ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

可積分系

索引 可積分系

数学や物理学では、可積分系 と名付けられた様々な考え方が知られている。 微分可能な系の一般論では、フロベニウス可積分性 が過剰な決定系として知られている。ハミルトン力学系の古典理論では、リウヴィル可積分性 がある。より一般的には、微分方程式の可積分性は、相空間の不変部分多様体による の存在に関係している。これらの考え方の各々は、葉層のアイデアを応用しているが、同じではない。量子力学や統計力学モデルの設定には完備可積分性 や完全可積分性 という考え方もある。可積分系は、微分作用素の代数幾何学へ引き戻して考える場合もある。.

35 関係: 力学系外微分変数分離差分法中心力万有引力代数幾何学位相空間 (物理学)作用 (物理学)微分作用素微分方程式微分方程式系の可積分条件ハミルトン力学ハミルトンベクトル場ハミルトン–ヤコビ方程式ハバードモデルポアソン括弧トーラスヒルベルト空間フロー (数学)フェルディナント・ゲオルク・フロベニウスドナルドソン不変量アナトリー・フォメンコウラジーミル・アーノルドエルミート作用素カオス理論シンプレクティック幾何学ジョゼフ・リウヴィルソリトン物理学調和振動子KdV方程式正準変換正準座標数学

力学系

力学系(りきがくけい、英語:dynamical system)とは、一定の規則に従って時間の経過とともに状態が変化するシステム(系)、あるいはそのシステムを記述するための数学的なモデルのことである。一般には状態の変化に影響を与える数個の要素を変数として取り出し、要素間の相互作用を微分方程式または差分方程式として記述することによってモデル化される。 力学系では、システムの状態を実数の集合によって定義している。各々の状態の違いは、その状態を代表する変数の差のみによって表現される。システムの状態の変化は関数によって与えられ、現在の状態から将来の状態を一意に決定することができる。この関数は、状態の発展規則と呼ばれる。 力学系の例としては、振り子の振動や自然界に存在する生物の個体数の変動、惑星の軌道などが挙げられるが、この世界の現象すべてを力学系と見なすこともできる。システムの振る舞いは、対象とする現象や記述のレベルによって多種多様である。;力学系の具体例.

新しい!!: 可積分系と力学系 · 続きを見る »

外微分

可微分多様体上、外微分(がいびぶん、exterior derivative)は関数の微分の概念を高次の微分形式に拡張する。外微分はエリ・カルタンによって最初に現在の形式で記述された。それによってベクトル解析のストークスの定理、ガウスの定理、グリーンの定理の自然な、距離に依存しない一般化ができる。 形式を無限小 次元平行面体を通る流量を測るものと考えれば、その外微分を -平行面体の境界を通る正味の流れを測るものと考えることができる。.

新しい!!: 可積分系と外微分 · 続きを見る »

変数分離

変数分離(へんすうぶんり、separation of variables)は、常微分方程式や偏微分方程式を解くための手法。方程式を変形することにより、2つあるいはそれ以上の変数が式の右辺・左辺に分かれるようにすること。 常微分方程式に対して用いるときと、偏微分方程式に対して用いるときは、そのやり方がかなり異なっているが、それぞれの変数に依存する部分を両辺に分けるという点では共通している。.

新しい!!: 可積分系と変数分離 · 続きを見る »

差分法

数値解析における有限差分法(ゆうげんさぶんほう、finite-difference methods; FDM)あるいは単に差分法は、微分方程式を解くために微分を有限差分近似(差分商)で置き換えて得られる差分方程式<!-- ループリンク -->で近似するという離散化手法を用いる数値解法である。18世紀にオイラーが考案したと言われる。 今日ではFDMは偏微分方程式の数値解法として支配的な手法である.

新しい!!: 可積分系と差分法 · 続きを見る »

中心力

中心力(ちゅうしんりょく、central force)は古典力学において、大きさは原点と物体の距離rにのみ依存し、方向は原点と物体を結ぶ線に沿っている力である 。 ここで\boldsymbolは力、\boldsymbolは位置ベクトル、|\boldsymbol|はその長さ、\hat.

新しい!!: 可積分系と中心力 · 続きを見る »

万有引力

万有引力(ばんゆういんりょく、universal gravitation)または万有引力の法則(ばんゆういんりょくのほうそく、law of universal gravitation)とは、「地上において質点(物体)が地球に引き寄せられるだけではなく、この宇宙においてはどこでも全ての質点(物体)は互いに gravitation(.

新しい!!: 可積分系と万有引力 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 可積分系と代数幾何学 · 続きを見る »

位相空間 (物理学)

物理学における位相空間(いそうくうかん、phase space)とは、力学系の位置と運動量を座標(直交軸)とする空間のことである。数学における位相空間()と区別するために、相空間と呼ぶ流儀もある。 ハミルトン形式においては位置と運動量が力学変数となり、力学変数の関数として表される物理量は位相空間上の関数となる。 1個の質点の運動の状態は、その位置と運動量を指定することで定まる。-次元空間における運動では、位置と運動量がそれぞれ 成分あり、合わせて 成分となる。これらを座標とする 次元の空間が位相空間である。1個の質点の運動の状態は位相空間上の1個の点として表現され、これは状態点と呼ばれる。運動方程式に従って位置と運動量は時間変化し、時間の経過とともに状態点は1本の軌跡を描く。 -次元空間を運動する 個の質点系の運動の状態は 次元位相空間上の 個の状態点の分布として表現され、時間とともにその分布が変化する。 質点系は上記の分布による表現だけではなく、 個の質点の各々の位置と運動量のすべてを座標とする -次元の位相空間を考えることができる。質点系の運動の状態はこの -次元空間上の1個の状態点として表現され、時間の経過とともに1本の軌跡を描く。.

新しい!!: 可積分系と位相空間 (物理学) · 続きを見る »

作用 (物理学)

物理学における作用(さよう、action)は、の動力学的な性質を示すもので、数学的には経路トラジェクトリとか軌道とも呼ばれる。を引数にとる実数値の汎関数として表現される。一般には、異なる経路に対する作用は異なる値を持つ。古典力学においては、作用の停留点における経路が実現される。この法則を最小作用の原理と呼ぶ。 作用は、エネルギーと時間の積の次元を持つ。従って、国際単位系 (SI) では、作用の単位はジュール秒 (J&sdot;s) となる。作用の次元を持つ物理定数としてプランク定数がある。そのため、プランク定数は作用の物理的に普遍な単位としてしばしば用いられる。なお、作用と同じ次元の物理量として角運動量がある。 物理学において「作用」という言葉は様々な意味で用いられる。たとえば作用・反作用の法則や近接作用論・遠隔作用論の中で論じられる「作用」とは物体に及ぼされる力を指す。本項では力の意味での作用ではなく、解析力学におけるラグランジアンの積分としての作用についてを述べる。.

新しい!!: 可積分系と作用 (物理学) · 続きを見る »

微分作用素

数学における微分作用素(differential operator)は、微分演算 の函数として定義された作用素である。ひとまずは表記法の問題として、微分演算を(計算機科学における高階函数と同じ仕方で)入力函数を別の函数を返す抽象的な演算と考えるのが有効である。 本項では、最もよく扱われる種類である線型作用素を主に扱う。しかし、のような非線型微分作用素も存在する。.

新しい!!: 可積分系と微分作用素 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 可積分系と微分方程式 · 続きを見る »

微分方程式系の可積分条件

数学において、ある種の偏微分方程式系は、内在する幾何学的ないし代数的構造の観点から微分形式の言葉で定式化される。動機は、微分形式を用いて部分多様体を制限する手法を適用し、この制限手法と外微分が整合する事実を活用することにある。この定式化は、例えばある種の(over-determined system)に対するアプローチの候補となる。パフィアン系(Pfaffian system)は 1-形式によって指定される一方で、この理論は他のタイプの微分方程式系(differential system)も対象として含む。 n-次元多様体 M 上で微分可能な 1-形式 αi (i.

新しい!!: 可積分系と微分方程式系の可積分条件 · 続きを見る »

ハミルトン力学

ハミルトン力学(ハミルトンりきがく、英語:Hamiltonian mechanics)は、一般化座標と一般化運動量を基本変数として記述された古典力学である。イギリスの物理学者ウィリアム・ローワン・ハミルトンが創始した。ラグランジュ力学と同様にニュートン力学を再公式化した解析力学の一形式。.

新しい!!: 可積分系とハミルトン力学 · 続きを見る »

ハミルトンベクトル場

数学および物理学において、シンプレクティック多様体上のハミルトンベクトル場(Hamiltonian vector field)は、任意のエネルギー関数あるいはハミルトニアンに対して定義されるベクトル場である。名前は物理学者・数学者のウィリアム・ローワン・ハミルトンに因む。 ハミルトンベクトル場は系の時間発展に幾何学的な解釈を与える:相空間上の系の時間発展は、ハミルトンベクトル場のフローに一致する。すなわち、H をハミルトニアンとし、(q(t), p(t)) を H に関する正準方程式の解とするとき、(q(t), p(t)) はハミルトンベクトル場の X の積分曲線 e^ に一致する。 ハミルトンベクトル場はより一般に任意のポアソン多様体上定義できる。多様体上の関数 f, g に対応する2つのハミルトンベクトル場のはそれ自身ハミルトンベクトル場であり、そのハミルトニアンは f と g のポワソンブラケットにより与えられる。.

新しい!!: 可積分系とハミルトンベクトル場 · 続きを見る »

ハミルトン–ヤコビ方程式

物理学においてハミルトン&ndash;ヤコビ方程式 (Hamilton&ndash;Jacobi equation) とは古典力学の再定式化であり、ニュートンの運動方程式、ラグランジュ力学、ハミルトン力学などの他の定式化と同値である。ハミルトン–ヤコビ方程式は力学系において保存される量を探し出す場合に特に便利であり、それはたとえ力学の問題それ自身が完全には解けない場合にでさえも可能である。 ハミルトン&ndash;ヤコビ方程式はまた、粒子の運動が波として表現される唯一の力学の定式化である。この視点から、ハミルトン&ndash;ヤコビ方程式は理論物理学の長らくの目標(少なくとも18世紀、ヨハン・ベルヌーイ以来)である、光の伝播と粒子の運動との類似性を見出す試みを達成したと見ることも出来る。力学系から得られる波動方程式は以下に示すとおり、シュレーディンガー方程式と、完全にではないがよく似ている。ハミルトン&ndash;ヤコビ方程式はこのような理由で、最も量子力学に近い古典力学の扱いであると考えられている。.

新しい!!: 可積分系とハミルトン–ヤコビ方程式 · 続きを見る »

ハバードモデル

ハバードモデル(Hubbard model)とは1963年にによって提出された、電子相関の効果の強い固体中の電子の振る舞いを量子論的に記述するモデルである。 元々は、遷移金属の様に最外殻電子がd軌道やf軌道にあり、電子の波動関数の広がりが大きく、電子同士の波動関数の重なりのために生じる電子相関が大きな固体中の電子を良く記述するモデルとして提出されたものである。 ハバードモデルは非常に単純なハミルトニアンを持つモデルであるにも関わらず、非常に多様な電子の振る舞いを表現できる。 この様な電子の振る舞いの多様さは電子同士の相互作用(電子相関)によってもたらされていると考えられている。電子相関が物性を決める上で重要になる系を強相関電子系と言うが、ハバードモデルは強相関電子系の基本的なモデルである。 ハバードモデルによる重要な成果としてモット絶縁体の発見、磁性の起源の尤もらしい記述、銅酸化物高温超電導体の記述等が挙げられる。これらの現象は全て不可分の物で、互いに関連した現象であると考えられている。.

新しい!!: 可積分系とハバードモデル · 続きを見る »

ポアソン括弧

ポアソン括弧(ぽあそんかっこ、)とは、ハミルトン形式の解析力学における重要概念の一つ。.

新しい!!: 可積分系とポアソン括弧 · 続きを見る »

トーラス

初等幾何学におけるトーラス(torus, 複数形: tori)、円環面、輪環面は、円周を回転して得られる回転面である。 いくつかの文脈では、二つの単位円周の直積集合 (に適当な構造を入れたもの)を「トーラス」と定義する。特に、位相幾何学における「トーラス」は、直積位相を備えた に同相な図形の総称として用いられ、 の(コンパクト二次元多様体)として特徴づけられる。このようなトーラスは三次元ユークリッド空間 に位相的に埋め込めるが、各生成円をそれぞれ別の平面 に埋め込んで、それら埋め込みを保つような直積空間としての「トーラス」をユークリッド空間に埋め込むことは では不可能で、 で考える必要がある。これは と呼ばれる、四次元空間内の曲面を成す。 混同すべきでない関連の深い図形として、トーラスに囲まれた領域(三次元図形)すなわち「中身の詰まったトーラス」(solid torus) を、トーラス体、輪環体、円環体などと(対してもとのトーラスをトーラス面 (toroid) と)呼ぶこともある。また、中身の詰まったトーラスを単に「トーラス」(toroid) と呼ぶ場合があるので注意が必要である。また、同様に「円環」などと呼ばれる別の図形アニュラス(annulus、環帯)とも混同してはならない。.

新しい!!: 可積分系とトーラス · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: 可積分系とヒルベルト空間 · 続きを見る »

フロー (数学)

数学においてフロー()は、流体における粒子の動きの概念を定式化したものである。工学や物理学を含む自然科学の分野に普遍的に現れるものとなっている。またその概念は、常微分方程式の研究において基本的なものとなっている。直感的に、フローはある点の時間についての連続的な動きを表すものと見なすことが出来る。より正式に、フローはある集合上の実数に関する群作用である。 、すなわちベクトル場によって決定されるフローの概念は、微分位相幾何学やリーマン幾何学、リー群の分野に現れる。ベクトルフローの具体例として、測地フローやハミルトンフロー、リッチフロー、、が挙げられる。フローはまた、確率変数や確率過程のシステムに対して定義されることもあり、力学系の研究に現れる。それらの内で最も有名なものは、ベルヌーイフローであるかも知れない。.

新しい!!: 可積分系とフロー (数学) · 続きを見る »

フェルディナント・ゲオルク・フロベニウス

フェルディナント・ゲオルク・フロベニウス フェルディナント・ゲオルク・フロベニウス(Georg Ferdinand Frobenius、1849年10月26日 - 1917年8月3日)はドイツの数学者。 ベルリンに生まれる。1867年ゲッティンゲン大学に入学、その後ベルリン大学に転じて、1870年に博士号を取得。1874年ベルリン大学助教授、1875年から1902年までチューリッヒ工科大学教授を務めた。1902年からベルリン大学教授となり、最期までその職にあり続けた。 群の指標の概念を導入し、有限群の表現論を実質的に完成した。これはのちに量子力学に不可欠のものとなる。また代数的整数論でフロベニウス置換を発見。.

新しい!!: 可積分系とフェルディナント・ゲオルク・フロベニウス · 続きを見る »

ドナルドソン不変量

ドナルドソン理論 (Donaldson theory) は、を用いた滑らかな4次元多様体の研究である。この理論は、コンパクト単連結4次元多様体の2次コホモロジー群上の可能な二次形式を制限してドナルドソンの定理を証明したサイモン・ドナルドソン (1983) により始められた。 ドナルドソン理論の結果の多くは微分構造を持つ多様体に依存し、4次元位相多様体に対しては正しくない。 ドナルドソン理論の定理の多くは今ではを用いると容易に証明できる。.

新しい!!: 可積分系とドナルドソン不変量 · 続きを見る »

アナトリー・フォメンコ

アナトリー・ティモフェーエヴィチ・フォメンコ(Анато́лий Тимофе́евич Фоме́нко、Anatoly Timofeevich Fomenko、1945年3月13日 - )はロシアの数学者、モスクワ大学教授、ロシア科学アカデミーの正会員。トポロジーの研究で知られる。また歴史書の編纂にも協力している。ウクライナ・ドネツィク生まれ。.

新しい!!: 可積分系とアナトリー・フォメンコ · 続きを見る »

ウラジーミル・アーノルド

ウラジーミル・イーゴレヴィチ・アーノルド(ヴラジーミル・イーゴレヴィチ・アルノーリト、ロシア語:Влади́мир И́горевич Арно́льдヴラシーミル・イーガリェヴィチュ・アルノーリト、ラテン文字転写の例:Vladimir Igorevich Arnol'd、1937年6月12日 - 2010年6月3日)はウクライナ出身のロシアの数学者。.

新しい!!: 可積分系とウラジーミル・アーノルド · 続きを見る »

エルミート作用素

ルミート作用素(エルミートさようそ、Hermitian operator, Hermitian)または自己共役作用素(じこきょうやくさようそ、self adjoint operator)は、複素ヒルベルト空間上の線形作用素で、その共役作用素が自分自身に一致するようなもののことである。物理学ではエルミート演算子とも呼ばれる。エルミートという名称は、フランス人数学者シャルル・エルミートに因む。.

新しい!!: 可積分系とエルミート作用素 · 続きを見る »

カオス理論

論(カオスりろん、、、)は、力学系の一部に見られる、数的誤差により予測できないとされている複雑な様子を示す現象を扱う理論である。カオス力学ともいう。 ここで言う予測できないとは、決してランダムということではない。その振る舞いは決定論的法則に従うものの、積分法による解が得られないため、その未来(および過去)の振る舞いを知るには数値解析を用いざるを得ない。しかし、初期値鋭敏性ゆえに、ある時点における無限の精度の情報が必要であるうえ、(コンピューターでは無限桁を扱えないため必然的に発生する)数値解析の過程での誤差によっても、得られる値と真の値とのずれが増幅される。そのため予測が事実上不可能という意味である。.

新しい!!: 可積分系とカオス理論 · 続きを見る »

シンプレクティック幾何学

ンプレクティック幾何学(シンプレクティックきかがく、symplectic geometry)とは、シンプレクティック多様体上で展開される幾何学をいう。シンプレクティック幾何学は解析力学を起源とするが、現在では大域解析学の一分野でもあり、可積分系・非可換幾何学・代数幾何学などとも深い繋がりを持つ。また、弦理論や超対称性との関わりも盛んに研究がなされている。.

新しい!!: 可積分系とシンプレクティック幾何学 · 続きを見る »

ジョゼフ・リウヴィル

ョゼフ・リウヴィル ジョゼフ・リウヴィル(Joseph Liouville,, 1809年3月24日 - 1882年9月8日)は、フランスの物理学者、数学者。リウヴィルの定理とよばれる業績を3つの分野に残し(物理学、解析学、数論)、さらに数論においては超越数の最初の例を与えた。エヴァリスト・ガロアの功績を発見し、全集を公表したことでも知られている。パ=ド=カレー県サントメールで生まれ、1882年、パリで死去した。.

新しい!!: 可積分系とジョゼフ・リウヴィル · 続きを見る »

ソリトン

リトン波の再現例 ソリトン()は、おおまかにいって非線形方程式に従う孤立波で、次の条件を満たす安定したパルス状の波動のことである。.

新しい!!: 可積分系とソリトン · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 可積分系と物理学 · 続きを見る »

調和振動子

調和振動子(ちょうわしんどうし、harmonic oscillator)とは、質点が定点からの距離に比例する引力を受けて運動する系である。調和振動子は定点を中心として振動する系であり、その運動は解析的に解くことができる。.

新しい!!: 可積分系と調和振動子 · 続きを見る »

KdV方程式

KdV方程式(KdVほうていしき、KdV equation)、もしくはコルトヴェーグ・ドフリース方程式とは、非線形波動を記述する非線形偏微分方程式の一つである。ソリトン解を有する可積分系の代表的な例として知られる。方程式の名前は、定式化を行った (D. Korteweg) と (G. de Vries) に因む。.

新しい!!: 可積分系とKdV方程式 · 続きを見る »

正準変換

ハミルトン形式の解析力学において、正準変換(せいじゅんへんかん、canonical transformation)とは、正準変数を新たなハミルトンの運動方程式を満たす新しい正準変数に写す変数変換。正準変換の下では、正準変数である一般化座標と一般化運動量は互いに混ざり合うことができ、等価な役割を果たす。また、正準変換はポアソン括弧を不変に保つ性質を持つ。幾何学的な観点からは、相空間をシンプレクティック多様体として見做した場合、基本 2形式を保つシンプレクティック同相写像に対応する。.

新しい!!: 可積分系と正準変換 · 続きを見る »

正準座標

数学や古典力学において、正準座標(canonical coordinates)は、任意に与えられた点の(相空間の中の系を特定する)ある時間での物理系を記述することのできる座標系である。正準座標は、古典力学でのハミルトン定式化で使われる。密接に関連する考え方は、量子力学の中にも現れる。詳細は、(Stone–von Neumann theorem)や正準交換関係を参照。 ハミルトン力学を一般化してシンプレクティック幾何学とし、正準変換を一般化し(contact transformation)とすると、古典力学の正準座標の 19世紀での定義は、20世紀の多様体上の余接バンドルのより抽象的な定義へ一般化することができる。.

新しい!!: 可積分系と正準座標 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 可積分系と数学 · 続きを見る »

ここにリダイレクトされます:

可積分

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »