ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

絶対収束

索引 絶対収束

数学において、級数が絶対収束(ぜったいしゅうそく、converge absolutely)するとは、その各項の絶対値を取って得られる級数の和が有限の値になるときにいう。きちんと述べれば、実または複素数の級数 は となるとき、絶対収束すると言う。 絶対収束が無限級数の研究において重要であるのは、それが有限和の場合に成立する(が必ずしも全ての収束級数が持つわけではない)性質を持つようにするためにきわめて強力な条件であるとともに、それ自身が一般的な内容を議論するのに(その強い制約条件にもかかわらず)十分広範な級数のクラスを定めるからである。.

37 関係: 可積分系可測関数完備性広義積分位相アーベル群区間ノルムバナッハ空間リーマン積分ルベーグ積分ルベーグ測度ボホナー積分ヘンストック=クルツヴァイル積分ヒルベルト空間フーリエ級数の収束フビニの定理ダランベールの収束判定法分配法則アーベル群コーシーの冪根判定法コーシー列コーシー積冪級数積分法級数置換絶対値無条件収束畳み込み階段関数距離空間条件収束指示関数有向点族有限数え上げ測度数学

可積分系

数学や物理学では、可積分系 と名付けられた様々な考え方が知られている。 微分可能な系の一般論では、フロベニウス可積分性 が過剰な決定系として知られている。ハミルトン力学系の古典理論では、リウヴィル可積分性 がある。より一般的には、微分方程式の可積分性は、相空間の不変部分多様体による の存在に関係している。これらの考え方の各々は、葉層のアイデアを応用しているが、同じではない。量子力学や統計力学モデルの設定には完備可積分性 や完全可積分性 という考え方もある。可積分系は、微分作用素の代数幾何学へ引き戻して考える場合もある。.

新しい!!: 絶対収束と可積分系 · 続きを見る »

可測関数

数学の、特に測度論の分野における可測関数(かそくかんすう、)とは、(積分論を展開する文脈として自然なものである)可測空間の間の、構造を保つ写像である。具体的に言えば、可測空間の間の関数が可測であるとは、各可測集合に対するその原像が可測であることを言う(これは位相空間の間の連続関数の定義の仕方と似ている)。 この定義は単純なようにも見えるが、σ-代数も併せて考えているということに特別な注意が払われなければならない。特に、関数 f: R → R がルベーグ可測であるといったとき、これは実際には f\colon (\mathbb, \mathcal) \to (\mathbb, \mathcal) が可測関数であることを意味する。すなわち、その定義域と値域は、同じ台集合上で異なる σ-代数を持つものを表している(ここで \mathcal はルベーグ可測集合全体の成す σ-代数であり、\mathcal は R 上のボレル集合族である)。結果として、ルベーグ可測関数の合成は必ずしもルベーグ可測とはならない。 慣例では、特に断りの無い限り、位相空間にはその開部分集合全体により生成されるボレル代数が与えられるものと仮定される。最もよくある場合だと、この空間として実数全体あるいは複素数全体からなる空間をとる。例えば、実数値可測関数とは、各ボレル集合の原像が可測となるような関数を言う。複素数値可測関数も同様に定義される。実用においては、ボレル集合族に関する実数値可測関数のみを指して可測関数という語を使用するものもある。関数の値が R や C の代わりに無限次元ベクトル空間に取られるのであれば、弱可測性やボホナー可測性などの、可測性に関する他の定義が用いられることが普通である。 確率論の分野において、σ-代数はしばしば、利用可能な情報すべてからなる集合を表し、ある関数(この文脈では確率変数)が可測であるとは、それが利用可能な情報に基づいて知ることの出来る結果(outcome)を表すことを意味する。対照的に、少なくとも解析学の分野においては、ルベーグ可測でない関数は一般に病的であると見なされる。.

新しい!!: 絶対収束と可測関数 · 続きを見る »

完備性

数学における完備性(かんびせい、completeness)は、様々な場面においてそれぞれの対象に関して特定の意味を以って考えられ、またそれぞれの意味において完備(かんび、complete)でない対象に対する完備化 (completion) と呼ばれる操作を考えることができる。complete は「完全」と訳されることもある。.

新しい!!: 絶対収束と完備性 · 続きを見る »

広義積分

解析学において、広義積分(こうぎせきぶん、improper integral)とは何らかの定積分の積分区間を動かしたときの極限である。積分区間の端点(片方または両方)は何らかの実数か正または負の無限大に近づく。.

新しい!!: 絶対収束と広義積分 · 続きを見る »

位相アーベル群

数学において位相アーベル群(いそうアーベルぐん、)あるいは TAG とは、アーベル群でもあるような位相群のことを言う。すなわち、位相アーベル群は群であるとともに位相空間であり、その群演算は連続で、群の二項演算は可換である。 位相群の理論は位相アーベル群にも適用されるが、位相アーベル群についてはさらなる理論も展開される。特に局所コンパクトな位相アーベル群は、調和解析において頻繁に用いられている。.

新しい!!: 絶対収束と位相アーベル群 · 続きを見る »

区間

区間(くかん).

新しい!!: 絶対収束と区間 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: 絶対収束とノルム · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: 絶対収束とバナッハ空間 · 続きを見る »

リーマン積分

数学の実解析の分野において、リーマン積分(リーマンせきぶん、Riemann integral)とは、区間上の関数の積分の最初の厳密な定式化であり、ベルンハルト・リーマンによって創始された。多くの関数や実際的な応用に対しては、リーマン積分は微分積分学の基本定理による計算や数値積分による近似計算が可能である。 リーマン積分は の有界集合上の関数に対して定義されるが、積分範囲にある種の極限を考えることにより、広義リーマン積分が定義される。広義リーマン積分との対比で、通常のリーマン積分を狭義リーマン積分とも呼ぶ。 リーマン積分は積分の多くの性質を示すのに有効であるが、積分と極限との交換に関係する性質を示すには理論的困難を伴うなど、いくつかの技術的欠点がある。この為こうした欠点を補うべくリーマン–スティルチェス積分やルベーグ積分など積分概念の別の定式化方法も提案されている。.

新しい!!: 絶対収束とリーマン積分 · 続きを見る »

ルベーグ積分

数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、Lebesgue integral)は、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、「曲線の下部の面積」を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかしながら、より不規則な関数を考える必要が、例えば解析学や確率論において極限を考えるときに生じたため、より注意深い近似の手法が適切な積分を定義するために必要なことが明らかとなった。また、局所コンパクト群のような、実数直線よりも一般の空間上で積分をしたいことがある。ルベーグ積分はこの重要な仕事をするために必要な正しい抽象化を与える。例えば、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えると非常に繊細な議論が必要だが、ルベーグ積分では、積分と極限操作の交換が可能であるための簡単な十分条件が分かっている。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 ルベーグ積分 (Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線の部分集合上定義された関数を積分するという特定の場合を意味することもある。.

新しい!!: 絶対収束とルベーグ積分 · 続きを見る »

ルベーグ測度

数学におけるルベーグ測度(ルベーグそくど、Lebesgue measure)は、ユークリッド空間上の長さ、面積、体積の概念を拡張したものである。名称はフランスの数学者アンリ・ルベーグにちなむ。体積には「互いに素な集合の体積は元の体積の和に等しい」という性質(加法性)がある。この性質を保ちながらより複雑な集合に対しても「体積」を定めることができるよう体積の概念を拡張できる。このような拡張は一意である。実解析、特にルベーグ積分で用いられる。体積と同様ルベーグ測度は値として をとりうる。解析学で普通に考えられるような集合に対してはルベーグ測度が与えられるものと考えてよいが、選択公理によって の部分集合でルベーグ測度を与えることができない(無理に与えると加法性が成り立たない)ものが存在することを証明できる。ルベーグ測度が与えられる集合はルベーグ可測であるという。以下の説明ではルベーグ可測な集合 の測度を で表す。.

新しい!!: 絶対収束とルベーグ測度 · 続きを見る »

ボホナー積分

数学におけるボホナー積分(ボホナーせきぶん、Bochner integral)は、サロモン・ボホナーに名を因む、(単函数の積分の極限としての)ルベーグ積分のバナッハ空間に値をとる函数への拡張である。.

新しい!!: 絶対収束とボホナー積分 · 続きを見る »

ヘンストック=クルツヴァイル積分

数学の微分積分学周辺領域におけるヘンストック=クルツヴァイル積分(ヘンストッククルツヴァイルせきぶん、ˈjarɔslaf ˈkurtsvajl, つづりを英語読みしてカーツウェイルとも。 integral; HK積分)、またはダンジョワ積分(ダンジョワせきぶん、dɑ̃ˈʒwa integral)あるいはペロン積分(ペロンせきぶん、Perron integral)は、いくつかある函数の積分法の定義のうちの一つで、リーマン積分を一般化したものであり、場合によってはルベーグ積分よりも有用なものとなりうる。 この積分を初めて定義したのはで1912年のことである。ダンジョワは のような函数を積分することができるような、積分法の定義に興味を持っていた。この函数は点 に特異点を持ち、かつルベーグ可積分でないが、それでも 0 を含む十分小さい区間 を除いて積分を計算し、その後 とするのは自然に思われる。 一般論を形成するためにダンジョワは可能な全ての種類の特異点に対する超限帰納法を用いたが、そのことで定義は極めて込み入ったものになってしまった。これに代わる別の定義を与えたのは(の概念の一種を用いた)および(連続な優函数と劣函数に着目した)であった。ペロン積分とダンジョワ積分が実際には同じものであることが分かるのはしばらくしてからのことである。 後の1957年に、チェコの数学者は、ゲージ積分と呼ばれるリーマンによる元々の定義ときれいにそっくりな新しい積分の定義を発見し、その理論はによって研究が進められた。この二人の数学者の大きな貢献に因み、現在ではその積分はヘンストック=クルツヴァイル積分として広く認知されている。クルツヴァイルの定義の簡潔さから、微分積分学の入門的講義ではリーマン積分の代わりにこちらを用いるべきとする教育者もあるが、傍流である。.

新しい!!: 絶対収束とヘンストック=クルツヴァイル積分 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: 絶対収束とヒルベルト空間 · 続きを見る »

フーリエ級数の収束

フーリエ級数の収束は純粋数学における調和解析の分野で研究される問題である。フーリエ級数は一般には収束するとは限らず、収束するための条件が存在する。 収束性の判断には各点収束、一様収束、絶対収束、L p 空間、総和法、チェザロ和の知識を要する。.

新しい!!: 絶対収束とフーリエ級数の収束 · 続きを見る »

フビニの定理

数学においてフビニの定理(フビニのていり、)とは、 によって導入された、逐次積分による二重積分の計算が可能となるための条件に関する一結果である。すなわち、次のような計算が可能となる。 この結果、は逐次積分において変えることが可能となる。フビニの定理は、ある二変数函数が可積分であれば、上記のような二回の繰り返しの積分は等しいことを意味する。 によって導入されたトネリの定理(Tonelli's theorem)も同様のものであるが、その定理が適用される函数は可積分ではなくとも非負であればよい。.

新しい!!: 絶対収束とフビニの定理 · 続きを見る »

ダランベールの収束判定法

ダランベールの収束判定法(―のしゅうそくはんていほう、ratio test) とは、実数や複素数を項にもつ級数が、収束するか発散するかを判定する方法である。級数における、前後の項の比を考える。もし、この比の極限が 1 未満であれば、級数は絶対収束する。 この判定法は、ジャン・ル・ロン・ダランベールによって発表された。.

新しい!!: 絶対収束とダランベールの収束判定法 · 続きを見る »

分配法則

集合 S に対して、積 × と和 + が定義されている時に、.

新しい!!: 絶対収束と分配法則 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 絶対収束とアーベル群 · 続きを見る »

コーシーの冪根判定法

ーシーの冪根判定法(―のべきこんはんていほう、root test) とは、無限級数の収束性を判定する方法の一つである。とりわけ、冪級数に関連することに有用である。「コーシーの冪根判定法」という名前は、これを最初に発見したオーギュスタン=ルイ・コーシーに由来する。 ("lim sup" は上極限を意味する)とするとき、C < 1 であれば級数は収束し、C > 1 であれば発散する。C.

新しい!!: 絶対収束とコーシーの冪根判定法 · 続きを見る »

コーシー列

解析学におけるコーシー列(コーシーれつ、Cauchy sequence)は、数列などの列で、十分先のほうで殆ど値が変化しなくなるものをいう。基本列(きほんれつ、fundamental sequence)、正則列(せいそくれつ、regular sequence)、自己漸近列(じこぜんきんれつ)などとも呼ばれる。実数論において最も基本となる重要な概念の一つである。 各 ''n'' に対して順番に縦軸上にプロットしたコーシー列の例。 ''x''''n''.

新しい!!: 絶対収束とコーシー列 · 続きを見る »

コーシー積

数学の特に初等解析学におけるコーシー積(コーシーせき、Cauchy product)は、二つの無限級数に対する離散的な畳み込み積である。名称はフランス人数学者のオーギュスタン・ルイ・コーシーに因む。 コーシー積が適用できるのは、無限級数あるいは冪級数である。冪級数のコーシー積は冪級数を単に無限級数とみてとったコーシー積であるから、ことさら区別を強調することはないけれども、収束性を考える上では分けておくことは便利である。 コーシー積は数列を添字集合上の離散的な函数と見たときの函数の畳み込みであり、また有限数列または有限級数を、台が有限(つまり、有限個を除くすべての項が零)な無限数列または無限級数と見てコーシー積をとることもできるけれども、その場合は離散畳み込みと呼ぶほうが普通であろう。.

新しい!!: 絶対収束とコーシー積 · 続きを見る »

冪級数

数学において、(一変数の)冪級数(べききゅうすう、power series)あるいは整級数(せいきゅうすう、série entière)とは の形の無限級数である。ここで は 番目の項の係数を表し、 は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において (級数の中心 (center))は である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形 \sum_^\infty a_n x^n.

新しい!!: 絶対収束と冪級数 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 絶対収束と積分法 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: 絶対収束と級数 · 続きを見る »

置換

置換(ちかん)はあるものを別のものに置き換えることである。.

新しい!!: 絶対収束と置換 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 絶対収束と絶対値 · 続きを見る »

無条件収束

無条件収束(むじょうけんしゅうそく,unconditional convergence)は代数的な対象(和)に関連した位相的性質(収束性)である.それは可算個の元の級数に対する収束の概念の任意に多くの級数への拡張である.大部分はバナッハ空間において研究されている..

新しい!!: 絶対収束と無条件収束 · 続きを見る »

畳み込み

畳み込み(たたみこみ、convolution)とは関数 を平行移動しながら関数 に重ね足し合わせる二項演算である。畳み込み積分、合成積、重畳積分、あるいは英語に倣いコンボリューションとも呼ばれる。.

新しい!!: 絶対収束と畳み込み · 続きを見る »

階段関数

階段関数(かいだんかんすう、step functionまたはstaircase function)とは、おおまかに言って、グラフが階段状になる実関数のことである。より正確には、区間上の指示関数が有限個あって、それらの線型結合で表される関数である。有限個のみの区分を持った、区分的に定数関数である関数とも表現できる。.

新しい!!: 絶対収束と階段関数 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: 絶対収束と距離空間 · 続きを見る »

条件収束

数学において,級数あるいは積分が条件収束(じょうけんしゅうそく)するとは,収束するが絶対収束しないことをいう..

新しい!!: 絶対収束と条件収束 · 続きを見る »

指示関数

数学において指示関数(しじかんすう、indicator function)、集合の定義関数、特性関数(とくせいかんすう、characteristic function)は、集合の元がその集合の特定の部分集合に属するかどうかを指定することによって定義される関数である。.

新しい!!: 絶対収束と指示関数 · 続きを見る »

有向点族

有向点族(ゆうこうてんぞく、directed family of points)とは、点列を一般化した概念で、ムーア (Eliakim Hastings Moore) とスミス (H. L. Smith) により1922年に定義された。有向点族はネット (net)、有向点列、 Moore-Smith 列などとも呼ばれる。 点列との違いは添え字にあり、点列が自然数という可算な全順序集合の元で添え字付けられるのに対し、有向点族はより一般的な順序集合である(可算または非可算な)有向集合の元で添え字付けられている。 有向点族の概念の利点として以下の2つがある:.

新しい!!: 絶対収束と有向点族 · 続きを見る »

有限

有限(ゆうげん、finite)とは、無限ではないことである。.

新しい!!: 絶対収束と有限 · 続きを見る »

数え上げ測度

数学、とくに解析学において、数え上げ測度(かぞえあげそくど、counting measure; 計数測度)とは、集合の元の個数を数えるという方法でその "大きさ"(あるいは "容積")を測る、ルベーグ積分における測度の一種である。.

新しい!!: 絶対収束と数え上げ測度 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 絶対収束と数学 · 続きを見る »

ここにリダイレクトされます:

絶対収斂

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »