天体) · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

新しい!!: 球状星団と恒星 · 続きを見る »

恒星進化論

天体物理学において恒星進化論(こうせいしんかろん、英語:stellar evolution)とは、恒星の誕生から最期までにおこる恒星内の構造の変化を扱う理論である。 恒星進化論においては、恒星を生物になぞらえてその誕生から最期までを恒星の一生とし、幼年期の星、壮年期の星、老年期の星、星の死といった用語を用いる。恒星進化論の中で用いられている進化も生物になぞらえた言葉であるが、生物の進化とは異なり、世代を超えた変化ではなく恒星の一生の中での変化を表している。 恒星は自分自身の重力があるので常に収縮しようとする。しかし、収縮すると重力によるポテンシャルエネルギーが熱に変わる。また充分に高温高圧になれば核融合反応が起こり熱が発生する。これらの熱によってガスの温度が上昇すればガスは膨張しようとする。このようにして収縮と膨張が釣り合ったところで恒星は安定している。重力と核融合によるエネルギーを使い果たすと、恒星は収縮をとどめることができず最期を迎える。 以下に現在の恒星進化論による恒星の一生を示す。.

新しい!!: 球状星団と恒星進化論 · 続きを見る »

楕円銀河

楕円銀河 (だえんぎんが、elliptical galaxy)は、渦巻銀河、レンズ状銀河とともに、ハッブル分類における主要な3つの銀河分類のうちの1つ分類は 1936年にエドウィン・ハッブルが「The Realm of the Nebulae」(ハッブル分類を参照)にて初めて行っているが、現在はそれを発展させた分類が用いられている。。滑らかなおよそ楕円形の形状を持ち、輝度プロファイルにほとんど特徴がない。球形に近い形から非常に扁平なものまであり、内部に1000万から1兆個以上の星を含む。エドウィン・ハッブルは当初は楕円銀河が渦巻銀河へ進化すると考えていたが、後にこれは間違いであることがわかっているJohn, D, (2006), Astronomy, ISBN 1-4054-6314-7, p. 224-225。楕円銀河内の星は渦巻銀河のものよりも非常に古いことが知られている。 多くの楕円銀河では、星は古く低質量で、星間物質は希薄であり、最小限の星形成活動しかみられず、非常に多くの球状星団が取り囲んでいるという特徴の傾向が見られる。おとめ座超銀河団では、属する銀河の 10 - 15% がこの楕円銀河であると考えられており、全宇宙の銀河の主要なタイプではないが、銀河団の中心へ近づくにつれてよく見られるようになる。楕円銀河はレンズ状銀河とともにハッブル分類の名残で”早期型銀河" (early-type galaxy、ETG) と呼ばれることがあるが、宇宙の初期には一般的でなかったことが判明している。.

新しい!!: 球状星団と楕円銀河 · 続きを見る »

渦巻銀河

ハッブル宇宙望遠鏡が撮影した渦巻銀河M51の中心部。渦状腕に沿ってHII領域やダーク・レーンが存在している。 渦巻構造を作る密度波 渦巻銀河(うずまきぎんが、spiral galaxy)は銀河のハッブル分類における種類の一つ。.

新しい!!: 球状星団と渦巻銀河 · 続きを見る »

潮汐力

潮汐力(ちょうせきりょく、英語:tidal force)とは、重力によって起こる二次的効果の一種で、潮汐の原因である。起潮力(きちょうりょく)とも言う。潮汐力は物体に働く重力場が一定でなく、物体表面あるいは内部の場所ごとに異なっているために起こる。ある物体が別の物体から重力の作用を受ける時、その重力加速度は、重力源となる物体に近い側と遠い側とで大きく異なる。これによって、重力を受ける物体は体積を変えずに形を歪めようとする。球形の物体が潮汐力を受けると、重力源に近い側と遠い側の2ヶ所が膨らんだ楕円体に変形しようとする。.

新しい!!: 球状星団と潮汐力 · 続きを見る »

星形成

星形成(ほしけいせい、star formation)は、高密度の分子雲が重力で収縮して球状のプラズマとなり恒星が形成される過程のことをいう。星形成研究は天文学の一分野であり、星形成の前段階としての星間物質・巨大分子雲の研究や、その生成物としての若い恒星や惑星形成の研究とも関連する分野である。星形成の理論は一恒星の形成ばかりではなく、連星の統計的研究や初期質量関数を説明するものでもある。.

新しい!!: 球状星団と星形成 · 続きを見る »

星団

球状星団(M13) 星団(せいだん、star cluster)は、お互いの重力によってつくられた恒星の集団。ただし、銀河は含まない。その性質により散開星団と球状星団に分けられる。.

新しい!!: 球状星団と星団 · 続きを見る »

散開星団

2MASS計画によって撮影されたプレセペ星団(M44) 散開星団(さんかいせいだん、open cluster)は恒星の集団(星団)の一種である。分子雲から同時に生まれた星同士がいまだに互いに近い位置にある状態の天体を指す。銀河のディスク部分に存在するため、銀河星団とも呼ばれる。.

新しい!!: 球状星団と散開星団 · 続きを見る »

1930年代

1930年代(せんきゅうひゃくさんじゅうねんだい)は、西暦(グレゴリオ暦)1930年から1939年までの10年間を指す十年紀。.

新しい!!: 球状星団と1930年代 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »