ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

位置天文学

索引 位置天文学

位置天文学 (いちてんもんがく、英語:position(al) astronomy) は天文学の一分野。恒星や他の天体の位置、距離、運動を扱う。位置天文学の成果の一部は宇宙の距離梯子を決めるのに役立っている。 位置天文学には天文学者が観測結果を記述する際の座標系を与えるという基本的な役割があるが、これとは別に、天体力学、恒星系力学、銀河天文学といった分野において根本的に重要な役割を果たしている。観測天文学においては、移動する恒星状天体を同定する際に位置天文学の手法が欠かせない。位置天文学はまた時刻を管理する際にも使われる。現在の協定世界時 (UTC) は、国際原子時 (TAI) を地球の自転に同期させることで得られているが、この地球の自転は位置天文学の手法を用いて精密に観測されている。.

57 関係: 協定世界時古代ギリシア天体天体力学天体物理学天球天球座標系天文学天文学者の一覧太陽系外惑星宇宙の距離梯子小惑星座標伴星弘前大学地動説地球地球型惑星地球近傍天体ハッブルの法則バッターニーブラックホールパルサーヒッパルコスヒッパルコス (人工衛星)ビッグバンティコ・ブラーエフリードリヒ・ヴィルヘルム・ベッセルニコラウス・コペルニクスアメリカ航空宇宙局アストロラーベイスラム科学エドウィン・ハッブルガスジャイアントケフェイド変光星コンピュータジェームズ・ブラッドリー六分儀国際原子時CCDイメージセンサ球面幾何学秒 (角度)等級 (天文)銀河銀河天文学超新星赤方偏移自然科学英語暗黒物質...恒星欧州宇宙機関望遠鏡惑星星表日時計時刻 インデックスを展開 (7 もっと) »

協定世界時

時間帯で色分けされた世界地図 協定世界時(きょうていせかいじ、UTC, Coordinated Universal Time, Koordinierte Weltzeit, Temps Universel Coordonné本来は「調整された世界時」の意だが、多数の国で法定常用時の基礎に採られており、日本語では協定と意訳する。)とは、国際原子時 (TAI) に由来する原子時系の時刻で、UT1 世界時に同調するべく調整された基準時刻を指す。国際原子時に調整を加えて作られた世界時で、国際協定に基づき人為的に維持されている時刻系である。.

新しい!!: 位置天文学と協定世界時 · 続きを見る »

古代ギリシア

この項目では、太古から古代ローマに占領される以前までの古代ギリシアを扱う。.

新しい!!: 位置天文学と古代ギリシア · 続きを見る »

天体

天体(てんたい、、)とは、宇宙空間にある物体のことである。宇宙に存在する岩石、ガス、塵などの様々な物質が、重力的に束縛されて凝縮状態になっているものを指す呼称として用いられる。.

新しい!!: 位置天文学と天体 · 続きを見る »

天体力学

天体力学(てんたいりきがく、Celestial mechanics または Astrodynamics)は天文学の一分野であり、ニュートンの運動の法則や万有引力の法則に基づいて天体の運動と力学を研究する学問である。.

新しい!!: 位置天文学と天体力学 · 続きを見る »

天体物理学

天体物理学(てんたいぶつりがく、英語:astrophysics)は、天文学及び宇宙物理学の一分野で、恒星・銀河・星間物質などの天体の物理的性質(光度・密度・温度・化学組成など)や天体間の相互作用などを研究対象とし、それらを物理学的手法を用いて研究する学問である。宇宙物理学とも。天文学の中でも19世紀以降に始まった比較的新しい分野で、天文学の近代部門の代表的な分野と目されている。 例として、宇宙論の研究は、理論天体物理学の中で最も規模の大きな対象を扱う学問であるが、逆に宇宙論(特にビッグバン理論)では、我々が知っている最も高いエネルギー領域を扱うがゆえに、宇宙を観測することがそのまま最も微小なスケールでの物理学の実験そのものにもなっている。 実際には、ほぼ全ての近代天文学の研究は、物理学の要素を多く含んでいる。多くの国の天文学系の大学院博士課程の名称は、「天文学 (Astronomy)」や「天体物理学 (Astrophysics)」などまちまちだが、これは専攻の学問内容よりもその研究室の歴史を反映しているに過ぎない。.

新しい!!: 位置天文学と天体物理学 · 続きを見る »

天球

天球(てんきゅう、celestial sphere)とは、惑星や恒星がその上に張り付き運動すると考えられた、地球を中心として取り巻く球体のこと。また、位置天文学において地球から見える天体の方向を表すために無限遠の距離にある仮想の球面上の点も天球と呼ぶ。.

新しい!!: 位置天文学と天球 · 続きを見る »

天球座標系

天球座標系(てんきゅうざひょうけい)とは、天文学で空の中での位置を表現するための座標系である。 天球座標では地球表面の測地系(経緯度)と同様の座標格子を用いるが、座標格子を天球にどのように投影するかによって、様々に異なった座標系が存在する。それぞれの座標系の違いは基準面をどう選ぶかによっている。この基準面によって空は二つの等しい半球に分けられ、半球の境界は大円になる。(地球の測地系では基準面は地球の赤道である。)それぞれの座標系はこの基準面のとり方によって名前が付けられている。以下に座標系の名前と基準面・極の名前を挙げる。.

新しい!!: 位置天文学と天球座標系 · 続きを見る »

天文学

星空を観察する人々 天文学(てんもんがく、英:astronomy, 独:Astronomie, Sternkunde, 蘭:astronomie (astronomia)カッコ内は『ラランデ歴書』のオランダ語訳本の書名に見られる綴り。, sterrenkunde (sterrekunde), 仏:astronomie)は、天体や天文現象など、地球外で生起する自然現象の観測、法則の発見などを行う自然科学の一分野。主に位置天文学・天体力学・天体物理学などが知られている。宇宙を研究対象とする宇宙論(うちゅうろん、英:cosmology)とは深く関連するが、思想哲学を起源とする異なる学問である。 天文学は、自然科学として最も早く古代から発達した学問である。先史時代の文化は、古代エジプトの記念碑やヌビアのピラミッドなどの天文遺産を残した。発生間もない文明でも、バビロニアや古代ギリシア、古代中国や古代インドなど、そしてイランやマヤ文明などでも、夜空の入念な観測が行われた。 とはいえ、天文学が現代科学の仲間入りをするためには、望遠鏡の発明が欠かせなかった。歴史的には、天文学の学問領域は位置天文学や天測航法また観測天文学や暦法などと同じく多様なものだが、近年では天文学の専門家とはしばしば天体物理学者と同義と受け止められる。 天文学 (astronomy) を、天体の位置と人間界の出来事には関連があるという主張を基盤とする信念体系である占星術 (astrology) と混同しないよう注意が必要である。これらは同じ起源から発達したが、今や完全に異なるものである。.

新しい!!: 位置天文学と天文学 · 続きを見る »

天文学者の一覧

天文学者の一覧(てんもんがくしゃのいちらん)は、天文学者の一覧である。なお日本の天文学者は多数にわたるのでノーベル物理学賞受賞者・文化勲章受章者のみ掲載する。ノーベル物理学賞受賞者・文化勲章受章者以外の日本の天文学者については日本の天文学者の一覧を参照。 括弧内は国名、生年。ユリウス暦とグレゴリオ暦ではグレゴリオ暦を優先。.

新しい!!: 位置天文学と天文学者の一覧 · 続きを見る »

太陽系外惑星

太陽系外惑星(たいようけいがいわくせい、Extrasolar planet, Exoplanet)とは、太陽系にとっての系外惑星、つまり、太陽系の外にある惑星である。 多くは(太陽以外の)恒星の周りを公転するが、白色矮星や中性子星(パルサー)、褐色矮星などを回るものも見つかっており、他にもさまざまな星を回るものが想定される。自由浮遊惑星(いかなる天体も回らない惑星大の天体)を惑星に含めるかどうかは議論があるが、発見法が異なることなどから、系外惑星についての話題の中では自由浮遊惑星は別扱いすることが多い。 観測能力の限界から実際に発見されずにきたが、1990年代以降、多くの系外惑星が実際に発見されている。 ドップラー法.

新しい!!: 位置天文学と太陽系外惑星 · 続きを見る »

宇宙の距離梯子

宇宙の距離梯子(うちゅうのきょりはしご)とは、宇宙に存在する天体の、地球からの距離の測定方法の総称である。地球から遠方にある天体の距離を直接測る方法は複数提案されているが、それぞれには限界があったり、または期待される値の精度が距離によって制約されるなどの問題があり、使い分けを余儀なくされている。そのため、天体の距離判定は天文学における難問のひとつとなっている。 現状では広大な宇宙にあるすべての天体距離を測る統一的方法が存在しないため、ひとつの方法で近い天体の距離を測定し、それを基準に別な方法でさらに遠方の天体距離を求め、これを繰り返さざるを得ない。この過程が、高低差がある地面に梯子を架けながら徐々にステップを踏み進んでいく様に似ていることから、距離梯子という名で呼ばれている。 以下、一般的な距離梯子について、近距離から順に解説する。.

新しい!!: 位置天文学と宇宙の距離梯子 · 続きを見る »

小惑星

光分(左)と天文単位(右)。 ケレス(右)、そして火星(下)。小さな物ほど不規則な形状になっている。 メインベルト小惑星の分布。縦軸は軌道傾斜角。 軌道長半径 6 AU までの小惑星の分布。縦軸は軌道傾斜角。赤い点はメインベルト小惑星。 小惑星(しょうわくせい、独: 英: Asteroid)は、太陽系小天体のうち、星像に拡散成分がないものの総称。拡散成分(コマやそこから流出した尾)があるものは彗星と呼ばれる。.

新しい!!: 位置天文学と小惑星 · 続きを見る »

座標

幾何学において、座標(ざひょう)とは、点の位置を指定するために与えられる数の組 (coordinates)、あるいはその各数 (coordinate) のことであり、その組から点の位置を定める方法を与えるものが座標系(ざひょうけい、coordinate system)である。座標系と座標が与えられれば、点はただ一つに定まる。 座標は点により定まる関数の組であって、一つの空間に複数の座標系が重複して定義されていることがある。例えば、多様体は各点の近くでユークリッド空間と同様の座標系が貼り付けられているが、ほとんどの場合、一つの座標系の座標だけを考えていたのでは全ての点を特定することができない。このような場合は、たくさんの座標系を貼り付けて、重なる部分での読み替えの方法を記した地図帳(アトラス、atlas)を用意することもある。 地球上の位置を表す地理座標や、天体に対して天球上の位置を表す天球座標がある。.

新しい!!: 位置天文学と座標 · 続きを見る »

伴星

*伴星(ばんせい)とは.

新しい!!: 位置天文学と伴星 · 続きを見る »

弘前大学

※ここまでは上記テンプレートへ入力すれば自動的に反映されます。--> ※この項目では大学の基礎データを以下の節でまとめる。 --> ※「大学全体」は、あくまでその大学の「全体像」を大まかにまとめる部分である。長さの目安は400字程度。また、本プロジェクトで討議された文章表現の基準に準拠する必要がある。特にその大学にとって特段の大きな意味を有さないこと、時限的な事象を大きくとりあげることにならないよう留意する必要が認められる。 記載内容は、大学の全体について平均的に記述し、特定の学部・研究科などを大きく取り上げる形にならないように留意する。また、できるだけ曖昧な表現の使用はさけ、より具体的でかつ確定的なことを中心に記載する。なお、その際、文章が増えることがあるが、節全体の文章量も十分に考慮する。さらに歴史的・社会的にどのような価値を持つのかが関係者以外でも理解できるように記述する。 (文例) ○○大学は、○○年に設置され・・・。 ○○キャンパスは・・・。○○キャンパスは・・・。 学部の課程においては・・・。大学院の課程においては・・・。 学生の気質について、伝統的には・・・、高度経済成長期の後には・・・。--> ※この項目はそれぞれの大学に応じて「校訓」「学是」「憲章」などの適切な節名を用いる。なお、校訓などが長文となる場合は、著作権に注意すること。最後に改訂されてから50年が経過していれば全文の紹介が可能であるが、そうではない場合には概略に止め、全文は公式サイトへのリンクで代用するという手段がある。 --> ※大学の学問的な特徴の概略をこちらでまとめる。各学部ごとに詳細な内容をまとめる必要がある場合は後述の学部をまとめた項目で記すこと。さらに歴史的・社会的にどのような価値を持つのかが関係者以外でも理解できるように記述する。 --> ※ここで大学全体の学風や特色を端的にまとめる。具体的な数字データや学生生活の詳細は別項でまとめる。あくまでここは概略である。さらに歴史的・社会的にどのような価値を持つのかが関係者以外でも理解できるように記述する。 --> 新八医大の一つ。また、国立大学で最初に医学部の医局制度廃止を打ち出した大学である。 大学の設置は1949年であるが、母体となった各校の起源まで遡ると、約100年以上の伝統を有する。 国立の総合大学としては、名称に県名を冠しない大学の一つであり、創立時期から県庁所在地にキャンパスを置かない大学であるが、これは母体となった学校の内、弘前高等学校・弘前医科大学が、津軽藩の城下町であり、陸軍の師団もあった、当時の北東北の中心都市 弘前市に置かれていたことによるところが大きい。.

新しい!!: 位置天文学と弘前大学 · 続きを見る »

地動説

地動説(ちどうせつ)とは、宇宙の中心は太陽であり、地球は他の惑星と共に太陽の周りを自転しながら公転している、という学説のこと。宇宙の中心は地球であるとする天動説(地球中心説)に対義する学説であり、ニコラウス・コペルニクスが唱えた。彼以前にも太陽を宇宙の中心とする説はあった。太陽中心説(Heliocentrism)ともいうが、地球が動いているかどうかと、太陽と地球どちらが宇宙の中心であるかは厳密には異なる概念であり、地動説は「Heliocentrism」の訳語として不適切だとの指摘もある。聖書の解釈と地球が動くかどうかという問題は関係していたが、地球中心説がカトリックの教義であったことはなかった。地動説(太陽中心説)確立の過程は、宗教家(キリスト教)に対する科学者の勇壮な闘争というモデルで語られることが多いが、これは19世紀以降に作られたストーリーであり、事実とは異なる。 地動説の図.

新しい!!: 位置天文学と地動説 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

新しい!!: 位置天文学と地球 · 続きを見る »

地球型惑星

地球型惑星(ちきゅうがたわくせい、英語: terrestrial planet, telluric planet)とは、主に岩石や金属などの難揮発性物質から構成される惑星である。岩石惑星(英語: rocky planet)、固体惑星ともいい、太陽系では水星・金星・地球・火星の4惑星がこれにあたる。太陽系のうち、これらの惑星が位置する領域を内太陽系と呼称する場合がある。木星型惑星・天王星型惑星と比べ、質量が小さく密度が大きい。 惑星科学の観点からは月も性質上「地球型惑星」の一種として考えられることが多いという。しかし惑星の定義としては衛星が明確に除外されており、「惑星」の分類としての「地球型惑星」を言う場合、月については触れないのが普通である。.

新しい!!: 位置天文学と地球型惑星 · 続きを見る »

地球近傍天体

地球近傍天体(ちきゅうきんぼうてんたい、英語:Near-Earth object NEO)とは、地球に接近する軌道を持つ天体(彗星、小惑星、大きい流星体)の総称。また、天体と言っても太陽系小天体が該当することから地球近傍小天体とも呼ばれる。地球に接近することから衝突の危険性を持つ反面、地球からの宇宙船が容易に到達しやすく(月よりはるかに少ない速度増分 (ΔV) で済むものもある)、今後の科学的調査と商業開発において重要になると考えられている。.

新しい!!: 位置天文学と地球近傍天体 · 続きを見る »

ハッブルの法則

ハッブルの法則(ハッブルのほうそく)とは、天体が我々から遠ざかる速さとその距離が正比例することを表す法則である。1929年、エドウィン・ハッブルとミルトン・ヒューメイソンによって発表された。この発見は、宇宙は膨張しているものであるとする説を強力に支持するものとなった。 v を天体が我々から遠ざかる速さ(後退速度)、D を我々からその天体までの距離とすると、 となる。ここで比例定数 H_0 はハッブル定数 (Hubble constant) と呼ばれ、現在の宇宙の膨張速度を決める。 ハッブル定数は時間の逆数の次元 T をもち、通常はキロメートル毎秒毎メガパーセク(記号: km/s/Mpc)が単位として用いられる。2014年現在最も正確な値は、プランクの観測による である。換言すれば、銀河は実視等級20等程度までスペクトル観測が可能であるが、いずれの銀河もそのスペクトルは赤のほうにずれている、これを赤方偏移という。これがドップラー効果とすれば銀河までの距離と後退速度の間に一定の法則性を発見したものといえる。 1927年にジョルジュ・ルメートルもハッブルと同等の法則を提唱していたが、フランス語のマイナーな雑誌に掲載されたためそのときは注目されなかった。ルメートルはスライファーとハッブルの観測データを用いている。.

新しい!!: 位置天文学とハッブルの法則 · 続きを見る »

バッターニー

アストロラーベを持つアルバテグニウス。近代の画家による想像画。 アル=バッターニー(البتّاني., al-Battānī, 850年? – 929年)は、アッバース朝時代にシリアで活躍した天文学者、数学者。著作のラテン語訳を通して、三角法の多くがヨーロッパに伝わった。また、著作の『天文表』(Kitāb az-Zīj)はコペルニクスなどの多くのヨーロッパ中世の天文学者に引用された。より詳細な名前は、アブー=アブドゥッラー・ムハンマド・イブン=ジャービル・アル=バッターニー・アル=ハッラーニー・アッ=サービー(أبو عبد اللّٰه محمد بن جابر بن سنان البَتّاني, Abū ʿAbd Allāh Muḥammad ibn Jābir ibn Sinān al-Raqqī al-Ḥarrānī al-Ṣābiʾ al-Battānī)と伝わる。また、ラテン語の文献の中では、Albategnius(アルバテグニウス), Albategni, Albatenius という名で言及される。月のクレーターなど多くの事物に名が残されている。.

新しい!!: 位置天文学とバッターニー · 続きを見る »

ブラックホール

ブラックホール(black hole)とは、極めて高密度かつ大質量で、強い重力のために物質だけでなく光さえ脱出することができない天体である。.

新しい!!: 位置天文学とブラックホール · 続きを見る »

パルサー

パルサー(pulsar)は、パルス状の可視光線、電波、X線を発生する天体の総称。.

新しい!!: 位置天文学とパルサー · 続きを見る »

ヒッパルコス

ヒッパルコス(Hipparchus、ギリシャ語綴り 、紀元前190年ごろ - 紀元前120年ごろ)は、古代ギリシアの天文学者。現代にすべてつながる46星座を決定した。 著書が現存せず、どのような説を唱えたのかははっきりしない。 クラウディオス・プトレマイオスの『アルマゲスト』で、最も引用回数の多いのがヒッパルコスであることから、天動説を含む古代の天文学の体系を成立させたのはヒッパルコスであるという説がある。これは広く支持されているが、決定的な証明がなされていない。 ヒッパルコスは、春分点歳差(precession of the equinoxes.

新しい!!: 位置天文学とヒッパルコス · 続きを見る »

ヒッパルコス (人工衛星)

ヒッパルコス (Hipparcos) とは、1989年8月8日に欧州宇宙機関によって打ち上げられ、1993年まで運用された高精度位置天文衛星である。世界で最初の位置天文衛星でもある。日本ではヒッパルコス衛星(ヒッパルコスえいせい)と呼ばれることが多い。なお、HipparcosはHIgh Precision PARallax COllecting Satellite(高精度視差観測衛星)の略である。.

新しい!!: 位置天文学とヒッパルコス (人工衛星) · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

新しい!!: 位置天文学とビッグバン · 続きを見る »

ティコ・ブラーエ

ティコの考案した太陽系 Mauerquadrant (Tycho Brahe 1598) ティコ・ブラーエ(Tycho Brahe 、1546年12月14日 - 1601年10月24日)は、デンマークの天文学者、占星術師。膨大な天体観測記録を残し、ケプラーの法則を生む基礎を作った。.

新しい!!: 位置天文学とティコ・ブラーエ · 続きを見る »

フリードリヒ・ヴィルヘルム・ベッセル

フリードリヒ・ヴィルヘルム・ベッセル フリードリヒ・ヴィルヘルム・ベッセル(Friedrich Wilhelm Bessel, 1784年7月22日 - 1846年3月17日)はドイツの数学者、天文学者。 恒星の年周視差を発見し、ベッセル関数を分類したことで知られる(関数の発見者はダニエル・ベルヌーイである)。ヴェストファーレン地方のミンデンに生まれ、ケーニヒスベルク(現在のロシアのカリーニングラード)で癌のために没した。同じく数学者で天文学者でもあったカール・フリードリヒ・ガウスと同時代を生きた人物である。.

新しい!!: 位置天文学とフリードリヒ・ヴィルヘルム・ベッセル · 続きを見る »

ニコラウス・コペルニクス

ニコラウス・コペルニクス(ラテン語名: Nicolaus Copernicus、ポーランド語名: ミコワイ・コペルニク 、1473年2月19日 - 1543年5月24日)は、ポーランド出身の天文学者、カトリック司祭である。当時主流だった地球中心説(天動説)を覆す太陽中心説(地動説)を唱えた。これは天文学史上最も重要な発見とされる。(ただし、太陽中心説をはじめて唱えたのは紀元前三世紀のサモスのアリスタルコスである)。また経済学においても、貨幣の額面価値と実質価値の間に乖離が生じた場合、実質価値の低い貨幣のほうが流通し、価値の高い方の貨幣は退蔵され流通しなくなる (「悪貨は良貨を駆逐する」) ことに最初に気づいた人物の一人としても知られる。 コペルニクスはまた、教会では司教座聖堂参事会員(カノン)であり、知事、長官、法学者、占星術師であり、医者でもあった。暫定的に領主司祭を務めたこともある。.

新しい!!: 位置天文学とニコラウス・コペルニクス · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

新しい!!: 位置天文学とアメリカ航空宇宙局 · 続きを見る »

アストロラーベ

アストロラーベ(Astrolabe )は平面アストロラーベとも呼ばれ、古代の天文学者や占星術者が用いた天体観測用の機器であり、ある種のアナログ計算機とも言える。用途は多岐にわたり、太陽、月、惑星、恒星の位置測定および予測、ある経度と現地時刻の変換、測量、三角測量に使われた。イスラムとヨーロッパの天文学では天宮図を作成するのに用いられた。アラビア文字・اصطرلاب. aṣṭurlāb استرلاب. asturlābなどと綴られるが、ペルシア語ではこれらの綴りで uṣṭurlāb/oṣṭorlāb と読み、トルコ語でも usturlâb となる。 日本語ではアラビア語に近いアストロラーブとの表記もあるが本項目ではアストロラーベに統一する。.

新しい!!: 位置天文学とアストロラーベ · 続きを見る »

イスラム科学

アストロラーベ。天体観測用のアナログコンピュータ イスラム科学(イスラムかがく)とは、8世紀から15世紀のイスラム世界において発達し、アラビア語によって叙述されていた科学の総称をさす。.

新しい!!: 位置天文学とイスラム科学 · 続きを見る »

エドウィン・ハッブル

ドウィン・パウエル・ハッブル(Edwin Powell Hubble, 1889年11月20日 - 1953年9月28日)は、アメリカ合衆国の天文学者。我々の銀河系の外にも銀河が存在することや、それらの銀河からの光が宇宙膨張に伴って赤方偏移していることを発見した。近代を代表する天文学者の一人であり、現代の宇宙論の基礎を築いた人物である。.

新しい!!: 位置天文学とエドウィン・ハッブル · 続きを見る »

ガスジャイアント

ャイアントもしくは巨大ガス惑星 (Gas giant) は、主に水素とヘリウムから構成される木星型惑星である。太陽系の場合、木星と土星がガスジャイアントに該当する。ガスジャイアントという用語はもともと巨大惑星と同義に使われていたが、1990年代に天王星や海王星が主により重い揮発性物質で構成されていることが明らかとなり、アイスジャイアント(天王星型惑星)と区別して呼ばれることが多くなった。 木星と土星の大部分は水素とヘリウムであり、これより重い元素は質量の3%から13%を占めるThe Interior of Jupiter, Guillot et al., in Jupiter: The Planet, Satellites and Magnetosphere, Bagenal et al., editors, Cambridge University Press, 2004。水素分子の外層が液体金属水素の層を取り巻き、溶けた岩石状の核も持つと考えられている。水素大気の最外層には、主に水とアンモニアから構成される何層もの雲が存在する。両惑星の大半を占める金属水素の層は、非常に強い圧力によって水素が導電体となっているため、こう呼ばれる。核はより重い元素で構成されていると考えられるが、20,000Kもの高温と高圧のため、その性質はほとんど分かっていない。.

新しい!!: 位置天文学とガスジャイアント · 続きを見る »

ケフェイド変光星

フェイド変光星(ケフェイドへんこうせい、Cepheid variable)は、HR図上でケフェイド不安定帯に属する脈動変光星。セフェイド変光星、セファイド変光星、ケファイド変光星とも表記。.

新しい!!: 位置天文学とケフェイド変光星 · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: 位置天文学とコンピュータ · 続きを見る »

ジェームズ・ブラッドリー

ェームズ・ブラッドリー(James Bradley, 1693年 - 1762年7月13日)は、イギリスの天文学者。グリニッジ天文台長を務めた。.

新しい!!: 位置天文学とジェームズ・ブラッドリー · 続きを見る »

六分儀

六分儀(ろくぶんぎ、Sextant)とは天体や物標の高度、水平方向の角度を測るための道具である。弧が60°(360°の六分の一)であるところからこの名がついた。1757年に発明された。 天体の高度測定、自身の位置の割り出しなどに利用される。すなわち、大型の六分儀がおもに天体観測用に使われたのに対して、小型の六分儀は船舶の天測航法用に使用された。 また、六分儀にちなんでろくぶんぎ座という星座もある。.

新しい!!: 位置天文学と六分儀 · 続きを見る »

国際原子時

国際原子時(こくさいげんしじ、Temps Atomique International、略語:TAI、Internationale Atomzeit、International Atomic Time)は、現在国際的に規定・管理される原子時(原子時計によって定義される高精度で安定した時刻系)である。地球表面(ジオイド面)上の座標時の実現と位置付けられる。 国際単位系 (SI) では、「秒はセシウム133の原子の基底状態の二つの超微細準位の間の遷移に対応する放射の周期の9 192 631 770倍の継続時間である。」と定義されている。.

新しい!!: 位置天文学と国際原子時 · 続きを見る »

CCDイメージセンサ

CCDイメージセンサ (シーシーディーイメージセンサ、CCD image sensor)は固体撮像素子のひとつで、ビデオカメラ、デジタルカメラ、光検出器などに広く使用されている半導体素子である。単にCCDと呼ばれることも多い神崎 洋治 (著), 西井 美鷹 (著) 「体系的に学ぶデジタルカメラのしくみ 第2版」日経BPソフトプレス; 第2版 (2009/1/29) 安藤 幸司 (著)「らくらく図解 CCD/CMOSカメラの原理と実践 」加藤俊夫 半導体入門講座(Semiconductor JapanのWeb上講義)第16回 イメージセンサ http://www.roper.co.jp/Html/roper/tech_note/html/rp00.htmhttp://www7.ocn.ne.jp/~terl/JTTAS/JTTAS-CMOS.htm。.

新しい!!: 位置天文学とCCDイメージセンサ · 続きを見る »

球面幾何学

球面幾何学(きゅうめんきかがく、spherical geometry)とは幾何学の分野の一つであり、現在では非ユークリッド幾何学に分類される楕円幾何学の特殊なもの(球面での楕円幾何学)と認識されている。 アッバース朝時代のシリアの天文学者バッターニーがこれを利用して天文観測を行なった。.

新しい!!: 位置天文学と球面幾何学 · 続きを見る »

秒 (角度)

角度の単位としての秒(びょう、arcsecond, second of arc (SOA))は、分の1/60の角度である。時間における秒の用法から転じたものである。 1秒は1度の1/3600である。1度が円弧の1/360であるので、1秒は円弧の である。1ラジアンは約 である。 mas は、1秒の1/1000を表わす単位である。milliarcsecond に由来する。秒では単位として大きすぎる場合(恒星の年周視差や固有運動を表わすときなど)に用いられる。.

新しい!!: 位置天文学と秒 (角度) · 続きを見る »

等級 (天文)

天文学において等級(とうきゅう、magnitude)とは、天体の明るさを表す尺度である。整数または小数を用いて「1.2等級」あるいは省略して「1.2等」などと表す。恒星の明るさを表す場合には「2等星」などと呼ぶ場合もある。等級の値が小さいほど明るい天体であることを示す。また、0等級よりも明るい天体の場合の明るさを表すには負の数を用いる。 等級が1等級変わると明るさは100の5乗根倍、すなわち約2.512倍変化する。よって等級差が5等級の場合に明るさの差が正確に100倍となる。言い換えれば等級とは天体の明るさを対数スケールで表現したものである。.

新しい!!: 位置天文学と等級 (天文) · 続きを見る »

銀河

銀河(ぎんが、galaxy)は、恒星やコンパクト星、ガス状の星間物質や宇宙塵、そして重要な働きをするが正体が詳しく分かっていない暗黒物質(ダークマター)などが重力によって拘束された巨大な天体である。英語「galaxy」は、ギリシア語でミルクを意味する「gála、γᾰ́λᾰ」から派生した「galaxias、γαλαξίας」を語源とする。英語で天の川を指す「Milky Way」はラテン語「Via Lactea」の翻訳借用であるが、このラテン語もギリシア語の「galaxías kýklos、γαλαξίας κύκλος」から来ている。 1,000万 (107) 程度の星々で成り立つ矮小銀河から、100兆 (1014) 個の星々を持つ巨大なものまであり、これら星々は恒星系、星団などを作り、その間には星間物質や宇宙塵が集まる星間雲、宇宙線が満ちており、質量の約90%を暗黒物質が占めるものがほとんどである。観測結果によれば、すべてではなくともほとんどの銀河の中心には超大質量ブラックホールが存在すると考えられている。これは、いくつかの銀河で見つかる活動銀河の根源的な動力と考えられ、銀河系もこの一例に当たると思われる。 歴史上、その具体的な形状を元に分類され、視覚的な形態論を以って考察されてきたが、一般的な形態は、楕円形の光の輪郭を持つ楕円銀河である。ほかに渦巻銀河(細かな粒が集まった、曲がった腕を持つ)や不規則銀河(不規則でまれな形状を持ち、近くの銀河から引力の影響を受けて形を崩したもの)等に分類される。近接する銀河の間に働く相互作用は、時に星形成を盛んに誘発しながらスターバースト銀河へと発達し、最終的に合体する場合もある。特定の構造を持たない小規模な銀河は不規則銀河に分類される。 観測可能な宇宙の範囲だけでも、少なくとも1,700億個が存在すると考えられている。大部分の直径は1,000から100,000パーセクであり、中には数百万パーセクにもなるような巨大なものもある。は、13当たり平均1個未満の原子が存在するに過ぎない非常に希薄なガス領域である。ほとんどは階層的な集団を形成し、これらは銀河団やさらに多くが集まった超銀河団として知られている。さらに大規模な構造では、銀河団は超空洞と呼ばれる銀河が存在しない領域を取り囲む銀河フィラメントを形成する。.

新しい!!: 位置天文学と銀河 · 続きを見る »

銀河天文学

銀河天文学(ぎんがてんもんがく、英語:galactic astronomy)とは、我々の住む銀河系そのもの、もしくはそれに含まれるものや、銀河系の他の銀河について研究する学問である。 天体の形成、構造、構成、動態、相互作用などを研究する天体物理学と相互に深く関わっている。 星間ガスや宇宙塵などの影響で見えない部分はあるものの、我々の太陽系が属する銀河系は色々な方法で最も良く研究された銀河である。20世紀に発達した電波天文学、赤外線天文学などによって、ガスや塵に隠された銀河の地図が書けるようになってきた。 Category:天文学 Category:銀河 Category:天文学に関する記事.

新しい!!: 位置天文学と銀河天文学 · 続きを見る »

超新星

プラーの超新星 (SN 1604) の超新星残骸。スピッツァー宇宙望遠鏡、ハッブル宇宙望遠鏡およびチャンドラX線天文台による画像の合成画像。 超新星(ちょうしんせい、)は、大質量の恒星が、その一生を終えるときに起こす大規模な爆発現象である。.

新しい!!: 位置天文学と超新星 · 続きを見る »

赤方偏移

赤方偏移(せきほうへんい、redshift)とは、主に天文学において、観測対象からの光(可視光だけでなく全ての波長の電磁波を含む)のスペクトルが長波長側(可視光で言うと赤に近い方)にずれる現象を指す。 波長λのスペクトルがΔλだけずれている場合、赤方偏移の量 z を と定義する。.

新しい!!: 位置天文学と赤方偏移 · 続きを見る »

自然科学

自然科学(しぜんかがく、英語:natural science)とは、.

新しい!!: 位置天文学と自然科学 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 位置天文学と英語 · 続きを見る »

暗黒物質

暗黒物質(あんこくぶっしつ、dark matter ダークマター)とは、天文学的現象を説明するために考えだされた「質量は持つが、光学的に直接観測できない」とされる、仮説上の物質である。"銀河系内に遍く存在する"、"物質とはほとんど相互作用しない"などといった想定がされており、間接的にその存在を示唆する観測事実は増えているものの、その正体は未だ不明である。.

新しい!!: 位置天文学と暗黒物質 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

新しい!!: 位置天文学と恒星 · 続きを見る »

欧州宇宙機関

欧州宇宙機関(おうしゅううちゅうきかん、, ASE、, ESA)は、1975年5月30日にヨーロッパ各国が共同で設立した、宇宙開発・研究機関である。設立参加国は当初10か国、現在は19か国が参加し、2000人を超えるスタッフがいる。 本部はフランスに置かれ、その活動でもフランス国立宇宙センター (CNES) が重要な役割を果たし、ドイツ・イタリアがそれに次ぐ地位を占める。主な射場としてフランス領ギアナのギアナ宇宙センターを用いている。 人工衛星打上げロケットのアリアンシリーズを開発し、アリアンスペース社(商用打上げを実施)を通じて世界の民間衛星打ち上げ実績を述ばしている。2010年には契約残数ベースで過去に宇宙開発などで存在感を放ったソビエト連邦の後継国のロシア、スペースシャトル、デルタ、アトラスといった有力な打ち上げ手段を持つアメリカに匹敵するシェアを占めるにおよび、2014年には受注数ベースで60%のシェアを占めるにいたった。 ESA は欧州連合と密接な協力関係を有しているが、欧州連合の専門機関ではない。加盟各国の主権を制限する超国家機関ではなく、加盟国の裁量が大きい政府間機構として形成された。リスボン条約によって修正された欧州連合の機能に関する条約の第189条第3項では、「欧州連合は欧州宇宙機関とのあいだにあらゆる適切な関係を築く」と規定されている。.

新しい!!: 位置天文学と欧州宇宙機関 · 続きを見る »

望遠鏡

望遠鏡(ぼうえんきょう)とは、遠くにある物体を可視光線・赤外線・X線・電波などの電磁波を捕えて観測する装置である。古くは「遠眼鏡(とおめがね)」とも呼ばれた。 観測に用いられる電磁波の波長により、光学望遠鏡と電波望遠鏡に大別される。電磁波を捕える方式による分類では反射望遠鏡と屈折望遠鏡がある。.

新しい!!: 位置天文学と望遠鏡 · 続きを見る »

惑星

惑星(わくせい、πλανήτης、planeta、planet)とは、恒星の周りを回る天体のうち、比較的低質量のものをいう。正確には、褐色矮星の理論的下限質量(木星質量の十数倍程度)よりも質量の低いものを指す。ただし太陽の周りを回る天体については、これに加えて後述の定義を満たすものだけが惑星である。英語 planet の語源はギリシア語のプラネテス(さまよう者、放浪者などの意。IPA: /planítis/ )。 宇宙のスケールから見れば惑星が全体に影響を与える事はほとんど無く、宇宙形成論からすれば考慮の必要はほとんど無い。だが、天体の中では非常に多種多様で複雑なものである。そのため、天文学だけでなく地質学・化学・生物学などの学問分野では重要な対象となっている別冊日経サイエンス167、p.106-117、系外惑星が語る惑星系の起源、Douglas N. C.Lin。.

新しい!!: 位置天文学と惑星 · 続きを見る »

星表

星表(せいひょう、star catalogue )は恒星目録ともいい、恒星の位置や等級、スペクトル型、視差といった値や特性を記載した天体カタログである。現代の天文学では、恒星はいずれかの星表の番号で表される。長年にわたって様々な目的のために多くの星表が編纂されてきたが、以下では代表的なものについて取り上げる。現在使われている星表のほとんどは電子フォーマットで入手可能で、アメリカ航空宇宙局 (NASA) の Astronomical Data Center などからダウンロードできる(外部リンク参照)。.

新しい!!: 位置天文学と星表 · 続きを見る »

日時計

日時計(ひどけい)は、影を利用して視太陽時を計測する装置。紀元前3000年、古代エジプトで使われていたが、起源はさらにその前の古代バビロニアにさかのぼると考えられる。日晷儀(にっきぎ)、晷針(きしん)ともいう。 古代ギリシア及び古代ローマで改良され完全なものができた。これはアラビアに伝えられた(アラビアの天文学ではこれをノーモン (en:gnomon) という)。のちに、機械時計が発明されると、それにとってかわられた。現在は、主に庭園や建造物の装飾の一部として設置される。.

新しい!!: 位置天文学と日時計 · 続きを見る »

時刻

thumb 時刻 (じこく)とは、時間の流れにおけるある一点、連続する時間の中のある瞬間、または時間の区分のこと。ある時点や時間の区分や現在を、他の時点や時間の区分と区別する表現である。この記事は主に、日常生活で用いる時刻を扱う。.

新しい!!: 位置天文学と時刻 · 続きを見る »

ここにリダイレクトされます:

アストロメトリアストロメトリー

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »