ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

電波天文学

索引 電波天文学

電波天文学(でんぱてんもんがく、英語:radio astronomy)は、電波を天体の観測手段として用い、天体に関する研究を行う天文学の一分野。.

73 関係: おおいぬ座偏光はくちょう座いて座Aかに星雲天の川天体天文学太陽フレア宇宙マイクロ波背景放射岩波書店中性子星干渉法地球外知的生命体探査地球外生命ネイチャーレーダーロバート・ウッドロウ・ウィルソンローレンツ力ヘンドリク・ファン・デ・フルストパラボラアンテナパルサーパークス天文台ビッグバンベル研究所アントニー・ヒューイッシュアーノ・ペンジアスアタカマ大型ミリ波サブミリ波干渉計オリオン大星雲オーストラリアオズマ計画カール・ジャンスキーカシオペヤ座ガンマ線天文学グロート・レーバーコグニティブ無線ジョスリン・ベル・バーネルスペクトルスウィンバーン工科大学共同通信社光年国立天文台短波紫外線天文学畑中武夫銀河系高調波超広帯域無線超新星残骸赤外線天文学...英語電力線搬送通信電磁波電離層電波電波の周波数による分類電波天文衛星電波望遠鏡M87 (天体)X線天文学暗黒星雲恒星社厚生閣携帯電話東京大学楕円銀河活動銀河星間物質星雲放射光散乱1931年2001年21cm線 インデックスを展開 (23 もっと) »

おおいぬ座

おおいぬ座(大犬座、Canis Major)は、トレミーの48星座の1つ。日本では冬の南の空にやや低く見られる星座である。 α星は、全天21の1等星の中で最も明るく、シリウスと呼ばれる。シリウスと、こいぬ座のα星プロキオン、オリオン座のα星ベテルギウスの3つの1等星で、冬の大三角を形成する。.

新しい!!: 電波天文学とおおいぬ座 · 続きを見る »

偏光

偏光(へんこう、polarization)は、電場および磁場が特定の(振動方向が規則的な)方向にのみ振動する光のこと。電磁波の場合は偏波(へんぱ)と呼ぶ。光波の偏光に規則性がなく、直交している電界成分の位相関係がでたらめな場合を非偏光あるいは自然光と呼ぶ。 光電界の振幅は直交する2方向の振動成分に分解できることが分かっている。普通の光は、あらゆる方向に振動している光が混合しており、偏光と自然光の中間の状態(部分偏光)にある。このような光は一部の結晶や光学フィルターを通すことによって偏光を得ることができる。.

新しい!!: 電波天文学と偏光 · 続きを見る »

はくちょう座

はくちょう座(白鳥座、Cygnus)は、トレミーの48星座の1つ。.

新しい!!: 電波天文学とはくちょう座 · 続きを見る »

いて座A

いて座A(いてざえー、Sagittarius A, Sgr A)は我々の銀河系の中心に存在する電波源の複合体である。天球上ではいて座に位置する。 いて座Aは三つの部分からなる。超新星残骸であるいて座Aイースト、渦巻腕状の構造を持ついて座Aウエスト、およびいて座Aウエストの渦巻の中心にある非常に明るくコンパクトな電波源のいて座A*(いてざ・エー・スター)である。 多くの天文学者は、我々の銀河系の中心には大質量ブラックホールが存在する証拠があると考えている。いて座A*はこの大質量ブラックホールの存在場所の最有力候補と考えられている。 ドイツのマックス・プランク研究所のライナー・ショーデルを始めとする国際研究チームはいて座A*の近くにある S2 と呼ばれる恒星の運動を約10年間にわたって観測し、いて座A*が非常に重くコンパクトな天体であるという証拠を得た。この結果はいて座A*がブラックホールであるという仮説とよく合い、この仮説を支持する強い証拠である。 彼らは S2 のケプラー軌道を解析することで、いて座A*の位置には 3.7 ± 1.5 x 106 太陽質量の質量が半径 17 光時 (120AU) という狭い範囲内に存在していると求めた。.

新しい!!: 電波天文学といて座A · 続きを見る »

かに星雲

かに星雲(かにせいうん、Crab Nebula 、M1、NGC1952)はおうし座にある超新星残骸で、地球からの距離はおよそ7000光年。典型的なパルサー星雲で、中心部には「かにパルサー」と呼ばれるパルサーの存在が確認されており、現在も膨張を続けている。 この星雲の元となった超新星爆発が1054年に出現したことが、中国や日本の文献に残されている。.

新しい!!: 電波天文学とかに星雲 · 続きを見る »

天の川

天の川あるいは天の河(あまのがわ)は、夜空を横切るように存在する雲状の光の帯のこと。 東アジアの神話では夜空の光の帯を、川(河)と見ている(→#東アジアの神話)。一方、ギリシャ神話では、これを乳と見ている。それが継承され英語圏でもMilky Way(ミルキーウェイ)と言うようになった。(→#ギリシャ神話) この光の帯は天球を一周しており、恒星とともに日周運動を行っている。 日本では、夏と冬に天の川が南北に頭の上を越える位置に来る。これをまたいで夏には夏の大三角が、冬には冬の大三角が見える。他の星も天の川の周辺に多いので、夏と冬の夜空はにぎやかになる。 現在では「天の川」や「Milky Way」という言葉で、天球上の(視覚的な)帯だけでなく、地球を含む星の集団、つまり天の川銀河を指すこともある。(→#天文学における天の川 ).

新しい!!: 電波天文学と天の川 · 続きを見る »

天体

天体(てんたい、、)とは、宇宙空間にある物体のことである。宇宙に存在する岩石、ガス、塵などの様々な物質が、重力的に束縛されて凝縮状態になっているものを指す呼称として用いられる。.

新しい!!: 電波天文学と天体 · 続きを見る »

天文学

星空を観察する人々 天文学(てんもんがく、英:astronomy, 独:Astronomie, Sternkunde, 蘭:astronomie (astronomia)カッコ内は『ラランデ歴書』のオランダ語訳本の書名に見られる綴り。, sterrenkunde (sterrekunde), 仏:astronomie)は、天体や天文現象など、地球外で生起する自然現象の観測、法則の発見などを行う自然科学の一分野。主に位置天文学・天体力学・天体物理学などが知られている。宇宙を研究対象とする宇宙論(うちゅうろん、英:cosmology)とは深く関連するが、思想哲学を起源とする異なる学問である。 天文学は、自然科学として最も早く古代から発達した学問である。先史時代の文化は、古代エジプトの記念碑やヌビアのピラミッドなどの天文遺産を残した。発生間もない文明でも、バビロニアや古代ギリシア、古代中国や古代インドなど、そしてイランやマヤ文明などでも、夜空の入念な観測が行われた。 とはいえ、天文学が現代科学の仲間入りをするためには、望遠鏡の発明が欠かせなかった。歴史的には、天文学の学問領域は位置天文学や天測航法また観測天文学や暦法などと同じく多様なものだが、近年では天文学の専門家とはしばしば天体物理学者と同義と受け止められる。 天文学 (astronomy) を、天体の位置と人間界の出来事には関連があるという主張を基盤とする信念体系である占星術 (astrology) と混同しないよう注意が必要である。これらは同じ起源から発達したが、今や完全に異なるものである。.

新しい!!: 電波天文学と天文学 · 続きを見る »

太陽フレア

太陽フレア(たいようフレア、Solar flare)とは太陽における爆発現象。別名・太陽面爆発。 太陽系で最大の爆発現象で、小規模なものは1日3回ほど起きている。多数の波長域の電磁波の増加によって観測される。特に大きな太陽フレアは白色光でも観測されることがあり、白色光フレアと呼ぶ。太陽の活動が活発なときに太陽黒点の付近で発生する事が多く、こうした領域を太陽活動領域と呼ぶ。太陽フレアの初めての観測は、1859年にイギリスの天文学者、リチャード・キャリントンによって行われた(1859年の太陽嵐)。 「フレア」とは火炎(燃え上がり)のことであるが、天文学領域では恒星に発生する巨大な爆発現象を指している。現在では太陽以外の様々な天体でも観測されている。 アメリカ航空宇宙局(NASA)によると、2012年7月には巨大な太陽フレアが地球をかすめた 。次の10年間に同程度のフレアが実際に地球を襲う確率は12%であると推定される。.

新しい!!: 電波天文学と太陽フレア · 続きを見る »

宇宙マイクロ波背景放射

cmあたりの波数。横軸の5近辺の波長1.9mm、160.2Ghzにピークがあることが読み取れる WMAPによる宇宙マイクロ波背景放射の温度ゆらぎ。 宇宙マイクロ波背景放射(うちゅうマイクロははいけいほうしゃ、cosmic microwave background; CMB)とは、天球上の全方向からほぼ等方的に観測されるマイクロ波である。そのスペクトルは2.725Kの黒体放射に極めてよく一致している。 単に宇宙背景放射 (cosmic background radiation; CBR)、マイクロ波背景放射 (microwave background radiation; MBR) 等とも言う。黒体放射温度から3K背景放射、3K放射とも言う。宇宙マイクロ波背景輻射、宇宙背景輻射などとも言う(輻射は放射の同義語)。.

新しい!!: 電波天文学と宇宙マイクロ波背景放射 · 続きを見る »

岩波書店

株式会社岩波書店(いわなみしょてん、Iwanami Shoten, Publishers. )は、日本の出版社。.

新しい!!: 電波天文学と岩波書店 · 続きを見る »

中性子星

'''中性子星''' 右上方向にジェットを放出するほ座のベラ・パルサー。中性子星自体は内部に存在し、ガスに遮蔽されて見えない 中性子星(ちゅうせいしせい、)とは、質量の大きな恒星が進化した最晩年の天体の一種である。.

新しい!!: 電波天文学と中性子星 · 続きを見る »

干渉法

2波干渉 単色光源による波面を距離を変えてぶつけてやると、こうなる。 干渉法(かんしょうほう)は複数の波を重ね合わせるとき、それぞれの波の位相が一致した部分では波が強め合い、位相が逆転している部分では弱めあうことを利用して、波長(周波数)や位相差を測定する技術のこと。この原理を利用した機器を主に干渉計とよぶ。 ガンマ線から可視光線、電波・音波領域に及ぶ電磁波工学の研究・製品の製造管理(および較正)・動作原理においては基礎的技術であり、この原理を利用する機器・分野は極めて多岐に渡る。.

新しい!!: 電波天文学と干渉法 · 続きを見る »

地球外知的生命体探査

地球外知的生命体探査(ちきゅうがいちてきせいめいたいたんさ、Search for extraterrestrial intelligence)とは、地球外知的生命体による宇宙文明を発見するプロジェクトの総称である。頭文字を取って「SETI(セティ、セチ)」と称される。アクティブSETI(能動的SETI)に対して、パッシブ(受動的)SETIとも呼ばれる。現在世界では多くのSETIプロジェクトが進行している。 ソフトウエアで参加の稼動時のスクリーンセーバーの一例。(SETI@Home Enhanced 5.27).

新しい!!: 電波天文学と地球外知的生命体探査 · 続きを見る »

地球外生命

SETIのアンテナ。3.太陽系の他の惑星を調べる探査車。 地球外生命(ちきゅうがいせいめい、extraterrestrial life / alien life、略称:ET)とは、地球大気圏の外の生命の総称である。.

新しい!!: 電波天文学と地球外生命 · 続きを見る »

ネイチャー

『ネイチャー』()は、1869年11月4日、イギリスで天文学者ノーマン・ロッキャーによって創刊された総合学術雑誌である。 世界で特に権威のある学術雑誌のひとつと評価されており、主要な読者は世界中の研究者である。雑誌の記事の多くは学術論文が占め、他に解説記事、ニュース、コラムなどが掲載されている。記事の編集は、イギリスの Nature Publishing Group (NPG) によって行われている。NPGからは、関連誌として他に『ネイチャー ジェネティクス』や『ネイチャー マテリアルズ』など十数誌を発行し、いずれも高いインパクトファクターを持つ。.

新しい!!: 電波天文学とネイチャー · 続きを見る »

レーダー

レーダー用パラボラアンテナ(直径40m) レーダー(Radar)とは、電波を対象物に向けて発射し、その反射波を測定することにより、対象物までの距離や方向を測る装置である。.

新しい!!: 電波天文学とレーダー · 続きを見る »

ロバート・ウッドロウ・ウィルソン

ロバート・ウッドロウ・ウィルソン(Robert Woodrow Wilson, 1936年1月10日 - )は、アメリカの天文学者、物理学者。アーノ・ペンジアスとともに宇宙マイクロ波背景放射(CMB)を発見し、ノーベル物理学賞を受賞した。テキサス州ヒューストン生まれ。 1964年に宇宙マイクロ波背景放射を偶然発見した業績によって、1978年にウィルソンはペンジアスとともにノーベル物理学賞を受賞した(この年の物理学賞はピョートル・カピッツァとの共同受賞である)。ニュージャージー州ホルムデルのベル研究所にあった新型アンテナを使った研究中に、彼らは空に説明できない電波ノイズ源があることを発見した。このアンテナに付いていた鳩の糞を取り除き、その他考えられる全ての雑音源を特定した後、最終的にこのノイズがCMBであることを突き止めた。この発見はビッグバン理論の重要な確証とされた。 ウィルソンはライス大学で学部時代を過ごし、優等学生の友愛会であるファイ・ベータ・カッパに入っていた。卒業後はカリフォルニア工科大学で学位を取得した。 Category:アメリカ合衆国の天文学者 Category:アメリカ合衆国の物理学者 Category:ノーベル物理学賞受賞者 Category:ベル研究所の人物 Category:テキサス州ハリス郡出身の人物 Category:1936年生 Category:存命人物.

新しい!!: 電波天文学とロバート・ウッドロウ・ウィルソン · 続きを見る »

ローレンツ力

ーレンツ力(ローレンツりょく、Lorentz force)は、電磁場中で運動する荷電粒子が受ける力のことである。 名前はヘンドリック・ローレンツに由来する。.

新しい!!: 電波天文学とローレンツ力 · 続きを見る »

ヘンドリク・ファン・デ・フルスト

ヘンドリク・ファン・デ・フルスト ヘンドリク・クリストフェル・ファン・デ・フルスト(Hendrik Christoffel van de Hulst, 1918年11月19日 – 2000年7月31日)はオランダの天文学者である。電波天文学の分野で有用な観測手段となった21cm線の存在を予測した。 ユトレヒトで生まれ、ユトレヒト大学でマルセル・ミンナルトのもとで学んだ。1944年学生の時に宇宙空間にある水素ガス雲から波長21cm線のスペクトル線が放射されることを予測した。21cm線は1951年にアメリカのチーム、オランダのチームなどによって検出された。ヤーキス天文台で研究した後、1948年から1984年までライデン大学で働き、1952年から教授となった。太陽コロナや地球大気などの研究を行った。.

新しい!!: 電波天文学とヘンドリク・ファン・デ・フルスト · 続きを見る »

パラボラアンテナ

多重無線用のパラボラアンテナ 衛星通信用のパラボラアンテナ パラボラアンテナの動作原理 パラボラアンテナ(parabolic antenna, parabola antenna)は、放物曲面をした反射器(放物面反射器 parabolic reflector)を持つ凹型アンテナ。形状からディッシュアンテナ(dish:皿)ともいう。.

新しい!!: 電波天文学とパラボラアンテナ · 続きを見る »

パルサー

パルサー(pulsar)は、パルス状の可視光線、電波、X線を発生する天体の総称。.

新しい!!: 電波天文学とパルサー · 続きを見る »

パークス天文台

パークス天文台(Parkes Observatory)は、オーストラリア連邦ニューサウスウェールズ州パークスにある電波天文台である。オーストラリア連邦科学産業研究機構の下部組織であるオーストラリア国立望遠鏡機構が運営を行っている。.

新しい!!: 電波天文学とパークス天文台 · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

新しい!!: 電波天文学とビッグバン · 続きを見る »

ベル研究所

ベル研究所(ベルけんきゅうじょ、Bell Laboratories)はもともとBell System社の研究開発部門として設立された研究所であり、現在はノキアの子会社である。「ベル電話研究所」、略して「ベル研」とも。.

新しい!!: 電波天文学とベル研究所 · 続きを見る »

アントニー・ヒューイッシュ

アントニー・ヒューイッシュ(Antony Hewish, 1924年5月11日 - )はイギリスの電波天文学者。パルサーを発見した功績によって1974年に同僚のマーティン・ライルとともにノーベル物理学賞を受賞した。1969年には英国王立天文学会のエディントン・メダルも受賞している。.

新しい!!: 電波天文学とアントニー・ヒューイッシュ · 続きを見る »

アーノ・ペンジアス

アーノ・アラン・ペンジアス(Arno Allan Penzias, 1933年4月26日 - )はアメリカ合衆国の物理学者。宇宙マイクロ波背景放射の発見によって1978年のノーベル物理学賞を受賞した。.

新しい!!: 電波天文学とアーノ・ペンジアス · 続きを見る »

アタカマ大型ミリ波サブミリ波干渉計

アタカマ大型ミリ波サブミリ波干渉計(アタカマおおがたミリはサブミリはかんしょうけい、Atacama Large Millimeter/submillimeter Array、ALMA、アルマ、アルマ望遠鏡)は、チリ・アタカマ砂漠に建設された大型電波干渉計である。 2002年から建設が始まり、2013年3月13日に完成記念式典が行われた。2014年6月に全てのアンテナが到着した。 略称のALMA(アルマ)とは、スペイン語で「魂」や「いとしい人」を意味する単語である。.

新しい!!: 電波天文学とアタカマ大型ミリ波サブミリ波干渉計 · 続きを見る »

オリオン大星雲

リオン大星雲(オリオンだいせいうん、M42、NGC 1976)は、オリオン座の三つ星付近に存在する散光星雲である。.

新しい!!: 電波天文学とオリオン大星雲 · 続きを見る »

オーストラリア

ーストラリア連邦(オーストラリアれんぽう、Commonwealth of Australia)、またはオーストラリア(Australia)は、オーストラリア大陸本土、タスマニア島及び多数の小島から成りオセアニアに属する国。南方の南極大陸とは7,877km離れている。イギリス連邦加盟国であり、英連邦王国の一国となっている。日本での略称は「豪州」である。.

新しい!!: 電波天文学とオーストラリア · 続きを見る »

オズマ計画

マ計画(オズマけいかく、英語:Project Ozma)は、1960年に天文学者フランク・ドレイクが当時所属していたウェストバージニア州グリーンバンクのアメリカ国立電波天文台 (NRAO) で始めた、地球外知的生命体探査 (SETI) の初めての取り組みであるSETI Institute.

新しい!!: 電波天文学とオズマ計画 · 続きを見る »

カール・ジャンスキー

Karl Guthe Jansky カール・ジャンスキー(Karl Jansky, 1905年10月22日 - 1950年2月14日)とは、物理学者・無線技術者であり、電波天文学の開始者。 1932年に天の川方向より電波が飛来していることを発見し、電波天文学を開始した。 1905年10月22日にオクラホマ州に生まれた。ウィスコンシン大学に学び、1927年に学位を取得した。 1928年よりニュージャージー州にあるベル研究所に入所し、短波の研究を行った。 どの方位にでも向けられるように回転台の上に波長20.5MHz向けのアンテナを設置し、研究を行った。 ジャンスキーのアンテナのレプリカ。 数ヶ月かけて全方向からの入力信号を記録した後に、彼は3種類の電波雑音を確認した。それらは、近隣の雷、遠くの雷と未知のものであった。彼は、この未知の電波雑音の分析に1年以上を費やした。その電波は、一日周期で信号強度が変動したことから、初めは太陽起源のものではないかと思われた。しかし、数ヵ月後にそのピーク時期が変化したことから、太陽起源説は放棄した。信号は、24時間ではなく23時間56分周期で強度が変動していることから、恒星系に由来するものと判断された。(恒星時参照) 最終的に、この信号は銀河系中心(いて座)方向より発信されていることを突き止めた。これは、電波天文学の始まりとされる。 その後の彼は、ベル研究所より別のプロジェクトを任せられ、電波天文学に関わることは無かったが、彼にちなみ電波天文学における電波強度の単位には、ジャンスキー(Jy)が使われる。また、アメリカ国立電波天文台はジャンスキー・フェローシップと呼ばれる博士研究員支援プログラムを実施している。.

新しい!!: 電波天文学とカール・ジャンスキー · 続きを見る »

カシオペヤ座

ペヤ座 (Cassiopeia) は、北天に見られる星座。トレミーの48星座の1つ。 5個の2, 3等星がローマ字のWの形に並ぶ。周りには、他に明るい星が無いので、比較的探しやすい。ポラリス(現在の北極星)を探すために用いられる。 北極に近い地方では、現在、この星座は一晩中見える周極星となる。.

新しい!!: 電波天文学とカシオペヤ座 · 続きを見る »

ガンマ線天文学

ンマ線天文学(ガンマせんてんもんがく、英語:gamma-ray astronomy)は観測天文学の一分野で、宇宙から飛来するガンマ線を研究する。ガンマ線を放射する天体は超新星残骸、パルサー、活動銀河核等がある。.

新しい!!: 電波天文学とガンマ線天文学 · 続きを見る »

グロート・レーバー

ート・レーバー(Grote Reber, 1911年12月22日 - 2002年12月20日)は、アメリカ合衆国の天文学者。電波天文学のパイオニアである。自作の電波望遠鏡で全天の観測を行い多くの電波源を発見した。 レーバーの作製した電波望遠鏡 シカゴ郊外のイリノイ州ホイートンに生まれた。アーマー工科大学(後のイリノイ工科大学)で無線工学を学んだ。アマチュア無線の愛好者で1933年から1947年の間、シカゴのいろいろなラジオ製造会社で働いた。1933年カール・ジャンスキーの宇宙から電波の発見を知って、ジャンスキーの働いているベル研究所で働こうとしたが、大恐慌の時代であったため、仕事を得ることはできなかった。 ホイートンの自宅の裏庭に、自作の電波望遠鏡を作った。レーバーの設計は直径9mの放物面反射鏡が取り付けられ8m上空の受信機に電波を集めるようにしたのはジャンスキーの受信機より優れていた。装置全体は回転させることはできなかったが、傾けて方向を変えることができるようになっていた。電波望遠鏡は1937年に完成した。3300MHz、900MHzの帯域では電波を捕らえられなかったが1938年、160MHzの電波を捕らえて、ジャンスキーの発見を確認した。全天の電波源の分布を調べる仕事を行い、1941年までに完成し、1943年までにさらに充実させた。これらの結果を発表したことで、第二次世界大戦後の電波天文学の爆発的な発展の先駆者となった。 1947年にヴァージニア大学に装置を移し、観測主任となった。1951年からハワイで観測し、1954年から超長波の観測に適したタスマニアに移住した。1957年にウエストバージニア州の国立電波天文台に歴史的記念碑としてレーバーの電波望遠鏡とジャンスキーの望遠鏡が復元された。2002年にタスマニアで90年の生涯を閉じた。遺灰はタスマニアのBothwell Cemeteryの他に、アレシボ天文台などを含む全世界17箇所の電波観測所に散骨された。.

新しい!!: 電波天文学とグロート・レーバー · 続きを見る »

コグニティブ無線

ニティブ無線(英: Cognitive radio)とは、新しい考え方に基づく無線通信の方法で、ネットワークや無線のノードが送信・受信に用いるパラメータを効率的に変化させて干渉を避け効率的に通信を行うものである。 パラメータの変更は、周波数スペクトラムやユーザーの振る舞い、ネットワークの状態といった無線環境の外的・内的ないくつかの要素を能動的に監視して行う。.

新しい!!: 電波天文学とコグニティブ無線 · 続きを見る »

ジョスリン・ベル・バーネル

ーザン・ジョスリン・ベル=バーネル(Susan Jocelyn Bell Burnell, 旧姓:Susan Jocelyn Bell, 1943年7月15日 - )は、イギリスの女性天体物理学者である。アントニー・ヒューイッシュの下でパルサーを発見した。.

新しい!!: 電波天文学とジョスリン・ベル・バーネル · 続きを見る »

スペクトル

ペクトル()とは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。 様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。.

新しい!!: 電波天文学とスペクトル · 続きを見る »

スウィンバーン工科大学

ウィンバーン工科大学(スウィンバーンこうかだいがく、)は、オーストラリアのビクトリア州メルボルンにある公立大学。メインキャンパスはメルボルン郊外のホーソンにあり、メルボルン中心街から7.5キロメートル離れた場所に位置する。 スウィンバーンは4つのキャンパスを持ち、合計で60,000人の学生が在学している。 ホーソンのメインキャンパスに加え、メルボルン郊外ワンターナとクロイドンにキャンパスがある。また、マレーシアのサラワクにもキャンパスがある。.

新しい!!: 電波天文学とスウィンバーン工科大学 · 続きを見る »

共同通信社

共同通信社(きょうどうつうしんしゃ)は、日本の通信社である。一般社団法人共同通信社とその子会社である株式会社共同通信社の2社が、同じ「共同通信社」という名称で存在している。このため、両者を区別する必要があるときには、それぞれを「社団共同」「KK共同」と呼ぶケースが多い。KK共同には社団共同から出向する。.

新しい!!: 電波天文学と共同通信社 · 続きを見る »

光年

光年(こうねん、light-year、Lichtjahr、記号 ly)は、主として天文学で用いられる距離(長さ)の単位であり、正確に 、約9.5兆キロメートルである。1981年まではSI併用単位であった。.

新しい!!: 電波天文学と光年 · 続きを見る »

国立天文台

国立天文台(こくりつてんもんだい、National Astronomical Observatory of Japan, NAOJ)は、理論・観測の両面から天文学を研究する日本の研究所・大学共同利用機関である。大学共同利用機関法人自然科学研究機構を構成する研究所の1つでもある。 日本国外のハワイ観測所などいくつかの観測所や、三鷹キャンパスなどで研究活動をしており、総称として国立天文台と呼ばれる。本部は東京都三鷹市の三鷹キャンパス内にある。.

新しい!!: 電波天文学と国立天文台 · 続きを見る »

短波

短波(たんぱ、HF (High Frequency) またはSW (Shortwave, Short Wave))とは、3 - 30MHzの周波数の電波をいう。 波長は10 - 100m、デカメートル波とも呼ばれる。.

新しい!!: 電波天文学と短波 · 続きを見る »

紫外線天文学

紫外線天文学(しがいせんてんもんがく、英語:ultraviolet astronomy)は、天文学や天体物理学の一分野で、紫外線の波長で観測できる天体を扱うものである。 紫外線は、およそ10nm(極外紫外線)から380nm(近紫外線)までの波長域に分布する。 紫外線のスペクトル線測定は、星間物質の化学的組成、密度そして温度、さらに若い恒星の温度と組成を識別するために使われている。紫外線の観測によって、宇宙の進化についての極めて重要な情報を得ることも可能である。 紫外線で観測する宇宙は、可視光線で見た馴染み深い恒星や銀河とはかなり異なって見える。大部分の恒星は、実際のところスペクトルの可視範囲の電磁波を多く放射する比較的低温の天体である。紫外線は、より高温の天体の兆候であり、典型的には恒星の進化の初期又は晩期の段階である。もし、我々が紫外線の光で空を見ることができれば、大部分の恒星は目立つものの光に溶け込むだろう。我々は、誕生か死に近くて、熱くなり高エネルギー放射線を生み出している、とても若く巨大な恒星やとても古い恒星や銀河をいくつか見ることができるだろう。また、ガスと塵の雲が、天の川に沿って多くの方向で我々の視野をさえぎることになる。 科学者は、たいてい(鏡、レンズ、半導体デジタル検出機等の)光学用の部品が使われるので、紫外線天文学を光学天文学 の一部として分類する。 ハッブル宇宙望遠鏡やFUSEは、上空の近紫外線と遠紫外線のスペクトルを観測するための主要な宇宙望遠鏡である。.

新しい!!: 電波天文学と紫外線天文学 · 続きを見る »

畑中武夫

畑中 武夫(はたなか たけお、1914年1月1日 - 1963年11月10日)は、日本の天文学者。日本の電波天文学の開拓者として知られている。.

新しい!!: 電波天文学と畑中武夫 · 続きを見る »

銀河系

銀河系(ぎんがけい、the Galaxy)または天の川銀河(あまのがわぎんが、Milky Way Galaxy)は太陽系を含む銀河の名称である。地球から見えるその帯状の姿は天の川と呼ばれる。 1000億の恒星が含まれる棒渦巻銀河とされ、局部銀河群に属している。.

新しい!!: 電波天文学と銀河系 · 続きを見る »

高調波

調波(こうちょうは)とは、ある周波数成分をもつ波動に対して、その整数倍の高次の周波数成分のことである。音楽および音響工学分野では倍音と呼ぶ。 元々の周波数を基本波、2倍の周波数(2分の1の波長)を持つものを第2高調波、さらに n 倍の周波数(n 分の1の波長)を持つものを第 n 高調波と呼ぶ。無線などの発振回路で、必要な周波数の1/nの基本波の発振(原発振、略して原発とも)から、意図的に歪み特性を持った回路を通して、高調波として目的の周波数の信号を発生させることを(周波数)逓倍((frequency) multiplication)と言う(PLLによってn倍の周波数の信号を得ることも逓倍と言う)。 無線工学では、無線機から送信する電波に混じる、目的の信号以外の、主に高調波(および低調波)からなる成分を、スプリアスと呼ぶ。スプリアスの強度は電波法により制限されている。通常スペクトラムアナライザを使って計測する。.

新しい!!: 電波天文学と高調波 · 続きを見る »

超広帯域無線

超広帯域無線システム(ちょうこうたいいきむせんシステム、普通は英語「超広帯域」Ultra Wide Bandの略称のUWBのほうが通りが良い)は、ごく短く鋭い矩形波(パルス)の電波が持つ、中心周波数がかなり高く、また広い帯域に分散する信号を利用した無線技術で、通信範囲はごく近距離だが高速通信の他に位置検出が可能などといった特性も持つ。.

新しい!!: 電波天文学と超広帯域無線 · 続きを見る »

超新星残骸

プラーの超新星SN 1604の超新星残骸の多波長合成画像 大マゼラン雲の超新星残骸N49の多波長合成画像 超新星残骸(ちょうしんせいざんがい、supernova remnant、SNR)は、恒星が超新星爆発した後に残る構造である。超新星残骸は、爆発により拡張する衝撃波によって区切られ、恒星からの噴出物と星間物質によって構成される。 恒星が超新星爆発に至るには主に2つの道がある。.

新しい!!: 電波天文学と超新星残骸 · 続きを見る »

赤外線天文学

赤外線天文学(せきがいせんてんもんがく、英語:infrared astronomy)は天文学や天体物理学の一分野で、赤外線の波長で観測できる天体を扱うものである。可視光線はおよそ400nm(紫)から700nm(赤)までの波長域に分布するが、700nm よりも波長が長く、マイクロ波よりも短い波長の電磁波を赤外線と呼ぶ(赤外線の波長域の中でも比較的長波長のものはサブミリ波と呼ぶ場合もある)。 研究者は赤外線天文学を光学天文学の一部として分類している。これは、赤外線天文学でも可視光の天文学と同様の観測装置(鏡、レンズ、固体撮像素子など)が通常用いられるためである。.

新しい!!: 電波天文学と赤外線天文学 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 電波天文学と英語 · 続きを見る »

電力線搬送通信

PLC使用風景 電力線搬送通信(でんりょくせんはんそうつうしん)は、電力線を通信回線としても利用する技術。電力線通信、高速電力線通信、電灯線通信、PLC (Power Line Communication)、PLT (Power Line Telecommunication) とも呼ばれる。.

新しい!!: 電波天文学と電力線搬送通信 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: 電波天文学と電磁波 · 続きを見る »

電離層

電離層(でんりそう)とは、地球を取り巻く大気の上層部にある分子や原子が、紫外線やエックス線などにより電離した領域である。この領域は電波を反射する性質を持ち、これによって短波帯の電波を用いた遠距離通信が可能である。.

新しい!!: 電波天文学と電離層 · 続きを見る »

電波

ムネイル 電波(でんぱ)とは、電磁波のうち光より周波数が低い(言い換えれば波長の長い)ものを指す。光としての性質を備える電磁波のうち最も周波数の低いものを赤外線(又は遠赤外線)と呼ぶが、それよりも周波数が低い。.

新しい!!: 電波天文学と電波 · 続きを見る »

電波の周波数による分類

電波の周波数による分類(でんぱのしゅうはすうによるぶんるい)では周波数帯ごとに慣用の名称や用途などを記している。.

新しい!!: 電波天文学と電波の周波数による分類 · 続きを見る »

電波天文衛星

電波天文衛星(でんぱてんもんえいせい、)とは、電波天文学観測を専門的に行う衛星のこと。.

新しい!!: 電波天文学と電波天文衛星 · 続きを見る »

電波望遠鏡

'''電波望遠鏡''' アメリカ合衆国ニューメキシコ州ソコロに並ぶ超大型干渉電波望遠鏡群。直径25mのパラボラアンテナを27台集積し、直径130mの電波望遠鏡として機能する '''アレシボ電波望遠鏡''' 自然の窪地を利用した、305mの巨大球面アンテナ。ただしアンテナの向きは変更できない。プエルトリコ、アレシボ 電波望遠鏡(でんぱぼうえんきょう、radio telescope)は、可視光線を集光して天体を観測する光学式の天体望遠鏡に対して、電波を収束させて天体を観測する装置の総称。これを専門に用いる電波天文学という分野がある。.

新しい!!: 電波天文学と電波望遠鏡 · 続きを見る »

M87 (天体)

M 87(NGC 4486、おとめ座A)は、おとめ座にある楕円銀河である。.

新しい!!: 電波天文学とM87 (天体) · 続きを見る »

X線天文学

X線天文学(エックスせんてんもんがく、X-ray astronomy)は、観測天文学の一分野で、天体から放射されるX線の研究を行なう。X線放射は地球の大気によって吸収されるため、X線の観測装置は高い高度へ運ばなければならない。そのためにかつては気球やロケットが用いられた。現在ではX線天文学は宇宙探査の一分野となっており、X線検出器は人工衛星に搭載されるのが普通である。 X線は一般に、100万~1億Kという極端な高温のガスから放射される。このような天体では原子や電子が非常に高いエネルギーを持っている。1962年の最初の宇宙X線源の発見は驚くべきものであった。このX線源はさそり座で最初に発見されたX線源であることからさそり座X-1と呼ばれ、天の川の中心方向に位置していた。発見者のリカルド・ジャコーニはこの発見によって2002年のノーベル物理学賞を受賞した。後に、このX線源から放出されているX線は可視光での放射強度より1万倍も強いことが明らかになった。さらに、このX線の放射エネルギーは太陽の全波長での放射エネルギーの10万倍に達するものであった。現在では、このようなX線源は中性子星やブラックホールといったコンパクト星であることが分かっている。このような天体のエネルギー源は重力エネルギーである。天体の強い重力場によって落ち込んだガスが加熱されて高エネルギーのX線を放射している。 現在までに数千個のX線源が知られている。加えて、銀河団にある銀河同士の間の空間は約1億Kという非常に高温でしかも非常に希薄なガスで満たされているらしいことが分かっている。この高温ガスの総量は観測できる銀河の質量の5~10倍に達する。この意味で我々はまさに高温の宇宙に住んでいると言える。.

新しい!!: 電波天文学とX線天文学 · 続きを見る »

暗黒星雲

ハッブル宇宙望遠鏡が撮影したオリオン座の馬頭星雲のクローズアップ 暗黒星雲(あんこくせいうん、dark nebula)とは天体の一種で、背後の恒星などの光源によって影として浮かび上がる星間雲(周囲よりも高密度の星間ガスや宇宙塵が、他の空域より濃く集まっている領域)のことをいう。 暗黒星雲という用語は星間雲のうち、人間が可視光領域で認識できるものの呼称であるから、狭義の星間雲、あるいは狭義の分子雲として用いられることもある。.

新しい!!: 電波天文学と暗黒星雲 · 続きを見る »

恒星社厚生閣

株式会社恒星社厚生閣(こうせいしゃこうせいかく)は、日本の出版社。主に学術書を刊行している。.

新しい!!: 電波天文学と恒星社厚生閣 · 続きを見る »

携帯電話

折りたたみ式の携帯電話 スライド式の携帯電話 携帯電話(けいたいでんわ、mobile phone)は、有線電話系通信事業者による電話機を携帯する形の移動体通信システム、電気通信役務。端末を携帯あるいはケータイと略称することがある。 有線通信の通信線路(電話線等)に接続する基地局・端末の間で電波による無線通信を利用する。無線電話(無線機、トランシーバー)とは異なる。マルチチャネルアクセス無線技術の一種でもある。.

新しい!!: 電波天文学と携帯電話 · 続きを見る »

東京大学

記載なし。

新しい!!: 電波天文学と東京大学 · 続きを見る »

楕円銀河

楕円銀河 (だえんぎんが、elliptical galaxy)は、渦巻銀河、レンズ状銀河とともに、ハッブル分類における主要な3つの銀河分類のうちの1つ分類は 1936年にエドウィン・ハッブルが「The Realm of the Nebulae」(ハッブル分類を参照)にて初めて行っているが、現在はそれを発展させた分類が用いられている。。滑らかなおよそ楕円形の形状を持ち、輝度プロファイルにほとんど特徴がない。球形に近い形から非常に扁平なものまであり、内部に1000万から1兆個以上の星を含む。エドウィン・ハッブルは当初は楕円銀河が渦巻銀河へ進化すると考えていたが、後にこれは間違いであることがわかっているJohn, D, (2006), Astronomy, ISBN 1-4054-6314-7, p. 224-225。楕円銀河内の星は渦巻銀河のものよりも非常に古いことが知られている。 多くの楕円銀河では、星は古く低質量で、星間物質は希薄であり、最小限の星形成活動しかみられず、非常に多くの球状星団が取り囲んでいるという特徴の傾向が見られる。おとめ座超銀河団では、属する銀河の 10 - 15% がこの楕円銀河であると考えられており、全宇宙の銀河の主要なタイプではないが、銀河団の中心へ近づくにつれてよく見られるようになる。楕円銀河はレンズ状銀河とともにハッブル分類の名残で”早期型銀河" (early-type galaxy、ETG) と呼ばれることがあるが、宇宙の初期には一般的でなかったことが判明している。.

新しい!!: 電波天文学と楕円銀河 · 続きを見る »

活動銀河

活動銀河(かつどうぎんが、active galaxy)は、星、星間塵、星間ガスといった通常の銀河の構成要素とは別の部分からエネルギーの大半が放出されている特殊な銀河。このエネルギーは、活動銀河の種類によって若干異なるが、電波、赤外線、紫外線、X線、γ線など、電磁波のほぼ全ての波長域で放出されている。このエネルギーの大半を、銀河の中心1%程度のコンパクトな領域から放出しており、この部分を活動銀河核 (active galactic nucleus) と呼ぶ。 活動銀河 M87(画面左上の黄色の天体)から5000光年の長さにわたるジェットが放出されている様子。光速近くまで加速された電子が青白い光を放ちながら放出されている。.

新しい!!: 電波天文学と活動銀河 · 続きを見る »

星間物質

星間物質(せいかんぶっしつ、Interstellar medium、ISM)は、恒星間の宇宙空間に分布する希薄物質の総称である。密度では、地球の上層大気よりも遙かに希薄であるが、地上からもしばしば星雲として観測される。大量の星間物質が凝縮して、星を構成する材料にもなる。.

新しい!!: 電波天文学と星間物質 · 続きを見る »

星雲

星雲(せいうん、nebula)は、宇宙空間に漂う重力的にまとまりをもった、宇宙塵や星間ガスなどから成るガスのこと。.

新しい!!: 電波天文学と星雲 · 続きを見る »

放射光

放射光(ほうしゃこう、Synchrotron Radiation)は、シンクロトロン放射による電磁波である。「光」とあるが、実際は、人工のものでは赤外線からX線、天然のものでは電波からγ線の範囲のものがあり、特に可視光に限定して呼ぶことは少ない。また、電磁波が放射される現象は他にも多くあるが、シンクロトロン放射による電磁波に限り放射光と呼ぶ。 シンクロトロン放射は、高エネルギーの電子等の荷電粒子が磁場中でローレンツ力により曲がるとき、電磁波を放射する現象である。「シンクロトロン(同期式円形加速器)」と名が付いているが成因を問わずこう呼ぶ。放射光と呼ぶのは人工のものであることが多い。.

新しい!!: 電波天文学と放射光 · 続きを見る »

散乱

散乱(さんらん、)とは、光などの波や粒子がターゲットと衝突あるいは相互作用して方向を変えられること。.

新しい!!: 電波天文学と散乱 · 続きを見る »

1931年

記載なし。

新しい!!: 電波天文学と1931年 · 続きを見る »

2001年

また、21世紀および3千年紀における最初の年でもある。この項目では、国際的な視点に基づいた2001年について記載する。.

新しい!!: 電波天文学と2001年 · 続きを見る »

21cm線

21cm線(21センチメートルせん、)は、中性水素原子のエネルギー状態の変化によって放射されるスペクトル線である。 21cm線は周波数 の電波であり、その波長が であることからこの名が付けられている。21cm線は天文学、特に電波天文学の分野で広く使われている。.

新しい!!: 電波天文学と21cm線 · 続きを見る »

ここにリダイレクトされます:

電波天文

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »