ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ボホナー積分

索引 ボホナー積分

数学におけるボホナー積分(ボホナーせきぶん、Bochner integral)は、サロモン・ボホナーに名を因む、(単函数の積分の極限としての)ルベーグ積分のバナッハ空間に値をとる函数への拡張である。.

17 関係: 単関数収束数列空間ペティス積分バナッハ空間ルベーグ積分ボホナー空間ヒルベルト空間ベクトル測度アメリカ数学会サロモン・ボホナー優収束定理回帰的空間絶対連続Lp空間指示関数数学数列空間

単関数

数学の実解析の分野における単関数(たんかんすう、; 単純函数)とは、実数直線の部分集合上の(十分に「良い」 - 正式な定義は下節を参照)実数値関数で、有限個の値しか取らないもののことを言う。実践的な場面においては例外なくそうであることから、単関数は可測であることが要求されることもある。 基本的な単関数の一例として、半開区間.

新しい!!: ボホナー積分と単関数 · 続きを見る »

収束数列空間

数学の分野、函数解析学において実または複素の 全体からなるベクトル空間は と書かれる。これに一様ノルム を考えるとき、収束数列の空間 はバナッハ空間を成す。これは有界数列の空間 ℓ∞ の閉部分空間であり、かつまたの(バナッハ)空間 を閉部分空間として含む。 の双対空間は( のと同じく) に等長同型である。特に と の何れも回帰的でない。前者について、 と が同型であることは内積を、 と に対して と与えればよい。これは順序数 上で考えたリースの表現定理である。他方 について、 と の内積は とすればよい。.

新しい!!: ボホナー積分と収束数列空間 · 続きを見る »

ペティス積分

数学の分野におけるペティス積分(ペティスせきぶん、)あるいはゲルファント-ペティス積分(イズライル・ゲルファントとの名にちなむ)とは、双対性を利用することによって、バナッハ空間に値を取るような測度空間上の関数へとルベーグ積分の定義を拡張したものである。測度空間がルベーグ測度を備える区間であるような場合に対して、ゲルファントによって導入された。強積分であるボホナー積分と区別されて、弱積分と呼ばれることもある。.

新しい!!: ボホナー積分とペティス積分 · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: ボホナー積分とバナッハ空間 · 続きを見る »

ルベーグ積分

数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、Lebesgue integral)は、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、「曲線の下部の面積」を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかしながら、より不規則な関数を考える必要が、例えば解析学や確率論において極限を考えるときに生じたため、より注意深い近似の手法が適切な積分を定義するために必要なことが明らかとなった。また、局所コンパクト群のような、実数直線よりも一般の空間上で積分をしたいことがある。ルベーグ積分はこの重要な仕事をするために必要な正しい抽象化を与える。例えば、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えると非常に繊細な議論が必要だが、ルベーグ積分では、積分と極限操作の交換が可能であるための簡単な十分条件が分かっている。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 ルベーグ積分 (Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線の部分集合上定義された関数を積分するという特定の場合を意味することもある。.

新しい!!: ボホナー積分とルベーグ積分 · 続きを見る »

ボホナー空間

数学の分野におけるボホナー空間(ボホナーせきぶん、)とは、必ずしも実数の空間 R あるいは複素数の空間 C とは限らないバナッハ空間に値を取る関数への、Lp空間の概念の一般化である。 ボホナー空間 Lp(X) は、バナッハ空間 X に値を取るボホナー可測関数 f で、そのノルム ||f||X が通常の Lp 空間に属するようなもの全ての同値類からなる。したがって、X が複素数の集合であるなら、ボホナー空間は通常のルベーグ空間 Lp となる。 Lp 空間に関するほとんど全ての結果は、ボホナー空間についても同様に得られる。特に、ボホナー空間 Lp(X) は 1\le p\le \infty に対してバナッハ空間である。.

新しい!!: ボホナー積分とボホナー空間 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: ボホナー積分とヒルベルト空間 · 続きを見る »

ベクトル測度

数学の分野におけるベクトル測度(ベクトルそくど、)とは、ある集合族上で定義される、ある特定の性質を備えたベクトル値関数である。非負実数値のみを取る測度の概念の一般化である。.

新しい!!: ボホナー積分とベクトル測度 · 続きを見る »

アメリカ数学会

アメリカ数学会(アメリカすうがくかい、英語:American Mathematical Society、略称:AMS)は、アメリカ合衆国の数学の学会である。現会員数は、32000人。 イギリス滞在中にロンドン数学会の影響を受けたトーマス・フィスクによって1888年に設立された。1894年7月に、現在の名前で再編成された。 AMS は組版処理ソフトウェア TeX の主唱者であり、AmS-TeX や AmS-LaTeX の開発を支援した。また、との合弁事業で MathJax オープンソースプロジェクトを管理している。.

新しい!!: ボホナー積分とアメリカ数学会 · 続きを見る »

サロモン・ボホナー

モン・ボホナー英語での読みに倣うなら Bochner はボクナーと読む。(Salomon Bochner, 1899年8月20日 – 1982年5月2日)はアメリカ人の数学者。出身は当時オーストリア=ハンガリー帝国に属していた(現在はポーランド、クラクフにある)。解析学や確率論、微分幾何学など幅広い分野で貢献が知られている。.

新しい!!: ボホナー積分とサロモン・ボホナー · 続きを見る »

優収束定理

数学の測度論の分野におけるルベーグの優収束定理(ゆうしゅうそくていり、)あるいは単にルベーグの収束定理とは、ある関数列に対して、そのルベーグ積分と、ほとんど至る所での収束という二つの極限操作が可換となるための十分条件について述べた定理である。 リーマン積分に対しては、優収束定理は成立しない。なぜならば、リーマン可積分関数の列の極限は多くの場合、リーマン可積分とはならないからである。優収束定理の持つ威力と有用性は、リーマン積分よりもルベーグ積分が理論的に優れているということを示すものである。 この定理は、確率変数の期待値の収束のための十分条件を与えるため、確率論の分野において広く利用されている。.

新しい!!: ボホナー積分と優収束定理 · 続きを見る »

回帰的空間

数学の関数解析学における回帰的空間(かいきてきくうかん、)とは、その双対空間の双対が元の空間と一致するようなバナッハ空間(より一般的には、局所凸位相ベクトル空間)のことである。回帰的なバナッハ空間はしばしばそれらの幾何学的な性質によって特徴付けられる。.

新しい!!: ボホナー積分と回帰的空間 · 続きを見る »

絶対連続

数学における絶対連続(ぜったいれんぞく、absolute continuity)とは通常の連続性や一様連続性よりも強い条件を課した連続性の概念である。関数と測度とについて、関係しているが見かけ上異なるふたつの絶対連続性の定義がなされる。.

新しい!!: ボホナー積分と絶対連続 · 続きを見る »

Lp空間

数学の分野における Lp 空間(エルピーくうかん、Lp space)とは、有限次元ベクトル空間に対する p-ノルムの自然な一般化を用いることで定義される関数空間である。アンリ・ルベーグの名にちなんでルベーグ空間としばしば呼ばれる が、 によると初めて導入されたのは とされている。Lp 空間は関数解析学におけるバナッハ空間や、線型位相空間の重要なクラスを形成する。物理学や統計学、金融、工学など様々な分野で応用されている。.

新しい!!: ボホナー積分とLp空間 · 続きを見る »

指示関数

数学において指示関数(しじかんすう、indicator function)、集合の定義関数、特性関数(とくせいかんすう、characteristic function)は、集合の元がその集合の特定の部分集合に属するかどうかを指定することによって定義される関数である。.

新しい!!: ボホナー積分と指示関数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ボホナー積分と数学 · 続きを見る »

数列空間

関数解析学および関連する数学の分野における数列空間(すうれつくうかん、)とは、実数あるいは複素数の無限列を元とするベクトル空間のことを言う。またそれと同値であるが、自然数から実あるいは複素数体 K への関数を元とする関数空間のことでもある。そのような関数すべてからなる集合は、K に元を持つ無限列すべてからなる集合であると自然に認識され、関数の点ごとの和および点ごとのスカラー倍の作用の下で、ベクトル空間と見なされる。すべての数列空間は、この空間の線型部分空間である。通常、数列空間はノルムを備えるものであり、そうでなくとも少なくとも位相ベクトル空間の構造を備えている。 解析学におけるもっとも重要な数列空間のクラスは、p-乗総和可能数列からなる関数空間 ℓp である。それらの空間は p-ノルムを備え、自然数の集合上の数え上げ測度に対するL''p''空間の特別な場合と見なされる。収束列や零列のような他の重要な数列のクラスも数列空間を構成し、それらの場合はそれぞれ c および c0 と表記され、上限ノルムが備えられる。任意の数列空間は各点収束の位相を備えるものでもあり、その位相の下でのそれらの空間は、と呼ばれるフレシェ空間の特殊な場合となる。.

新しい!!: ボホナー積分と数列空間 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »