ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

フビニの定理

索引 フビニの定理

数学においてフビニの定理(フビニのていり、)とは、 によって導入された、逐次積分による二重積分の計算が可能となるための条件に関する一結果である。すなわち、次のような計算が可能となる。 この結果、は逐次積分において変えることが可能となる。フビニの定理は、ある二変数函数が可積分であれば、上記のような二回の繰り返しの積分は等しいことを意味する。 によって導入されたトネリの定理(Tonelli's theorem)も同様のものであるが、その定理が適用される函数は可積分ではなくとも非負であればよい。.

27 関係: 可測関数多重積分完備距離空間完全加法族圏論マーティンの公理ポーランド空間ルベーグ積分ルベーグ測度ベールの性質ベール空間分解可能測度カラテオドリの拡張定理カヴァリエリの原理カジミェシュ・クラトフスキスタニスワフ・ウラム公理的集合論積測度第二可算的空間絶対収束絶対値集合論逐次積分連続体仮説ZFCから独立な命題の一覧測度論数学

可測関数

数学の、特に測度論の分野における可測関数(かそくかんすう、)とは、(積分論を展開する文脈として自然なものである)可測空間の間の、構造を保つ写像である。具体的に言えば、可測空間の間の関数が可測であるとは、各可測集合に対するその原像が可測であることを言う(これは位相空間の間の連続関数の定義の仕方と似ている)。 この定義は単純なようにも見えるが、σ-代数も併せて考えているということに特別な注意が払われなければならない。特に、関数 f: R → R がルベーグ可測であるといったとき、これは実際には f\colon (\mathbb, \mathcal) \to (\mathbb, \mathcal) が可測関数であることを意味する。すなわち、その定義域と値域は、同じ台集合上で異なる σ-代数を持つものを表している(ここで \mathcal はルベーグ可測集合全体の成す σ-代数であり、\mathcal は R 上のボレル集合族である)。結果として、ルベーグ可測関数の合成は必ずしもルベーグ可測とはならない。 慣例では、特に断りの無い限り、位相空間にはその開部分集合全体により生成されるボレル代数が与えられるものと仮定される。最もよくある場合だと、この空間として実数全体あるいは複素数全体からなる空間をとる。例えば、実数値可測関数とは、各ボレル集合の原像が可測となるような関数を言う。複素数値可測関数も同様に定義される。実用においては、ボレル集合族に関する実数値可測関数のみを指して可測関数という語を使用するものもある。関数の値が R や C の代わりに無限次元ベクトル空間に取られるのであれば、弱可測性やボホナー可測性などの、可測性に関する他の定義が用いられることが普通である。 確率論の分野において、σ-代数はしばしば、利用可能な情報すべてからなる集合を表し、ある関数(この文脈では確率変数)が可測であるとは、それが利用可能な情報に基づいて知ることの出来る結果(outcome)を表すことを意味する。対照的に、少なくとも解析学の分野においては、ルベーグ可測でない関数は一般に病的であると見なされる。.

新しい!!: フビニの定理と可測関数 · 続きを見る »

多重積分

数学の微分積分学周辺分野における重積分(じゅうせきぶん、multiple integral; 多重積分)は、一変数の実函数に対する定積分を多変数函数に対して拡張したものである。n-変数函数の重積分は n-重積分とも呼ばれ、二変数および三変数函数に対する重積分は、それぞれ特に二重積分 (double integral) および三重積分 (triple integral) と呼ばれる。.

新しい!!: フビニの定理と多重積分 · 続きを見る »

完備距離空間

位相空間論あるいは解析学において、距離空間 M が完備(かんび、complete)またはコーシー空間(コーシーくうかん、Cauchy space)であるとは、M 内の任意のコーシー点列が M に属する極限を持つ(任意のコーシー点列が収束する)ことを言う。 直観的に言えば、空間が完備であるというのは(その内側や境界において)点を追いかけると「空間からはみ出してしまう」ということが起きないということである。例えば、有理数全体の成す集合 Q は完備でないが、これは例えば 2 の正の平方根は、それに収束する有理コーシー数列が構成できるにも拘らず、有理数ではないので Q からははみ出してしまう(後述)。「こういった抜けを全て埋めてしまう」という考えは後述するように、空間の完備化 (completion) として常に可能である。.

新しい!!: フビニの定理と完備距離空間 · 続きを見る »

完全加法族

数学における完全加法族(かんぜんかほうぞく、completely additive class)、可算加法族(かさんかほうぞく、countably additive class)あるいは (σ-)加法族、σ-集合代数(シグマしゅうごうだいすう、σ-algebra)、σ-集合体(シグマしゅうごうたい、σ-field)接頭辞 "σ" は「可算加法的」("completely additive") であることを示すのにしばしば用いられる。また、完全加法族では可算加法性と可算乗法性が補集合を取る操作を通じて同値になるので区別されないが、(乗法族における)積の可算性が δ- を用いることによって表される場合がある(δ-乗法族)。例えば、σ-集合環と δ-集合環など。''G''δ-集合と''F''σ-集合の項も参照。は、主な用途として測度を定義することに十分な特定の性質を満たす集合の集まりである。特に測度が定義される集合全体を集めた集合族は完全加法族になる。この概念は、解析学ではルベーグ積分に対する基礎付けとして重要であり、また確率論では確率の定義できる事象全体の成す族として解釈される。完全加法族を接頭辞「完全」を付けずに単に「加法族」と呼ぶことも多い(つまり、有限加法族の意味ならば接頭辞「有限」を省略しないのがふつう)ので注意が必要である。.

新しい!!: フビニの定理と完全加法族 · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: フビニの定理と圏論 · 続きを見る »

マーティンの公理

数学の集合論におけるマーティンの公理(マーティンのこうり、Martin's axiom, MA)とは、マーティン (en:Donald A. Martin) とソロヴェイ (en:Robert M. Solovay) によって1970年に提唱された、ZFCと独立な命題である。 この命題は連続体仮説(CH)から導かれるが、ZFC + ¬ CHとも矛盾しない。すなわち、MAを仮定するかどうかに興味があるのはCHを仮定しないときのみである。 この公理は非形式的には「連続体濃度未満の任意の基数が\aleph_0と似たような振る舞いをする」と述べるものである。この主張の背景となる直観を知るには、ラショーヴァ=シコルスキの補題を研究するとよい。この公理はある種の強制法論法を制御する上で使われる原理である。.

新しい!!: フビニの定理とマーティンの公理 · 続きを見る »

ポーランド空間

数学の位相空間論において、ポーランド空間とは、可分で完備距離づけ可能な位相空間のことである。すなわち、可算な稠密部分集合をもつ完備距離空間と同相な空間のことである。名前の由来は、この空間が著名なポーランド人研究者達(例えば、シェルピニスキ, クラトフスキ, タルスキ等)によって研究され始めたことによる。今日では、Borel equivalence relation等の研究を含んだ記述集合論の研究のための基礎としても重要視されている。 ポーランド空間の例としては、実数直線, 可分なバナッハ空間, カントール空間, ベール空間がある。さらに言えば、普通の距離づけでは完備でないがポーランド空間ではあるようなものも存在する。例えば開区間 (0, 1) はポーランド空間である。 いかなる二つの不可算なポーランド空間の間にも、ボレル同型写像が存在する。すなわち、全単射でボレル構造を保つものが存在する。特に、不可算なポーランド空間の濃度は必ず連続体濃度となる。.

新しい!!: フビニの定理とポーランド空間 · 続きを見る »

ルベーグ積分

数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、Lebesgue integral)は、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、「曲線の下部の面積」を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかしながら、より不規則な関数を考える必要が、例えば解析学や確率論において極限を考えるときに生じたため、より注意深い近似の手法が適切な積分を定義するために必要なことが明らかとなった。また、局所コンパクト群のような、実数直線よりも一般の空間上で積分をしたいことがある。ルベーグ積分はこの重要な仕事をするために必要な正しい抽象化を与える。例えば、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えると非常に繊細な議論が必要だが、ルベーグ積分では、積分と極限操作の交換が可能であるための簡単な十分条件が分かっている。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 ルベーグ積分 (Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線の部分集合上定義された関数を積分するという特定の場合を意味することもある。.

新しい!!: フビニの定理とルベーグ積分 · 続きを見る »

ルベーグ測度

数学におけるルベーグ測度(ルベーグそくど、Lebesgue measure)は、ユークリッド空間上の長さ、面積、体積の概念を拡張したものである。名称はフランスの数学者アンリ・ルベーグにちなむ。体積には「互いに素な集合の体積は元の体積の和に等しい」という性質(加法性)がある。この性質を保ちながらより複雑な集合に対しても「体積」を定めることができるよう体積の概念を拡張できる。このような拡張は一意である。実解析、特にルベーグ積分で用いられる。体積と同様ルベーグ測度は値として をとりうる。解析学で普通に考えられるような集合に対してはルベーグ測度が与えられるものと考えてよいが、選択公理によって の部分集合でルベーグ測度を与えることができない(無理に与えると加法性が成り立たない)ものが存在することを証明できる。ルベーグ測度が与えられる集合はルベーグ可測であるという。以下の説明ではルベーグ可測な集合 の測度を で表す。.

新しい!!: フビニの定理とルベーグ測度 · 続きを見る »

ベールの性質

位相空間 X の部分集合 A が ベールの性質を持つ、またはほとんど開な集合であるとは、その集合がある開集合との差が第一類集合であること。すなわち開集合 U\subseteq X で A\mathbinU が第一類集合となるものがあることである(ここでの \Delta は対称差を表す).

新しい!!: フビニの定理とベールの性質 · 続きを見る »

ベール空間

数学の位相空間論におけるベール空間(ベールくうかん、Baire space)は、直観的には非常の大きくてある種の極限操作を行うのに「十分多くの」点を持つような位相空間である。名称はこの概念を導入したルネ=ルイ・ベールに由来する。.

新しい!!: フビニの定理とベール空間 · 続きを見る »

分解可能測度

数学において分解可能測度(ぶんかいかのうそくど、)とは、の直和であるような測度のことを言う。可算個の測度の直和であるような の一般化である。ラドン=ニコディムの定理のように、σ-有限測度に対しては真となるが任意の測度に対しては真とならない定理が測度論にはいくつか存在する。そのような定理のいくつかは、より一般の分解可能測度の類に対しても真となる。しかし、実践上現れる分解可能測度のほとんどは σ-有限であるため、このような一般化はあまり用いられない。.

新しい!!: フビニの定理と分解可能測度 · 続きを見る »

カラテオドリの拡張定理

数学の測度論におけるカラテオドリの拡張定理(カラテオドリのかくちょうていり、Carathéodory's extension theorem)は「与えられた集合 Ω の部分集合からなる集合環 R 上定義される任意の は、R により生成される σ-代数上の測度へと一意に拡張出来る」ということを述べた定理である。この定理の帰結として、実数からなる区間すべてを含む空間上で定義された任意の測度は、実数全体の成す集合 R 上のボレル集合族上の測度へと拡張することができる。これは測度論における非常に強力な結果であり、例えば、ルベーグ測度の存在の証明にも使用された。.

新しい!!: フビニの定理とカラテオドリの拡張定理 · 続きを見る »

カヴァリエリの原理

ヴァリエリの原理(カヴァリエリのげんり、Cavalieri's principle)は、面積や体積に関する一般的な法則のひとつである。カヴァリエリの定理、不可分の方法 (method of indivisibles) ともいう。例えば体積についてのカヴァリエリの原理とは、大まかには「切り口の面積が常に等しい2つの立体の体積は等しい」という主張である。カヴァリエリは17世紀のイタリアの数学者。.

新しい!!: フビニの定理とカヴァリエリの原理 · 続きを見る »

カジミェシュ・クラトフスキ

ミェシュ・クラトフスキ(Kazimierz Kuratowski, 1896年2月2日 - 1980年6月18日)はポーランドの数学者。.

新しい!!: フビニの定理とカジミェシュ・クラトフスキ · 続きを見る »

スタニスワフ・ウラム

タニスワフ・マルチン・ウラム(Stanisław Marcin Ulam, 1909年4月3日 - 1984年5月13日)は、アメリカ合衆国の数学者。ポーランド出身。数学の多くの分野に貢献しており、また水爆の機構の発案者としてその名を残している。.

新しい!!: フビニの定理とスタニスワフ・ウラム · 続きを見る »

公理的集合論

公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。.

新しい!!: フビニの定理と公理的集合論 · 続きを見る »

積測度

数学において、ある二つの可測空間とその上の測度が与えられたとき、その空間に対する直積可測空間(ちょくせきかそくくうかん、)と積測度(せきそくど、)を導出することが出来る。概念的に言うと、これは集合のデカルト積や二つの位相空間の直積位相を定義することと似ている。しかし積測度に関しては多くの自然な選び方が存在する。 (X_1, \Sigma_1) と (X_2, \Sigma_2) を二つの可測空間とする。すなわち \Sigma_1 と \Sigma_2 はそれぞれ X_1 と X_2 の上のσ-代数である。また \mu_1 と \mu_2 をそれらの空間上の測度とする。\Sigma_1 \otimes \Sigma_2 によって、B_1 \times B_2 の形の部分集合によって生成されるデカルト積 X_1 \times X_2 上のσ-代数を表す。ただし B_1 \in \Sigma_1 および B_2 \in \Sigma_2 である。このような \Sigma_1 \otimes \Sigma_2 はその直積空間上の「テンソル積σ-代数」(tensor-product σ-algebra)と呼ばれる。 積測度 \mu_1 \times \mu_2 は、可測空間 (X_1 \times X_2, \Sigma_1 \otimes \Sigma_2) 上の測度で、すべての B_1 \in \Sigma_1,\ B_2 \in \Sigma_2 に対して次の性質を満たすものとして定義される。 無限大となることもあるような測度の掛け算において、その積がゼロであるとは任意の因子がゼロであることとして定義する。 実際、空間が \sigma-有限であるとき、積測度は一意的に定義され、すべての可測集合 E に対して が成立する。ただし Ex.

新しい!!: フビニの定理と積測度 · 続きを見る »

第二可算的空間

数学の位相空間論おける第二可算空間(だいにかさんくうかん、second-countable space)とは、第二可算公理を満たす位相空間のことである。空間が第二可算公理を満たすとは「その位相が可算な開基を持つ」ということを言う。つまり、位相空間 T が第二可算的であるとは、T の可算個の開集合からなる族 \mathcal.

新しい!!: フビニの定理と第二可算的空間 · 続きを見る »

絶対収束

数学において、級数が絶対収束(ぜったいしゅうそく、converge absolutely)するとは、その各項の絶対値を取って得られる級数の和が有限の値になるときにいう。きちんと述べれば、実または複素数の級数 は となるとき、絶対収束すると言う。 絶対収束が無限級数の研究において重要であるのは、それが有限和の場合に成立する(が必ずしも全ての収束級数が持つわけではない)性質を持つようにするためにきわめて強力な条件であるとともに、それ自身が一般的な内容を議論するのに(その強い制約条件にもかかわらず)十分広範な級数のクラスを定めるからである。.

新しい!!: フビニの定理と絶対収束 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: フビニの定理と絶対値 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

新しい!!: フビニの定理と集合論 · 続きを見る »

逐次積分

数学の微分積分学周辺分野における逐次積分(ちくじせきぶん、iterated integral; 累次積分、反復積分)または繰り返し積分 (repeated integral) とは、複数の変数を持つ函数に対して、そのいくつかの変数を任意定数と看做すことによって得られる複数の積分を繰り返し適用して得られる積分のことである。例えば二変数函数 f(x, y) に対して、y は定数(あるいは助変数)と看做して x に関する積分 ∫ f(x, y)dx を考えることができて、これは y の函数をあたえるから、さらに y に関して積分して、逐次積分 が得られる。逐次積分の概念を考えるに当たり一つ重要な点としては、これは多重積分 とは原則として異なる概念であるということが挙げられる。すなわち、一般にはこの二つは異なるのであるけれども、それでも十分緩やかな条件下でこれらが一致することを主張するフビニの定理が知られている。 括弧を省いて表記を簡素化する のような記法も慣習的によく用いられるが、これを ∫dy と ∫f(x)dx との積と混同してはならない。 逐次積分は、括弧などで指定された演算順序に従って計算していくことになるが、内側から順に逐次外側へ向かって計算するのが自然である。.

新しい!!: フビニの定理と逐次積分 · 続きを見る »

連続体仮説

連続体仮説(れんぞくたいかせつ、Continuum Hypothesis, CH)とは、可算濃度と連続体濃度の間には他の濃度が存在しないとする仮説。19世紀にゲオルク・カントールによって提唱された。現在の数学で用いられる標準的な枠組みのもとでは「連続体仮説は証明も反証もできない命題である」ということが明確に証明されている。.

新しい!!: フビニの定理と連続体仮説 · 続きを見る »

ZFCから独立な命題の一覧

本項では、ZFC集合論において決定不能であることが証明されている命題の一覧を掲げる。それらの命題は(ZFCが無矛盾であれば)ZFCの公理からは証明することも反証することもできない。以下では「ZFCが無矛盾であれば」などの但し書きは割愛する。.

新しい!!: フビニの定理とZFCから独立な命題の一覧 · 続きを見る »

測度論

測度論(そくどろん、measure theory )は、数学の実解析における一分野で、測度とそれに関連する概念(完全加法族、可測関数、積分等)を研究する。 ここで測度(そくど、measure )とは面積、体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。 よく知られているように積分は面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる。 また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、 確率論や統計学においても測度論は重要である。 たとえば「サイコロの目が偶数になる確率 」は目が 1,..., 6 になるという 6 つの事象の集合の中で、2, 4, 6 という 3 つ分の「大きさ」を持っている為、 測度の概念で記述できる。.

新しい!!: フビニの定理と測度論 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: フビニの定理と数学 · 続きを見る »

ここにリダイレクトされます:

フビニ-トネリの定理フビニ–トネリの定理フビニ・トネリの定理フビニ=トネリの定理

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »