ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

測光 (天文)

索引 測光 (天文)

測光(そっこう、photometry)とは、天体の明るさを測定するための観測手法である。通常、特定の波長域の電磁波だけを透過するフィルターを通して観測を行い、多くの場合、複数のフィルターを使用して、明るさに加えて色の情報を得て、天体の大まかな性質を調べることを目的としている。多数の波長域で観測すれば、スペクトルエネルギー分布(SED)を推定することもでき、そのような観測手法は分光測光とも言われる。 eso0528。各フィルターの波長感度特性が重ねて描かれている。 測光を意味する単語"photometry"は、ギリシャ語で「光」を意味する"photos"と「測定」を意味する"metron"からできている。.

70 関係: 半径古代ギリシア双方向反射率分布関数天体天文学太陽系外惑星変光星宇宙機小山勝二小惑星岡村定矩ノーマン・ポグソンヨーロッパ南天天文台ヘルツシュプルング・ラッセル図ヒッパルコスピクセルフィルターベテルギウスベティーナ (小惑星)分光法アメリカ天文学会アメリカ変光星観測者協会アメリカ航空宇宙局アルマゲストアルベドアストロノミー・アンド・アストロフィジックスカール・フリードリッヒ・ツェルナーギリシア語グラフィカルユーザインタフェースケフェイド変光星ケフェウス座デルタ星シーイングスペクトル写真乾板公転周期光子光度曲線光電測光器固体撮像素子CCDイメージセンサ球状星団秒 (角度)立体角等級 (天文)紫外線点拡がり関数銀河表面輝度食変光星...超新星黒体赤外線開口 (光学)肉眼自転周期色指数 (天文)電磁波通過 (天文)逆2乗の法則IRAFM3 (天体)WASP-19b波長活動銀河温度測光標準星望遠鏡放射測定1856年 インデックスを展開 (20 もっと) »

半径

球の半径 半径(はんけい、radius)は、円や球体など中心(あるいは中心軸)をもつ図形の、中心(中心軸)から周に直交するように引いた線分のこと。また、その線分の長さを指すこともあり、この長さを数学や物理学では小文字の r で表すことがある。 円や球の場合は、差し渡しの長さを意味する径の半分の長さを持つために、これを半径といい、対して区別のために径を直径と呼ぶ。一方で、半径は中心に関する対称性を持つ図形にしか定義できないという特徴を持つため、半径と径とは直接的な関係を持つわけではない。.

新しい!!: 測光 (天文)と半径 · 続きを見る »

古代ギリシア

この項目では、太古から古代ローマに占領される以前までの古代ギリシアを扱う。.

新しい!!: 測光 (天文)と古代ギリシア · 続きを見る »

双方向反射率分布関数

双方向反射率分布関数(そうほうこうはんしゃりつぶんぷかんすう)は、光の反射モデルのひとつ。 双方向散乱面反射率分布関数を特殊化したもので、反射表面上のある地点 x に対して、ある方向から光が入射したとき、それぞれの方向へ,どれだけの光が反射されるかを表す、反射地点に固有の関数。非常に大雑把な言い方をすれば、反射率を一般化したものと言える。BRDF(Bidirectional Reflectance Distribution Function)とも言う。単位は1/srとなる。 Category:光学.

新しい!!: 測光 (天文)と双方向反射率分布関数 · 続きを見る »

天体

天体(てんたい、、)とは、宇宙空間にある物体のことである。宇宙に存在する岩石、ガス、塵などの様々な物質が、重力的に束縛されて凝縮状態になっているものを指す呼称として用いられる。.

新しい!!: 測光 (天文)と天体 · 続きを見る »

天文学

星空を観察する人々 天文学(てんもんがく、英:astronomy, 独:Astronomie, Sternkunde, 蘭:astronomie (astronomia)カッコ内は『ラランデ歴書』のオランダ語訳本の書名に見られる綴り。, sterrenkunde (sterrekunde), 仏:astronomie)は、天体や天文現象など、地球外で生起する自然現象の観測、法則の発見などを行う自然科学の一分野。主に位置天文学・天体力学・天体物理学などが知られている。宇宙を研究対象とする宇宙論(うちゅうろん、英:cosmology)とは深く関連するが、思想哲学を起源とする異なる学問である。 天文学は、自然科学として最も早く古代から発達した学問である。先史時代の文化は、古代エジプトの記念碑やヌビアのピラミッドなどの天文遺産を残した。発生間もない文明でも、バビロニアや古代ギリシア、古代中国や古代インドなど、そしてイランやマヤ文明などでも、夜空の入念な観測が行われた。 とはいえ、天文学が現代科学の仲間入りをするためには、望遠鏡の発明が欠かせなかった。歴史的には、天文学の学問領域は位置天文学や天測航法また観測天文学や暦法などと同じく多様なものだが、近年では天文学の専門家とはしばしば天体物理学者と同義と受け止められる。 天文学 (astronomy) を、天体の位置と人間界の出来事には関連があるという主張を基盤とする信念体系である占星術 (astrology) と混同しないよう注意が必要である。これらは同じ起源から発達したが、今や完全に異なるものである。.

新しい!!: 測光 (天文)と天文学 · 続きを見る »

太陽系外惑星

太陽系外惑星(たいようけいがいわくせい、Extrasolar planet, Exoplanet)とは、太陽系にとっての系外惑星、つまり、太陽系の外にある惑星である。 多くは(太陽以外の)恒星の周りを公転するが、白色矮星や中性子星(パルサー)、褐色矮星などを回るものも見つかっており、他にもさまざまな星を回るものが想定される。自由浮遊惑星(いかなる天体も回らない惑星大の天体)を惑星に含めるかどうかは議論があるが、発見法が異なることなどから、系外惑星についての話題の中では自由浮遊惑星は別扱いすることが多い。 観測能力の限界から実際に発見されずにきたが、1990年代以降、多くの系外惑星が実際に発見されている。 ドップラー法.

新しい!!: 測光 (天文)と太陽系外惑星 · 続きを見る »

変光星

変光星(へんこうせい)は、天体の一種で、明るさ(等級)が変化するもののことである。大まかに爆発型変光星、脈動変光星、回転変光星、激変星、食変光星(食連星)、X線変光星の6種類に分類される。.

新しい!!: 測光 (天文)と変光星 · 続きを見る »

宇宙機

宇宙機(うちゅうき、spacecraft)とは、打ち上げロケット (launch vehicle) を用いて大気圏外で使用される人工物のことYahoo!百科事典「宇宙機」新羅一郎、久保園晃 執筆 。.

新しい!!: 測光 (天文)と宇宙機 · 続きを見る »

小山勝二

小山 勝二(こやま かつじ、1945年4月27日 - )は、日本の宇宙物理学者。天文学者。京都大学名誉教授、同大学特任教授。21世紀COEプログラム「物理学の多様性と普遍性の探求拠点」拠点リーダー。理学博士(京都大学、1976年)。愛知県西尾市出身。.

新しい!!: 測光 (天文)と小山勝二 · 続きを見る »

小惑星

光分(左)と天文単位(右)。 ケレス(右)、そして火星(下)。小さな物ほど不規則な形状になっている。 メインベルト小惑星の分布。縦軸は軌道傾斜角。 軌道長半径 6 AU までの小惑星の分布。縦軸は軌道傾斜角。赤い点はメインベルト小惑星。 小惑星(しょうわくせい、独: 英: Asteroid)は、太陽系小天体のうち、星像に拡散成分がないものの総称。拡散成分(コマやそこから流出した尾)があるものは彗星と呼ばれる。.

新しい!!: 測光 (天文)と小惑星 · 続きを見る »

岡村定矩

岡村 定矩(おかむら さだのり、1948年3月10日 - )は、日本の男性天文学者。法政大学理工学部教授。東京大学名誉教授。 山口県豊浦郡豊浦町(現下関市)出身。高瀬文志郎の弟子で、専門は銀河天文学、観測的宇宙論。.

新しい!!: 測光 (天文)と岡村定矩 · 続きを見る »

ノーマン・ポグソン

ノーマン・ロバート・ポグソン (Norman Robert Pogson, 1829年3月23日 - 1891年6月23日)は、イギリスの天文学者。 娘のアイシス・ポグソン (Isis Pogson、1852年-1945年)も天文学者となり、気象学者としても活動した。.

新しい!!: 測光 (天文)とノーマン・ポグソン · 続きを見る »

ヨーロッパ南天天文台

ヨーロッパ南天天文台(ヨーロッパなんてんてんもんだい、European Southern Observatory、略称:ESO)は、ヨーロッパ14ヶ国およびブラジルが共同で運営する天文観測施設である。1964年に設立された。チリにある天文台を運営している。本部はミュンヘン近郊のGarchingにある。ラ・シヤ天文台(La Silla Observatory)、パラナル天文台(Paranal Observatory)、チャナントール天文台(Llano de Chajnantor Observatory)がおもな施設である。.

新しい!!: 測光 (天文)とヨーロッパ南天天文台 · 続きを見る »

ヘルツシュプルング・ラッセル図

ヘルツシュプルング・ラッセル図 ヘルツシュプルング・ラッセル図(HR図、HRD、Hertzsprung-Russell Diagram)とは、縦軸に絶対等級もしくは光度、横軸にスペクトル型(表面温度)や有効温度をとった恒星の分布図のことである。デンマークの天文学者アイナー・ヘルツシュプルング(Ejnar Hertzsprung)とアメリカの天文学者ヘンリー・ノリス・ラッセル(Henry Norris Russell)により独立に提案された。 この図は、恒星の場所を表すものではないが、恒星進化論を理解するために重要な物である。.

新しい!!: 測光 (天文)とヘルツシュプルング・ラッセル図 · 続きを見る »

ヒッパルコス

ヒッパルコス(Hipparchus、ギリシャ語綴り 、紀元前190年ごろ - 紀元前120年ごろ)は、古代ギリシアの天文学者。現代にすべてつながる46星座を決定した。 著書が現存せず、どのような説を唱えたのかははっきりしない。 クラウディオス・プトレマイオスの『アルマゲスト』で、最も引用回数の多いのがヒッパルコスであることから、天動説を含む古代の天文学の体系を成立させたのはヒッパルコスであるという説がある。これは広く支持されているが、決定的な証明がなされていない。 ヒッパルコスは、春分点歳差(precession of the equinoxes.

新しい!!: 測光 (天文)とヒッパルコス · 続きを見る »

ピクセル

ピクセル(pixel)、または画素とは、コンピュータで画像を扱うときの、色情報 (色調や階調) を持つ最小単位、最小要素。しばしばピクセルと同一の言葉として使われるドットとは、後者が単なる物理的な点情報であることで区別される。例えばディスプレイにおいて320×240ピクセルの画像を100%表示すれば320×240ドットとなるが、200%表示ならば640×480ドットとなる。 ピクセルは、一般的に「写真の要素」を意味する英語の「picture element」からの造語、または「写真の細胞」を意味する英語の「picture cell」からの造語とされる。picture elementのもう一つの略語pelは、絵素(えそ)と表現する場合、画素をサブピクセルとして位置付けることもあったが、歴史的用語となりつつある。 ピクセルの拡大図の例 コンピュータでは連続的な値を扱えない為、画像を扱うにも量子化する必要がある。例えば、640×480ピクセルの画像は、横640個、縦480個の点を並べて表現されていることを示す。ディスプレイなどのデバイスにおいては、一般的なラスタディスプレイでは、ピクセルを単位として画像を表示する。.

新しい!!: 測光 (天文)とピクセル · 続きを見る »

フィルター

フィルター(フィルタ、filter)とは、与えられた物の特定成分を取り除く(あるいは弱める)作用をする機能をもつものである。またその作用をフィルタリングと呼ぶ。.

新しい!!: 測光 (天文)とフィルター · 続きを見る »

ベテルギウス

ベテルギウス(Betelgeuse)は、オリオン座α星、オリオン座の恒星で全天21の1等星の1つ。おおいぬ座のシリウス、こいぬ座のプロキオンとともに、冬の大三角を形成している。.

新しい!!: 測光 (天文)とベテルギウス · 続きを見る »

ベティーナ (小惑星)

ベティーナ(またはベッティナ、ベッティーナ、250 Bettina)は、小惑星帯に位置する大きな小惑星の一つで、M型小惑星に分類される。 1885年9月3日にオーストリアの天文学者、ヨハン・パリサがウィーンで発見した。 銀行家のアルベルト・ザーロモン・フォン・ロートシルトが命名の権利を50£で購入し、妻の名前にちなんで命名した。.

新しい!!: 測光 (天文)とベティーナ (小惑星) · 続きを見る »

分光法

プリズムによる光線の波長分割 分光法(ぶんこうほう、spectroscopy)とは、物理的観測量の強度を周波数、エネルギー、時間などの関数として示すことで、対象物の定性・定量あるいは物性を調べる科学的手法である。 spectroscopy の語は、元々は光をプリズムあるいは回折格子でその波長に応じて展開したものをスペクトル (spectrum) と呼んだことに由来する。18世紀から19世紀の物理学において、スペクトルを研究する分野として分光学が確立し、その原理に基づく測定法も分光法 (spectroscopy) と呼ばれた。 もともとは、可視光の放出あるいは吸収を研究する分野であったが、光(可視光)が電磁波の一種であることが判明した19世紀以降は、ラジオ波からガンマ線(γ線)まで、広く電磁波の放出あるいは吸収を測定する方法を分光法と呼ぶようになった。また、光の発生または吸収スペクトルは、物質固有のパターンと物質量に比例したピーク強度を示すために物質の定性あるいは定量に、分析化学から天文学まで広く応用され利用されている。 また光子の吸収または放出は量子力学に基づいて発現し、スペクトルは離散的なエネルギー状態(エネルギー準位)と対応することが広く知られるようになった。そうすると、本来の意味の「スペクトル」とは全く異なる、「質量スペクトル」や「音響スペクトル」など離散的なエネルギー状態を表現した測定チャートもスペクトルとよばれるようになった。また「質量スペクトル」などは物質の定性に使われることから、今日では広義の分光法は「スペクトル」を使用して物性を測定あるいは物質を同定・定量する技法一般の総称となっている。.

新しい!!: 測光 (天文)と分光法 · 続きを見る »

アメリカ天文学会

アメリカ天文学会 (American Astronomical Society:略称:AAS)はアメリカ合衆国の学会である。本部はワシントンDCにあり、 天文学と近接領域の学問の進歩の推進と、天文学教育の推進の活動を行っている。 1899年にジョージ・ヘールの努力によって設立された。運営規則はヘール、ジョージ・コムストック、エドワード・モーリー、サイモン・ニューカム、エドワード・ピッカリングによって起草され、彼らによって理事会が構成され、ニューカムが初代会長となった。創立メンバーは114名であった。 現在の会員数は 7,000人を超え、5つの部会に分かれている。5つの部会は惑星科学部会(Division for Planetary Sciences:1968年)、天体力学部会(Division on Dynamical Astronomy:1969年)、高エネルギー天体物理学部会(High Energy Astrophysics Division:1969年)、太陽物理学部会(Solar Physics Division:1969年)、歴史的天文学部会(Historical Astronomy Division:1980年)である。現代の天文学を構成している広い分野の学問に興味を持つ、物理学者、数学者、地球物理学者、エンジニアたちもメンバーとなっている。各部会は別々にミーティングを開くこともある。.

新しい!!: 測光 (天文)とアメリカ天文学会 · 続きを見る »

アメリカ変光星観測者協会

アメリカ変光星観測者協会(アメリカへんこうせいかんそくしゃきょうかい American Association of Variable Star Observers 略称 AAVSO)は1911年にアメリカ合衆国で設立された天文学の国際非営利団体。おもにアマチュア天文家による変光星の観測を組織し、観測結果を収集し、評価分析し、天文学者、研究者、教育者に提供するための組織である。長期にわたる変光星の光度の変化が記録されている。 専門の研究者が多くの変光星を監視することは不可能なので、天文学の分野はアマチュア天文家が科学に貢献できる数少ない分野のひとつである。AAVSOの国際データベースには、100年間にわたる、1200万以上の観測結果が蓄積されている。約2000人のプロとアマチュア観測者から毎年、5万件の観測結果をうけとっている。 AAVSOは教育や公共教育の分野でも活発に活動し、定期的に市民のための教育ワークショップを開き、アマチュアを共同執筆者とする論文の出版を行っている。専門研究者に対してアマチュア天文家が観測結果を提供するだけという古い学問スタイルではなく、アマチュアと研究者が対等の関係で研究する新しい学問のスタイルの先駆けとなっている。 1973年から2004年に没するまでジャネット・アクユズ・マッテイが長年会長を務めていた。マッティの死後は、アーン・ヘンデン (en:Arne Henden) が会長の座を引き継いでいる。 同協会は1911年から1956年まで、マサチューセッツ州ケンブリッジのハーバード大学天文台に設置され、その後も同市内を転々とし1985年に初めて建物を購入、クリントン・B・フォード天文データ研究センター (Clinton B. Ford Astronomical Data and Research Center) に入居した。2007年には約30メートル離れた近所のスカイ発行社 (Sky Publishing) 移転後のビルを購入して移転した。.

新しい!!: 測光 (天文)とアメリカ変光星観測者協会 · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

新しい!!: 測光 (天文)とアメリカ航空宇宙局 · 続きを見る »

アルマゲスト

『アルマゲスト』()は、ローマ帝国時代にエジプト・アレクサンドリアの天文学者クラウディオス・プトレマイオスによって書かれた、天文学(実質的には幾何学)の専門書である。プトレマイオス自身の手による原典は失われているが、ギリシア語写本の題名として(、マテーマティケー・スュンタクスィス『数学的な論文』)、あるいは (、ヘー・メガレー・スュンタクスィス・テース・アストロノミアース『天文学の大論文』)といった題名が見られる。これが後にアラビア語に翻訳された際に كتاب المجسطي() と呼ばれた。なお、アラビア語に "mijisti"(あるいは "majisti")といった語彙は存在せず、ギリシア語の ""(、メギステー(「大きい」を意味する形容詞 (、メガス)の最上級)を音訳したものであると考えられている。これがさらにラテン語に翻訳されて (アルマゲストゥム)あるいは (アルマゲスティー)と音訳された。 はその現代語形(英語・ドイツ語)の名前に変わった。 『アルマゲスト』に書かれていた天動説は惑星の運動を説明するモデルとして1000年以上にわたってアラブ及びヨーロッパ世界に受け入れられた。『アルマゲスト』は現代の我々にとって、古代ギリシアの天文学について知る上での最も重要な情報源となっている。また『アルマゲスト』は、原本が失われた古代ギリシアの数学者ヒッパルコスの文献についての引用を多く含むため、数学を学ぶ者にとっても価値のある本とされてきた。ヒッパルコスは三角法についての本を著したが、彼の原書は失われているため、数学者達はヒッパルコスの研究成果や古代ギリシアの三角法一般についての情報源として『アルマゲスト』を参考にしている。.

新しい!!: 測光 (天文)とアルマゲスト · 続きを見る »

アルベド

アルベド(albedo)とは、天体の外部からの入射光に対する、反射光の比である。反射能(はんしゃのう)とも言う。アルベードとも表記する。 0以上、1前後以下(1を超えることもある)の無次元量であり、0 – 1の数値そのままか、0 % – 100 %の百分率で表す。.

新しい!!: 測光 (天文)とアルベド · 続きを見る »

アストロノミー・アンド・アストロフィジックス

アストロノミー・アンド・アストロフィジックス は、理論・観測・機器に基づく天文学および天体物理学を扱う査読付き学術雑誌である。天文学の世界において最も権威のある雑誌の一つとなっている。この雑誌はフランスのEDPサイエンスが刊行しており、年間で16号を発行している。編集長はティエリ・フォルヴェイユ(グルノーブル宇宙科学天文台)。過去にはクロード・ベルトー、ジャムス・ルクー、ミシェル・グルーイング、カトリーヌ・セザルスキー、ジョージ・コントポウロスが編集長を務めた。.

新しい!!: 測光 (天文)とアストロノミー・アンド・アストロフィジックス · 続きを見る »

カール・フリードリッヒ・ツェルナー

ール・フリードリッヒ・ツェルナー (Johann Karl Friedrich Zöllner, 1834年11月8日 - 1882年4月25日) はドイツの物理学者、天文学者である。測光学の分野で研究した。ツェルナー錯視の発見者とされる。 ツェルナー分光器 ベルリンで生まれ、ベルリン大学、バーゼル大学で学んだ。ライプツィヒ大学の天体物理学の教授などを務めた。天文観測機器の考案と改良を行い、特に測光器の分野に貢献した。太陽のプロミネンスの分光学的な観測を行った。彗星についての著書もある。.

新しい!!: 測光 (天文)とカール・フリードリッヒ・ツェルナー · 続きを見る »

ギリシア語

リシア語(ギリシアご、現代ギリシア語: Ελληνικά, または Ελληνική γλώσσα )はインド・ヨーロッパ語族ヘレニック語派(ギリシア語派)に属する言語。単独でヘレニック語派(ギリシア語派)を形成する。ギリシア共和国やキプロス共和国、イスタンブールのギリシア人居住区などで使用されており、話者は約1200万人。また、ラテン語とともに学名や専門用語にも使用されている。省略形は希語。.

新しい!!: 測光 (天文)とギリシア語 · 続きを見る »

グラフィカルユーザインタフェース

GUIを提供するソフトウェアの1つ、GNOME グラフィカルユーザインタフェース('''G'''raphical '''U'''ser '''I'''nterface、GUI)は、コンピュータグラフィックスとポインティングデバイスなどを用いる、グラフィカル(ビジュアル)であることを特徴とするユーザインタフェース。キャラクタユーザインタフェース (CUI) やテキストユーザインタフェース (TUI) と対比して語られることが多い。.

新しい!!: 測光 (天文)とグラフィカルユーザインタフェース · 続きを見る »

ケフェイド変光星

フェイド変光星(ケフェイドへんこうせい、Cepheid variable)は、HR図上でケフェイド不安定帯に属する脈動変光星。セフェイド変光星、セファイド変光星、ケファイド変光星とも表記。.

新しい!!: 測光 (天文)とケフェイド変光星 · 続きを見る »

ケフェウス座デルタ星

フェウス座δ星(ケフェウスざデルタせい、δ Cephei、δ Cep)は、ケフェウス座の恒星で地球から約797光年離れた位置にある連星系である。この距離では、視線上のガスや塵によるのため、視等級が0.23等暗くなる。 ケフェウス座δ星の主星は、比較的短い周期で明るさが変化する脈動変光星、セファイド変光星の典型である。更に細分化した場合、古典的セファイドまたはケフェウス座δ型に分類され(もう一つの分類はおとめ座W型)、その典型でもある。.

新しい!!: 測光 (天文)とケフェウス座デルタ星 · 続きを見る »

シーイング

ーイング()とは、望遠鏡などで天体を観たときに発生する、星像の位置の揺らぎ(シンチレーション)の程度を表す尺度である。観測記録をつける際に、しばしば5段階や10段階評価でこれを併記する。記入の際は(評価)/(満点)のような記法をとる(たとえば、3/5や2/10)。評価が高いほど数字は大きくなる(揺らぎが少なくなる)。 シンチレーションの主な原因は、大気の揺らぎなどによる空気の屈折率の微小な変化によるものである。近いものは望遠鏡内部の対流や人の体温による対流から、遠いものはジェット気流に至るまで、至る所に発生原因が潜んでおり、予測しにくいことから、望遠鏡の地上からの観測精度の限界のボトルネックになっている。また、現在ではこれを克服するために、補償光学系が開発されており、実際、すばる望遠鏡などに装備されている。.

新しい!!: 測光 (天文)とシーイング · 続きを見る »

スペクトル

ペクトル()とは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。 様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。.

新しい!!: 測光 (天文)とスペクトル · 続きを見る »

写真乾板

写真乾板 写真乾板(しゃしんかんぱん、photographic plate)とは写真術で用いられた感光材料の一種で、写真乳剤(臭化カリウムの溶液と硝酸銀の溶液をゼラチンに加えてできる、光に感光する物質)を無色透明のガラス板に塗布したものである。ガラス乾板(がらすかんぱん)あるいは単に乾板(かんぱん)と呼ばれる場合も多い。.

新しい!!: 測光 (天文)と写真乾板 · 続きを見る »

公転周期

公転周期(こうてんしゅうき、英語:orbital period)とはある天体(母天体)の周囲を公転する天体が母天体を1公転するのに要する時間のこと。日本語では軌道周期とも呼ばれる。 太陽の周囲を公転する天体や月の場合、目的によって以下のように定義の異なるいくつかの周期が用いられる。.

新しい!!: 測光 (天文)と公転周期 · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: 測光 (天文)と光 · 続きを見る »

光子

|mean_lifetime.

新しい!!: 測光 (天文)と光子 · 続きを見る »

光度曲線

光度曲線の一例。食連星(おおぐま座W型変光星)の一つ、きりん座V389星の光度曲線。 光度曲線或いはライトカーブ(light curve)は、天体の明るさを時間の関数として表した図のことである。一般に光度曲線は、縦軸を天体の明るさ(等級など)、横軸を時間としたグラフになる。 光度曲線には、天体の種類によって様々な特徴がみられ、食連星、ケフェイド変光星といった周期性のある変光星や、太陽系外惑星の通過などでできる周期的な曲線もあれば、新星、激変星、超新星、重力マイクロレンズなどによる非周期的な曲線もある。周期性のある光度曲線では、横軸に時刻ではなく変光周期における位相、即ち、光度曲線上のある時点と観測時点との相対的な時間間隔、をとる場合もある。 光度曲線を詳しく分析し、分光観測など他の手法で得たデータと関連付けることで、観測対象となった天体の物理量や、その天体で発生している物理過程に関する情報を得ることが可能となる。.

新しい!!: 測光 (天文)と光度曲線 · 続きを見る »

光電測光器

光電測光器(こうでんそっこうき、英:photoelectric photometer)は、光電効果を利用した観測装置で、天体の明るさを測る目的で望遠鏡に取り付ける。 天体からの光を検出するために使われる検出器としては、光電子増倍管やフォトダイオードなどがある。.

新しい!!: 測光 (天文)と光電測光器 · 続きを見る »

固体撮像素子

CCDイメージセンサの例 固体撮像素子(こたいさつぞうそし、英語: solid state image sensor)は、半導体チップの集積回路による、撮像素子(イメージセンサ)である。従来の撮像管に代表される、真空管のような機械的な構造を持つ撮像素子(イメージセンサ)に代わり、半導体の単結晶という「固体」の内部で起きる現象を利用したものであることからその名がある。様々な分類法があるが、一例を上げれば、材料・素子・電荷の転送方式など半導体技術や電子工学の観点からの分類、走査方式や用途からの分類、などといった分類がある。.

新しい!!: 測光 (天文)と固体撮像素子 · 続きを見る »

CCDイメージセンサ

CCDイメージセンサ (シーシーディーイメージセンサ、CCD image sensor)は固体撮像素子のひとつで、ビデオカメラ、デジタルカメラ、光検出器などに広く使用されている半導体素子である。単にCCDと呼ばれることも多い神崎 洋治 (著), 西井 美鷹 (著) 「体系的に学ぶデジタルカメラのしくみ 第2版」日経BPソフトプレス; 第2版 (2009/1/29) 安藤 幸司 (著)「らくらく図解 CCD/CMOSカメラの原理と実践 」加藤俊夫 半導体入門講座(Semiconductor JapanのWeb上講義)第16回 イメージセンサ http://www.roper.co.jp/Html/roper/tech_note/html/rp00.htmhttp://www7.ocn.ne.jp/~terl/JTTAS/JTTAS-CMOS.htm。.

新しい!!: 測光 (天文)とCCDイメージセンサ · 続きを見る »

球状星団

ハッブル宇宙望遠鏡が撮影したさそり座の球状星団NGC6093(M80) 球状星団(きゅうじょうせいだん、globular cluster)は恒星が互いの重力で球形に集まった天体。銀河の周りを軌道運動している。球状星団は重力的に非常に強く束縛されており、そのために形状は球対称となり、中心核に向かって非常に密度が高くなっている。.

新しい!!: 測光 (天文)と球状星団 · 続きを見る »

秒 (角度)

角度の単位としての秒(びょう、arcsecond, second of arc (SOA))は、分の1/60の角度である。時間における秒の用法から転じたものである。 1秒は1度の1/3600である。1度が円弧の1/360であるので、1秒は円弧の である。1ラジアンは約 である。 mas は、1秒の1/1000を表わす単位である。milliarcsecond に由来する。秒では単位として大きすぎる場合(恒星の年周視差や固有運動を表わすときなど)に用いられる。.

新しい!!: 測光 (天文)と秒 (角度) · 続きを見る »

立体角

立体角(りったいかく、solid angle)とは、二次元における角(平面角)の概念を三次元に拡張したものである。 平面上における角とは、平面上の同一の点(角の頂点)から出る二つの半直線によって区切られた部分のことをいい、この2半直線の開き具合を角度という。角度は、角の頂点を中心とする半径 1の円から、2半直線が切り取った円弧の長さで表すことができる。 これに対し、空間上における立体角とは、空間上の同一の点(角の頂点)から出る半直線が動いてつくる錐面によって区切られた部分のことをいい、この錐面の開き具合を角度という。角度は、角の頂点を中心とする半径 1の球から錐面が切り取った面積の大きさで表すことができる。 立体角の計量単位には次の2つがある。.

新しい!!: 測光 (天文)と立体角 · 続きを見る »

等級 (天文)

天文学において等級(とうきゅう、magnitude)とは、天体の明るさを表す尺度である。整数または小数を用いて「1.2等級」あるいは省略して「1.2等」などと表す。恒星の明るさを表す場合には「2等星」などと呼ぶ場合もある。等級の値が小さいほど明るい天体であることを示す。また、0等級よりも明るい天体の場合の明るさを表すには負の数を用いる。 等級が1等級変わると明るさは100の5乗根倍、すなわち約2.512倍変化する。よって等級差が5等級の場合に明るさの差が正確に100倍となる。言い換えれば等級とは天体の明るさを対数スケールで表現したものである。.

新しい!!: 測光 (天文)と等級 (天文) · 続きを見る »

紫外線

紫外線(しがいせん、ultraviolet)とは、波長が10 - 400 nm、即ち可視光線より短く軟X線より長い不可視光線の電磁波である。.

新しい!!: 測光 (天文)と紫外線 · 続きを見る »

点拡がり関数

点拡がり関数(てんひろがりかんすう、Point spread function、PSF)または点像分布関数(てんぞうぶんぷかんすう)は、光学系の点光源に対する応答を表す関数である。より一般的な表現はインパルス応答であり、PSFは結像した光学系のインパルス応答と言える。 PSFは様々な文脈で利用され、解像されない被写体で現れる像の中のぼやっとした部分と考えられる。 機能的な意味では、光学伝達関数の空間領域バージョンである。フーリエ光学、天文学、電子顕微鏡や、他のイメージング技術(共焦点レーザー顕微鏡のような3次元顕微鏡、蛍光顕微鏡など)において有用な考え方である。 点被写体が拡散している(ボケている)程度は、結像系の品質の尺度である。蛍光顕微鏡や望遠鏡、光学顕微鏡などコヒーレントでない結像系においては、結像プロセスはそのパワーの面で線形であり、線形系理論によって記述される。光がコヒーレントな場合、結像は複素電場で線形となる。これは、2つの物体AとBとが同時に結像される時、その結果が独立に結像したものの和に等しいことを意味する。換言すると、Aの結像はBの結像には影響されずその逆も真であると言え、それは光子の非相互作用的な性質による(ここでいう和とは光の波動の和であり、非結像面においては光の波動は打ち消し合ったり強め合ったりして干渉を起こしうる)。.

新しい!!: 測光 (天文)と点拡がり関数 · 続きを見る »

銀河

銀河(ぎんが、galaxy)は、恒星やコンパクト星、ガス状の星間物質や宇宙塵、そして重要な働きをするが正体が詳しく分かっていない暗黒物質(ダークマター)などが重力によって拘束された巨大な天体である。英語「galaxy」は、ギリシア語でミルクを意味する「gála、γᾰ́λᾰ」から派生した「galaxias、γαλαξίας」を語源とする。英語で天の川を指す「Milky Way」はラテン語「Via Lactea」の翻訳借用であるが、このラテン語もギリシア語の「galaxías kýklos、γαλαξίας κύκλος」から来ている。 1,000万 (107) 程度の星々で成り立つ矮小銀河から、100兆 (1014) 個の星々を持つ巨大なものまであり、これら星々は恒星系、星団などを作り、その間には星間物質や宇宙塵が集まる星間雲、宇宙線が満ちており、質量の約90%を暗黒物質が占めるものがほとんどである。観測結果によれば、すべてではなくともほとんどの銀河の中心には超大質量ブラックホールが存在すると考えられている。これは、いくつかの銀河で見つかる活動銀河の根源的な動力と考えられ、銀河系もこの一例に当たると思われる。 歴史上、その具体的な形状を元に分類され、視覚的な形態論を以って考察されてきたが、一般的な形態は、楕円形の光の輪郭を持つ楕円銀河である。ほかに渦巻銀河(細かな粒が集まった、曲がった腕を持つ)や不規則銀河(不規則でまれな形状を持ち、近くの銀河から引力の影響を受けて形を崩したもの)等に分類される。近接する銀河の間に働く相互作用は、時に星形成を盛んに誘発しながらスターバースト銀河へと発達し、最終的に合体する場合もある。特定の構造を持たない小規模な銀河は不規則銀河に分類される。 観測可能な宇宙の範囲だけでも、少なくとも1,700億個が存在すると考えられている。大部分の直径は1,000から100,000パーセクであり、中には数百万パーセクにもなるような巨大なものもある。は、13当たり平均1個未満の原子が存在するに過ぎない非常に希薄なガス領域である。ほとんどは階層的な集団を形成し、これらは銀河団やさらに多くが集まった超銀河団として知られている。さらに大規模な構造では、銀河団は超空洞と呼ばれる銀河が存在しない領域を取り囲む銀河フィラメントを形成する。.

新しい!!: 測光 (天文)と銀河 · 続きを見る »

表面輝度

表面輝度(surface brightness) とは、天文学で、銀河や星雲などの広がりを持った天体の明るさを表すために用いられる概念である。.

新しい!!: 測光 (天文)と表面輝度 · 続きを見る »

食変光星

アルゴル型食変光星の変光の原理(動画)。実際は、青白い主星の方が、赤色がかった伴星より半径が小さい場合がほとんどである。動画の例では、食が皆既食・金環食なので、実際の光度曲線は食の中央が平坦になる。 食変光星(しょくへんこうせい)(eclipsing variable (star))とは、共通重心の周りを回る2つの星が互いの光を覆い隠し合うことによって、みかけの明るさ(2星の合成光度)が変わるタイプの変光星である。そのため、食変光星は必ず連星系を形成している。また、地球から見てこの連星系が食変光星に見えるためには、2つの星の軌道面が、地球と連星系とを結んだ直線を含む平面の近くに存在する必要がある。一般的に、恒星自身の明るさは変わらず、規則的に変光するのが特徴である(ただし、後述するカシオペヤ座RZ星のように、連星系の一方が脈動変光星の場合はこの限りではない)。なお、「食変光星」は変光星としての分類であり、連星の分類として食連星(しょくれんせい)(eclipsing binary)と呼ばれることもある。.

新しい!!: 測光 (天文)と食変光星 · 続きを見る »

超新星

プラーの超新星 (SN 1604) の超新星残骸。スピッツァー宇宙望遠鏡、ハッブル宇宙望遠鏡およびチャンドラX線天文台による画像の合成画像。 超新星(ちょうしんせい、)は、大質量の恒星が、その一生を終えるときに起こす大規模な爆発現象である。.

新しい!!: 測光 (天文)と超新星 · 続きを見る »

黒体

黒体(こくたい、)あるいは完全放射体(かんぜんほうしゃたい)とは、外部から入射する電磁波を、あらゆる波長にわたって完全に吸収し、また熱放射できる物体のこと。.

新しい!!: 測光 (天文)と黒体 · 続きを見る »

赤外線

赤外線(せきがいせん)は、可視光線の赤色より波長が長く(周波数が低い)、電波より波長の短い電磁波のことである。ヒトの目では見ることができない光である。英語では infrared といい、「赤より下にある」「赤より低い」を意味する(infra は「下」を意味する接頭辞)。分光学などの分野ではIRとも略称される。対義語に、「紫より上にある」「紫より高い」を意味する紫外線(英:ultraviolet)がある。.

新しい!!: 測光 (天文)と赤外線 · 続きを見る »

開口 (光学)

図1: 中心の7角形の孔が開口 開口(かいこう、)とは、光学系において、光量を調整するために、光を吸収する板状のもので光を遮り、光を一部だけを通すようにした孔のことである。アパーチャーともいう。 NDフィルターによる光量調整と異なり、焦点距離との関係であるF値や開口数が変化し、被写界深度や分解能が変化する。.

新しい!!: 測光 (天文)と開口 (光学) · 続きを見る »

肉眼

肉眼(にくがん)とは光学機器を付けずに観測すること。 またその行為である。.

新しい!!: 測光 (天文)と肉眼 · 続きを見る »

自転周期

自転周期(じてんしゅうき、Rotation period)とは、自転する天体(主として惑星)が自転軸の周りを一周するのに要する時間である。 背景の恒星に対して一周する時間は恒星時と呼ばれ、太陽に対して一周する時間は太陽時と呼ばれる。.

新しい!!: 測光 (天文)と自転周期 · 続きを見る »

色指数 (天文)

色指数(いろしすう、color index)とは天文学で天体の色を表す指標である。特に恒星の場合は色指数はその星の表面温度の目安ともなる。 色指数は天体の等級を2種類の異なる色フィルターを用いて測定し、その等級の差をとることによって得られる。この測光には特定の波長域の光のみを透過するバンドパスフィルターが用いられる。代表的なフィルターには、紫外域の光を透過する U バンドフィルター、青色を透過する B バンドフィルター、緑色から黄色の波長域を透過する V バンドフィルターなどがある。この U,B,V 3色の波長域を用いる測光方法をUBV測光系と呼び、U バンドと B バンド、B バンドと V バンドの等級の差をそれぞれ U-B 色指数、B-V 色指数などと呼ぶ。 色指数は通常、波長が短いバンドでの等級から波長の長いバンドでの等級を差し引いた値を用いるため、色指数の値が小さいほどその天体は青い(または温度が高い)ことを示す。逆に色指数の値が大きいほどその天体は赤い(または温度が低い)。例として、黄色い恒星として知られている太陽の色指数は B-V.

新しい!!: 測光 (天文)と色指数 (天文) · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: 測光 (天文)と電磁波 · 続きを見る »

通過 (天文)

フォボスの太陽面通過 通過(つうか、)は、天文学において、以下の2つの意味を持つ。.

新しい!!: 測光 (天文)と通過 (天文) · 続きを見る »

逆2乗の法則

この図はどのように法則が適用されるかを表している。赤い線は発生源 S から放射される流束を表している。流束の線の数の合計は距離に対して一定であり、また源 S の強度に依存する。流束線の密度が大きいのは強い場であることを意味している。流束の密度は源からの距離の 2 乗に反比例する。それは球面の面積が半径の 2 乗に比例して増加するためである。それゆえ場の力の強さは、源からの距離の 2 乗に反比例する。 逆2乗の法則(ぎゃくにじょうのほうそく、inverse square law)とは、物理量の大きさがその発生源からの距離の 2 乗に反比例する、という法則である。逆 2 乗とは 2 乗の逆数のことであり、この法則はしばしば、ある物理量の大きさがその発生源からの距離の逆 2 乗に比例する、という形でも述べられる。逆2乗の法則はしばしば短縮して逆2乗則とも呼ばれる。 逆2乗の法則は冪乗則の一種であり、様々な物理現象の中に見出すことができる。以下の節では自然科学と物理学の歴史の中で特に重要な例について述べる。逆2乗の法則の発見により、物理学者は何らかの変化を認めたとき、その発生源と発生源との距離の関係を調べ、それらが逆2乗の法則に当てはまるかどうかに関心を持つようになった。 逆2乗の法則が成り立つこと、特に指数が 2 であることには、我々のいる空間が 3 次元であり等方的であることと密接に関係している。空間の各点で測定できる物理量について、それがある発生源から生じる流体のようなものと見なせる場合、発生源から偏りなく流出する物質からの類推により、発生源を囲む球面を通過する物質の量は、球面の大きさによらず一定であると考えることができる。したがって球面を通過する物質の密度は球面の面積に反比例して小さくなる。発生源が球殻の中心にあるとすれば、球面の大きさは発生源から球面までの距離の 2 乗に比例するから、球面を通過する物質の密度は球面と発生源の距離の 2 乗に反比例する。 逆2乗の法則が成り立つことは、発生源の形状に強く依存している。逆2乗の法則が成り立つのは発生源が点や真球と見なせる場合であり、例えば棒状の光源に対しては逆2乗の法則は成り立たない。一般には、発生源の細かな構造を無視できる程度の距離においてのみ、より具体的には発生源の大きさに比べて非常に遠距離の領域で逆2乗の法則が成り立つ。 逆2乗の法則が成り立つのは大抵、ある一つの発生源に注目した場合である。たとえば異なる天体の表面重力を比較する際には注意が必要である。構成物質の似通った天体同士では表面重力の大きさは天体の半径に対する逆 2 乗則に従わず、自転による遠心力の影響を除けば、表面重力の大きさは半径に概ね比例する。これは、重力の大きさが天体の質量に比例し、同程度の密度を持つ天体の質量を比較すると、天体の質量は天体の体積に比例するためである。.

新しい!!: 測光 (天文)と逆2乗の法則 · 続きを見る »

IRAF

IRAFはImage Reduction and Analysis Facilityの略である。IRAFはアメリカ国立光学天文台のプログラマーによって書かれたソフトウェアの集合体である。 このソフトウェアにより,CCDカメラなどの検出器により得られたピクセル配列フォームの天体画像データを解析することができる。 IRAFはほぼ全てのオペレーティングシステム上で利用できる。Unix系のOS向けに作成されたが、Cygwinを用いることによりMicrosoft Windows上でも利用できる。いくつかのLinuxディストリビューションにおいても利用可能である。 単一鏡の検出器によって得られたデータは一般的にIRAFを用いて解析されるが、開口合成によって得られたデータはAIPS (Astronomical Image Processing System)もしくはmiriadによって解析される。.

新しい!!: 測光 (天文)とIRAF · 続きを見る »

M3 (天体)

M3 (NGC5272) はりょうけん座にある球状星団である。 1764年5月3日にシャルル・メシエによって発見された。メシエは口径12cmの望遠鏡で観察し「星がない星雲で中心部がよく輝く。周辺は次第に薄れ、まるい」と記録している。ウィリアム・ハーシェルは「径5'~6'のきれいな星団」とした。ジョン・ハーシェルは「11~12等級の星が直線上に連なり。不規則な突起を見る」とした。ウィリアム・ヘンリー・スミスは「よく輝く。1000個を下らぬ星塊。中心部ほどすばらしい輝き。星が非常に密集して外にまばらに伸びている東南部を除いてあらゆる方向に枝を出していて、正しく"くらげ"のようだ」とした。ロス卿は「中心からあらゆる方向に突起がでて、中心部には暗い穴が数個ある」とした。 大きく明るい球状星団の一つで、およそ500,000の星からなる。地球からの距離は約33900光年。見かけの等級は6.2だが肉眼では5.8等であるとする人もおり、ぎりぎり最良の観測地では肉眼で見えるとする人もいる。ただその際、隣の6等級の恒星との分離が難しい。 変光星が多い星団で現在200個以上の変光星が発見されている。そのほとんどがこと座RR型変光星である。M22と同様に、星の光度がほとんど平均している。毎秒150kmの速さで地球に近づいている。 望遠鏡での観測では低倍率で注意深く観測すれば中心部が桃色に、その外側は緑色が見えるとする人がいるが、これは論議になっている。周辺の星は口径8cm程度の望遠鏡に高倍率をかけると見え始める。口径5cmの双眼鏡で見えたという人もいる。マラスは口径10cmの望遠鏡で見て「壮観。ひどく密集。中心は明るく2個の光点をみる。まるい光輪にとり囲まれ、外側は次第にうすれている。数個の外側の星が見え、中央のザラザラした感じは大口径で見える星であろう」とした。径15cmで全体の2/3が星に分けられ、口径20cmで中心に光った核が見え始める。さらに、口径25cmで中心部以外のほとんどの星が分離できる。口径40cm程度で中心部まで分離できる。.

新しい!!: 測光 (天文)とM3 (天体) · 続きを見る »

WASP-19b

WASP-19b とは、ほ座のG型主系列星WASP-19を公転する太陽系外惑星である。恒星のごく近くを周回する巨大惑星(ホット・ジュピター)で、半径0.016AUの軌道を0.79日(19時間)で一周している。この周期は2011年3月時点で知られている太陽系外惑星の中で最も短いものである。.

新しい!!: 測光 (天文)とWASP-19b · 続きを見る »

波長

波長(はちょう、Wellenlänge、wavelength)とは、空間を伝わる波(波動)の持つ周期的な長さのこと。空間は3次元と限る必要はない。 正弦波を考えると(つまり波形が時間や、空間の位置によって変わらない状態)、波長λには、 の関係がある。 \begin k \end は波数、 \begin \omega \end は角振動数、 \begin v \end は波の位相速度、 \begin f \end は振動数(周波数)である。波数 \begin k \end は k.

新しい!!: 測光 (天文)と波長 · 続きを見る »

活動銀河

活動銀河(かつどうぎんが、active galaxy)は、星、星間塵、星間ガスといった通常の銀河の構成要素とは別の部分からエネルギーの大半が放出されている特殊な銀河。このエネルギーは、活動銀河の種類によって若干異なるが、電波、赤外線、紫外線、X線、γ線など、電磁波のほぼ全ての波長域で放出されている。このエネルギーの大半を、銀河の中心1%程度のコンパクトな領域から放出しており、この部分を活動銀河核 (active galactic nucleus) と呼ぶ。 活動銀河 M87(画面左上の黄色の天体)から5000光年の長さにわたるジェットが放出されている様子。光速近くまで加速された電子が青白い光を放ちながら放出されている。.

新しい!!: 測光 (天文)と活動銀河 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: 測光 (天文)と温度 · 続きを見る »

測光標準星

測光標準星は、測光システムによって定められる複数の波長帯(バンド)において、電磁波の強度が綿密に測定されており、変光星ではない恒星の一群。.

新しい!!: 測光 (天文)と測光標準星 · 続きを見る »

望遠鏡

望遠鏡(ぼうえんきょう)とは、遠くにある物体を可視光線・赤外線・X線・電波などの電磁波を捕えて観測する装置である。古くは「遠眼鏡(とおめがね)」とも呼ばれた。 観測に用いられる電磁波の波長により、光学望遠鏡と電波望遠鏡に大別される。電磁波を捕える方式による分類では反射望遠鏡と屈折望遠鏡がある。.

新しい!!: 測光 (天文)と望遠鏡 · 続きを見る »

放射測定

放射測定(ほうしゃそくてい、radiometry)は、光学において、可視光線を含む電磁波一般の測定を指す。光は光度測定によっても測定できるが、そちらは絶対強度よりも人間の目から見た明るさなどを扱う。 放射測定は天文学、特に電波天文学で重要であり、リモートセンシングでも重要である。放射測定に分類される測定技法は、天文学では測光とも呼ばれる。 分光放射測定(ぶんこうほうしゃそくてい、spectroradiometry)は、波長の狭い帯域ごとの絶対放射強度を測定するものである。.

新しい!!: 測光 (天文)と放射測定 · 続きを見る »

1856年

記載なし。

新しい!!: 測光 (天文)と1856年 · 続きを見る »

ここにリダイレクトされます:

天体測光

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »