ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

求電子剤

索引 求電子剤

求電子剤(きゅうでんしざい、electrophile)あるいは求電子試薬(—しやく)、求電子種(—しゅ)とは、異なる化学種の間で電子の授受をともないながら化学結合を生成する反応において、電子を受け取る側、奪う側の化学種を指す、有機化学などで使われる用語である。これに対し、電子を与える側の化学種は求核剤(nucleophile)と呼ばれる。 「electrophile」という呼称は「nucleophile」とともに、クリストファー・ケルク・インゴルドにより提唱された。かつて日本では「electrophile」の訳に親電子の語が当てられた為に親電子剤と呼ばれることもある。求電子剤を機構の説明で図示する際に、その英語名から E と略される。 求電子剤は、反応する対象となる求核剤の、電子密度の高い部位に対して攻撃を行う。有機反応の多くは電子対の授受であるため、その場合は求電子剤をルイス酸と見なすこともできる。求電子剤には、陽イオン(H+、NO2+ など)、分極により陽性を帯びた部位を持つ中性分子(HCl、各種ルイス酸、ハロゲン化アルキル、カルボン酸ハロゲン化物、カルボニル化合物 など)、求核種の接近により分極が誘起される分子(Cl2、Br2 など)、酸化剤(過酸 RC(.

62 関係: 反応速度塩化水素塩素付加反応化学反応化学平衡化学種化学結合マルコフニコフ則チーグラー・ナッタ触媒ハロゲン化アルキルヨウ化水素ヨウ素ラジカル (化学)ラジカル開始剤ワーグナー・メーヤワイン転位ボランフリーデル・クラフツ反応フッ化水素フェニル基ニトロ化合物分子軌道分極アルケンアルコールイオンエチレンオクテット則カルボン酸ハロゲン化物カルボニル基カルボカチオンカルベンクリストファー・ケルク・インゴルドクロロエタンシクロプロパンスルホン酸共鳴硫酸第17族元素相間移動触媒芳香族化合物過酸過酸化物遷移状態親電子置換反応触媒転位反応臭化水素臭素酢酸水銀(II)...酸化剤電子速度定数HOMO/LUMOHSAB則捕捉剤水素化ホウ素ナトリウム水素化ジイソブチルアルミニウム求核剤有機化学1,2-ジブロモエタン インデックスを展開 (12 もっと) »

反応速度

反応速度(はんのうそくど、reaction rate)とは化学反応の反応物あるいは生成物に関する各成分量の時間変化率を表す物理量。通常、反応速度を表現する式は濃度のべき関数として表現される。.

新しい!!: 求電子剤と反応速度 · 続きを見る »

塩化水素

塩化水素(えんかすいそ、英: hydrogen chloride)は塩素と水素から成るハロゲン化水素。化学式 HCl。常温常圧で無色透明、刺激臭のある気体。有毒。塩酸ガスとも呼ばれる。.

新しい!!: 求電子剤と塩化水素 · 続きを見る »

塩素

Chlore lewis 塩素(えんそ、chlorine)は原子番号17の元素。元素記号は Cl。原子量は 35.45。ハロゲン元素の一つ。 一般に「塩素」という場合は、塩素の単体である塩素分子(Cl2、二塩素、塩素ガス)を示すことが多い。ここでも合わせて述べる。塩素分子は常温常圧では特有の臭いを持つ黄緑色の気体で、腐食性と強い毒を持つ。.

新しい!!: 求電子剤と塩素 · 続きを見る »

付加反応

チレンへの塩素の付加 付加反応(ふかはんのう)とは多重結合が解裂し、それぞれの端が別の原子団と新たな単結合を生成する反応である。 大きく分けて、アルケンのブロモ化を代表とする求電子付加反応(AdE)と、カルボニルとグリニャール試薬との反応を代表とする求核付加反応(AdN)に区分されるが、この他に非極性付加反応のラジカル付加がある。 炭素化合物では三重結合で最も起きやすく、二重結合がそれに次ぐ。これは三重結合の結合エンタルピーが小さいためである。 付加反応の生成物は 付加体 と呼ばれる。.

新しい!!: 求電子剤と付加反応 · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

新しい!!: 求電子剤と化学反応 · 続きを見る »

化学平衡

化学平衡(かがくへいこう、chemical equilibrium)とは可逆反応において、順方向の反応と逆方向との反応速度が釣り合って反応物と生成物の組成比が巨視的に変化しないことをいう。.

新しい!!: 求電子剤と化学平衡 · 続きを見る »

化学種

化学種(かがくしゅ、chemical species)は物質がもつ固有の物理・化学的性質によって他の物質と識別される物質の種類のこと。化合物と違って、イオン、原子、原子団(基とほぼ同じ)、元素、化合物を一括して言う言葉である。.

新しい!!: 求電子剤と化学種 · 続きを見る »

化学結合

化学結合(かがくけつごう)は化学物質を構成する複数の原子を結びつけている結合である。化学結合は分子内にある原子同士をつなぎ合わせる分子内結合と分子と別の分子とをつなぎ合わせる分子間結合とに大別でき、分子間結合を作る力を分子間力という。なお、金属結晶は通常の意味での「分子」とは言い難いが、金属結晶を構成する結合(金属結合)を説明するバンド理論では、分子内結合における原子の数を無限大に飛ばした極限を取ることで、金属結合の概念を定式化している。 分子内結合、分子間結合、金属結合のいずれにおいても、化学結合を作る力は原子の中で正の電荷を持つ原子核が、別の原子の中で負の電荷を持つ電子を電磁気力によって引きつける事によって実現されている。物理学では4種類の力が知られているが、電磁気力以外の3つの力は電磁気力よりも遥かに小さい為、化学結合を作る主要因にはなっていない。したがって化学結合の後述する細かな分類、例えば共有結合やイオン結合はどのような状態の原子にどのような形で電磁気力が働くかによる分類である。 化学結合の定式化には、複数の原子がある場合において電子の軌道を決定する必要があり、そのためには量子力学が必須となる。しかし多くの簡単な化合物や多くのイオンにおいて、化学結合に関する定性的な説明や簡単な定量的見積もりを行う分には、量子力学で得られた知見に価電子や酸化数といった分子の構造と構成を使って古典力学的考察を加える事でも可能である。 それに対し複雑な化合物、例えば金属複合体では価電子理論は破綻し、その振る舞いの多くは量子力学を基本とした理解が必要となる。これに関してはライナス・ポーリングの著書、The Nature of the Chemical Bondで詳しく述べられている。.

新しい!!: 求電子剤と化学結合 · 続きを見る »

マルコフニコフ則

マルコフニコフ則(マルコフニコフそく)はロシアのウラジミール・マルコフニコフ(Vladimir Vasilevich Markovnikov (Markownikoff))が1869年に発表した二重結合を持つ炭化水素の付加反応に関する経験則。.

新しい!!: 求電子剤とマルコフニコフ則 · 続きを見る »

チーグラー・ナッタ触媒

チーグラー・ナッタ触媒(—しょくばい、Ziegler-Natta catalyst)は、オレフィンの重合に用いる触媒。ツィーグラー・ナッタ触媒とも言う。 通常、四塩化チタンまたは三塩化チタンをトリエチルアルミニウムやメチルアルミノキサン(en:Methylaluminoxane) (n, MAO) のような有機アルミニウム化合物と混合し調製する。エチレンやプロピレン、ブタジエン、イソプレン、アセチレン等の重合や、エチレン-プロピレンの共重合に用いられる。 1953年、ドイツのマックス・プランク研究所において、科学者カール・ツィーグラー(Karl Ziegler)がそれまで高圧が必要だったエチレンの重合反応の研究中に四塩化チタンを用いて発見した。この触媒によって、エチレンの常圧重合が可能になった。その後、イタリアのミラノ工科大学のジュリオ・ナッタ(Giulio Natta)が、三塩化チタンを用いることによって、それまで重合が困難と考えられていたプロピレンの重合に成功した。二人は、これらの業績により1963年、揃ってノーベル化学賞を受賞した(ただし、ツィーグラーがナッタの改良を軽視して、業績を全面的に自分に帰するよう求める発言を行ったため、二人の関係は険悪であったと言われている)。 重合触媒として石油化学工業に多大な功績があったばかりでなく、その反応機構の研究からは有機金属化学が盛んになるきっかけを与えた。.

新しい!!: 求電子剤とチーグラー・ナッタ触媒 · 続きを見る »

ハロゲン化アルキル

ハロゲン化アルキル(—か—、alkyl halide)は一般式 R-X (R はアルキル基、X はハロゲン原子)で表される有機化合物群。アルカンが持つ水素が1個ハロゲンに置き換わった化合物。有機合成において、アルキル基を導入するための試剤として用いられる。アルキルハライド、ハロアルカン (haloalkane) などと呼ばれることもあるが、ハロアルカンはアルカンの2個~全部の水素がハロゲンに置き換わった場合も含む総称である。例えば、メタンCH4の4個の水素のうち1~4個がフッ素に置き換わったCH3F、CH2F2、CHF3、CF4はハロアルカンである(置き換わるハロゲンは同種である必要はなく、CH2ClFなども含む)。ハロゲン原子が直接接続している炭素原子の位置をα位、α位に隣接している炭素の位置をβ位という。また、α位に接続するアルキル基の数によって、それぞれ一級ハロゲン化アルキル、二級ハロゲン化アルキル、三級ハロゲン化アルキルと呼ばれる。 ハロゲン原子の種類により、フッ化アルキル (X.

新しい!!: 求電子剤とハロゲン化アルキル · 続きを見る »

ヨウ化水素

ヨウ化水素(ヨウかすいそ)とは、強酸性の無機化合物の一種。ハロゲン化水素のうち、ヨウ素と水素からなる化合物である。強い刺激臭を持つ無色の気体。毒物及び劇物取締法に定める劇物に該当する。.

新しい!!: 求電子剤とヨウ化水素 · 続きを見る »

ヨウ素

ヨウ素(ヨウそ、沃素、iodine)は、原子番号 53、原子量 126.9 の元素である。元素記号は I。あるいは分子式が I2 と表される二原子分子であるヨウ素の単体の呼称。 ハロゲン元素の一つ。ヨード(沃度)ともいう。分子量は253.8。融点は113.6 ℃で、常温、常圧では固体であるが、昇華性がある。固体の結晶系は紫黒色の斜方晶系で、反応性は塩素、臭素より小さい。水にはあまり溶けないが、ヨウ化カリウム水溶液にはよく溶ける。これは下式のように、ヨウ化物イオンとの反応が起こることによる。 単体のヨウ素は、毒物及び劇物取締法により医薬用外劇物に指定されている。.

新しい!!: 求電子剤とヨウ素 · 続きを見る »

ラジカル (化学)

ラジカル (radical) は、不対電子をもつ原子や分子、あるいはイオンのことを指す。フリーラジカルまたは遊離基(ゆうりき)とも呼ばれる。 また最近の傾向としては、C2, C3, CH2 など、不対電子を持たないがいわゆるオクテット則を満たさず、活性で短寿命の中間化学種一般の総称として「ラジカル(フリーラジカル)」と使う場合もある。 通常、原子や分子の軌道電子は2つずつ対になって存在し、安定な物質やイオンを形成する。ここに熱や光などの形でエネルギーが加えられると、電子が励起されて移動したり、あるいは化学結合が二者に均一に解裂(ホモリティック解裂)することによって不対電子ができ、ラジカルが発生する。 ラジカルは通常、反応性が高いために、生成するとすぐに他の原子や分子との間で酸化還元反応を起こし安定な分子やイオンとなる。ただし、1,1-ジフェニル-2-ピクリルヒドラジル (DPPH) など、特殊な構造を持つ分子は安定なラジカルを形成することが知られている。 多くのラジカルは電子対を作らない電子を持つため、磁性など電子スピンに由来する特有の性質を示す。このため、ラジカルは電子スピン共鳴による分析が可能である。さらに、結晶制御により分子間でスピンをうまく整列させ、極低温であるが強磁性が報告されたラジカルも存在する。1991年、木下らにより報告されたp-Nitrophenyl nitronylnitroxide (NPNN)が、最初の有機強磁性体の例である (Tc.

新しい!!: 求電子剤とラジカル (化学) · 続きを見る »

ラジカル開始剤

ラジカル開始剤(ラジカルかいしざい、radical initiator)とは、ラジカル反応を進めるために穏和な反応条件でラジカルを発生させる化合物。ラジカル開始剤は一般に結合エネルギーの小さな弱い結合を持つ。工業的には、高分子合成の一手法であるラジカル重合反応において重合開始剤として用いられる。下記のようにいくつかのタイプへ分類できる。.

新しい!!: 求電子剤とラジカル開始剤 · 続きを見る »

ワーグナー・メーヤワイン転位

ワーグナー・メーヤワイン転位(-てんい、Wagner-Meerwein rearrangement)とは、有機化学の反応のうち、カルボカチオンでの水素原子や炭化水素基の1,2-転位反応のことである。 カルボカチオン転位(carbocation rearrangement)とも呼ばれる。 ワーグナー・メーヤワイン転位は、カチオン中心の炭素にその隣接する炭素原子上の炭化水素基が1,2-転位して、隣接する炭素にカチオン中心が移動する反応である。 この転位は可逆反応であるため、転位の方向はカルボカチオンが安定となる方へ転位反応が進行していくことになる。 カルボカチオンの安定性は第1級、第2級、第3級の順に高くなるため、第1級→第2級→第3級というように転位反応が進行していく。 また転位する炭化水素基は電子供与性が高いものほど転位しやすい。 π電子系であるフェニル基やビニル基がもっとも転位しやすく、第3級アルキル基、第2級アルキル基、第1級アルキル基、水素の順に転位しにくくなる。 この転位の例は、SN1反応により炭素鎖から脱離基が脱離してカルボカチオンが生成したときに見られる。 例えば、3-メチル-2-ブタノールに対して塩化水素を反応させてSN1反応を行なった場合、生成物は本来ならもともとヒドロキシル基があった2位の炭素がクロロ化された 2-クロロ-3-メチルブタンとなるはずが、実際は3位の炭素がクロロ化された 2-クロロ-2-メチルブタンとなる。(注:IUPAC命名法では塩素原子の位置が変わることによって位置番号の付け方が変わるため、もともと3位であった炭素が2位に変わっている。) この反応機構は以下のようになっている。 まず、プロトンがヒドロキシル基に付加した後水分子が脱離して、まず初めに2位の炭素がカチオン中心となる。 これは第二級カルボカチオンである。 このカチオンにおいて、3位の炭素上の水素が2位へと転位して3位の炭素がカチオン中心となれば、これは第三級カルボカチオンとなり、より安定なカルボカチオンとなることができる。 そのため、この方向にワーグナー・メーヤワイン転位が進行する。 そして転位が起こった結果、生成するカルボカチオンに塩化物イオンが付加することで3位がクロロ化された生成物が得られる。 1899年にゲオルク・ワーグナー(Georg Egorovich Wagner)が、カンフェンヒドロクロリド(2-Chloro-2,3,3-trimethylbicycloheptane)からイソボルニルクロリド(2-Chloro-1,7,7-trimethylbicycloheptane)への転位反応としてこの反応を発見した。その後、1914年にが他の化合物でも同様の反応が広く起こることを示し、カルボカチオンを経由する機構を提示したのでこの2人の名が付けられている。.

新しい!!: 求電子剤とワーグナー・メーヤワイン転位 · 続きを見る »

ボラン

ボラン (borane) は、ホウ素の水素化合物(水素化ホウ素)の総称で、炭化水素のアルカンにちなみ命名された。狭義にはモノボラン (BH3) およびジボラン (B2H6) を指す。.

新しい!!: 求電子剤とボラン · 続きを見る »

フリーデル・クラフツ反応

フリーデル・クラフツ反応(—はんのう、Friedel–Crafts reaction)は芳香環に対してアルキル基またはアシル基が求電子置換する反応のこと。1877年にシャルル・フリーデルとジェームス・クラフツが発見したのでこのように呼ばれる。ハロゲン化アルキル又はハロゲン化アシルが触媒(金属ハロゲン化物、塩化アルミニウム等)存在下でカルボカチオンあるいはアシルカチオンとなり、芳香環上の水素に求電子置換する。 求電子置換反応であるが故に芳香環が電子求引性基を有していると反応が起きなくなる。また触媒と反応しうる物質、即ち塩基性物質を含んでいると反応が起きなくなる。.

新しい!!: 求電子剤とフリーデル・クラフツ反応 · 続きを見る »

フッ化水素

フッ化水素(フッかすいそ、弗化水素、)とは、水素とフッ素とからなる無機化合物で、分子式が HF と表される無色の気体または液体。水溶液はフッ化水素酸 と呼ばれ、フッ酸とも俗称される。毒物及び劇物取締法の医薬用外毒物に指定されている。.

新しい!!: 求電子剤とフッ化水素 · 続きを見る »

フェニル基

フェニル基 (phenyl group) またはフェニル環 (phenyl ring) は化学式 C6H5 で表されるベンゼンに似た原子団である。6つの炭素原子が平面をつくり、そのうち5つは水素と結合している。フェニル基は有機化学の分野で頻繁に登場する。.

新しい!!: 求電子剤とフェニル基 · 続きを見る »

ニトロ化合物

ニトロ化合物(ニトロかごうぶつ)とは R−NO2 構造を有する有機化合物である。特性基となっている1価の置換基 −NO2 は ニトロ基 と呼ばれる。単にニトロ化合物という場合は、Rが炭素置換基であるものをさす。広義には硝酸エステル (R'−ONO2) も含める場合がある(この場合の −ONO2 はニトロ基とは呼ばれない)。Rが窒素置換基の場合はニトラミンと呼ばれる (R'RN−NO2)。 また、ニトロ基 −NO2 を化合物に導入することをニトロ化と呼ぶ。生体内においても、一酸化窒素から生じる活性窒素種がタンパク質、脂質、核酸をニトロ化する事が知られている。その結果、ニトロ化された生体物質の機能が傷害されたり変化したりする。.

新しい!!: 求電子剤とニトロ化合物 · 続きを見る »

分子軌道

アセチレン (H–C≡C–H) の完全な分子軌道群。左欄は基底状態で占有されているMOを示し、最上部が最もエネルギーの低い軌道である。1部のMOで見られる白色と灰色の線はアセチレン分子の球棒モデルによる表示である。オービタル波動関数は赤色の領域で正、青色の領域で負である。右欄は基底状態では空のMOを示しているが、励起状態ではこれらの軌道は占有され得る。 ベンゼンの最低空軌道 分子軌道(ぶんしきどう、molecular orbital、略称MO)は分子中の各電子の空間分布を記述する一電子波動関数のことである。分子軌道法において中心的な役割を果たし、電子に対するシュレーディンガー方程式を、一電子近似を用いて解くことによって得られる。 1個の電子の位置ベクトル \boldsymbol の関数であり、 \phi_i(\boldsymbol) と表される。一般に複素数である。原子に対する原子軌道に対応するものである。 この関数は、特定の領域に電子を見い出す確率といった化学的、物理学的性質を計算するために使うことができる。「オービタル」(orbital)という用語は、「one-electron orbital wave function: 1電子オービタル(軌道〔orbit〕のような)波動関数」の略称として1932年にロバート・マリケンによって導入された。初歩レベルでは、分子軌道は関数が顕著な振幅を持つ空間の「領域」を描写するために使われる。分子軌道は大抵、分子のそれぞれの原子の原子軌道あるいは混成軌道や原子群の分子軌道を結合させて構築される。分子軌道はハートリー-フォック法や自己無撞着場(SCF)法を用いて定量的に計算することができる。.

新しい!!: 求電子剤と分子軌道 · 続きを見る »

分極

分極(ぶんきょく)とは、.

新しい!!: 求電子剤と分極 · 続きを見る »

アルケン

アルケン(、)は化学式 CnH2n (n≧2) で表される有機化合物で、C-C間の二重結合を1つ持つ。すなわち、不飽和炭化水素の一種。エチレン系炭化水素、オレフィン (olefin)、オレフィン系炭化水素とも呼ばれる。C-C二重結合を構成している2つπ結合1つとσ結合1つから成り立っており、このうちπ結合の結合エネルギーはC-H結合のものよりも小さく、付加反応が起こりやすい。例えばエテン(エチレン)と塩素の混合物に熱を与えると 1,2-ジクロロエタンが生成する。.

新しい!!: 求電子剤とアルケン · 続きを見る »

アルコール

アルコールの構造。炭素原子は他の炭素原子、または水素原子に結合する。 化学においてのアルコール(alcohol)とは、炭化水素の水素原子をヒドロキシ基 (-OH) で置き換えた物質の総称である。芳香環の水素原子を置換したものはフェノール類と呼ばれ、アルコールと区別される。 最初に「アルコール」として認識された物質はエタノール(酒精)である。この歴史的経緯により、一般的には単に「アルコール」と言えば、エタノールを指す。.

新しい!!: 求電子剤とアルコール · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

新しい!!: 求電子剤とイオン · 続きを見る »

エチレン

チレン(ethylene、IUPAC命名法では エテン (ethene) )は、分子式 C2H4、構造式 CH2.

新しい!!: 求電子剤とエチレン · 続きを見る »

オクテット則

テット則(-そく、Octet rule)は原子の最外殻電子の数が8個あると化合物やイオンが安定に存在するという経験則。オクテット説(-せつ)、八隅説(はちぐうせつ)ともいう。 第二周期の元素や第三周期のアルカリ金属、アルカリ土類金属までにしか適用できないが、多くの有機化合物に適用できる便利な規則である(→18電子則)。ただし、カルボカチオンや無機化合物を中心とする多くの例外も存在する。.

新しい!!: 求電子剤とオクテット則 · 続きを見る »

カルボン酸ハロゲン化物

ルボン酸ハロゲン化物(カルボンさんハロゲンかぶつ、carboxylic halide)とは、有機化合物の分類の一つで、示性式がR−COX(X.

新しい!!: 求電子剤とカルボン酸ハロゲン化物 · 続きを見る »

カルボニル基

ルボニル基(カルボニルき、carbonyl group)は有機化学における置換基のひとつで、−C(.

新しい!!: 求電子剤とカルボニル基 · 続きを見る »

カルボカチオン

平面構造の''tert''-ブチルカチオン カルボカチオン (carbocation) は炭素原子上に正電荷を持つカチオンのことである。電気的に中性な有機化合物の炭素原子からヒドリドイオンが脱離した形の3価の炭素のカチオンと、電気的に中性な有機化合物の炭素原子にプロトンが付加した形の5価のカチオンがある。 IUPAC命名法では、そのカルボカチオンにヒドリドイオンを付加した炭化水素の語尾を -ylium に変更して命名するか、そのカルボカチオンからプロトンを除去した炭化水素の語尾を -ium に変更して命名する。すなわち CH3+ は CH4 メタン (methane) の語尾を -ylium に変更してメチリウム (methylium)、CH2 メチレン (methylene) の語尾を -ium に変更してメチレニウム (methylenium) と命名する。CH5+ はメタンの語尾を -ium に変更してメタニウム (methanium) と命名する。 このIUPAC命名法に従うと従来3価のカルボカチオンに対してしばしば使用されてきたカルボニウムイオン (carbonium ion) は5価のカチオンと混同する可能性がある。そのため、3価のカルボカチオンについては2価の炭素化合物であるカルベン (carbene) にプロトンが付加した形であることを強調してカルベニウムイオン (carbenium ion) という語が特に使われることもある。.

新しい!!: 求電子剤とカルボカチオン · 続きを見る »

カルベン

ルベン (carbene) とは価電子を六個しか持たず、電荷を持たない、二配位の炭素のことである。或は、そのような炭素を持つ化学種の総称である。 同族元素の類縁体として、シリレン、ゲルミレンがある。また、配位飽和から二電子少ない化学種としては他にニトレンが知られている。カルベンを置換基として見た場合にはアルキリデン基などと呼ばれる。 最も単純な構造のカルベンであるメチレン (methylene、H2C) はジアゾメタンの分解により発生させることができる(メチレンの炭素は2価である。そのため、メチレンだけが無機物とする分類もある。また、methylaneと呼ぶこともある)。 形式上、カルベンを配位子としたものと見なせる金属錯体 (R2C.

新しい!!: 求電子剤とカルベン · 続きを見る »

クリストファー・ケルク・インゴルド

クリストファー・ケルク・インゴルド(sir Christopher Kelk Ingold 1893年10月28日-1970年12月8日)はイギリスのイギリス学派に属する化学者。王立協会フェロー。 1913年にサウサンプトンのHartley大学で研究を開始した。1930年ロバート・ロビンソンの後任としてリーズ大学よりロンドン大学の教授に就任し、ロビンソンによって開拓された有機電子論をさらに発展させ、メソメリズムとして完成させた。 主に有機化学において構造と反応機構との関連を中心に研究し、求核置換反応や脱離反応に関する業績も多い。 またR.S CahnならびにPrelog等とともに、立体化学で用いられるR/S体表示法の定義である'''CIP法'''('''Cahn Ingold Prelog convention''')を提唱した。1952年ロイヤル・メダル受賞。 Category:イギリスの化学者 Category:ロイヤル・メダル受賞者 Category:王立協会フェロー Category:サウサンプトン大学出身の人物 Category:ロンドン大学の教員 Category:リーズ大学の教員 Category:1893年生 Category:1970年没.

新しい!!: 求電子剤とクリストファー・ケルク・インゴルド · 続きを見る »

クロロエタン

タン (chloroethane) は、有機化合物の一種で、エタンの持つ水素がひとつ塩素に置き換わった構造(示性式 CH3CH2Cl)を持つハロゲン化アルキル。塩化エチル、またはモノクロロエタンとも呼ばれる。かつて、ガソリンに加えられていたテトラエチル鉛の原料として広く用いられていた。甘い香りを持つ無色の気体。毒物及び劇物取締法により劇物に指定されている。法律上の名称は「クロルエチル」。.

新しい!!: 求電子剤とクロロエタン · 続きを見る »

シクロプロパン

プロパン(cyclopropane)は、分子式 C3H6を持つシクロアルカン分子である。3つの炭素原子が互いにつながり環を形成し、それぞれの炭素原子が2つの水素原子と結合することで、D3h分子対称性を持つ。シクロプロパンおよびプロペンは同じ分子式を持つが異なる構造を持つ構造異性体である。 融点 −127℃、沸点 −33℃、CAS登録番号は 。常温で無色の気体で 4–6 気圧に加圧すると液化する。常温で2.7倍の体積の水に溶解し、エタノール、アセトンに可溶である。 シクロプロパンは吸引すると麻酔作用を示す。現代では、通常条件下でのその極めて高い反応性のためにその他の麻酔薬に取って代わられている。シクロプロパンガスが酸素と混合すると、爆発の危険性が高い。.

新しい!!: 求電子剤とシクロプロパン · 続きを見る »

スルホン酸

ルホン酸(スルホンさん、Sulfonic acid)はスルホ基 (別名、スルホン基、スルホン酸基) (-SO3H, sulfo group) が置換した化合物の総称である。一般的には炭素骨格にスルホ基が置換した有機化合物をさす。一方、スルホン酸の置換基 (R-) が炭素骨格を含まない無機のスルホン酸はハロゲンと置換した塩化スルホン酸(クロロ硫酸)、フルオロスルホン酸は存在するが、水素と置換した無置換の無機スルホン酸は存在しない(その他の硫黄のオキソ酸については硫黄を参照)。 スルホ基は硫酸と同様に強酸性を示し、その陰イオンは水と良く水和するので、染料や界面活性剤を始め多くの有機化合物に導入され利用されている。 スルホン酸化合物を合成するには、大別して.

新しい!!: 求電子剤とスルホン酸 · 続きを見る »

共鳴

共鳴(きょうめい、)とは、物理的な系がある特定の周期で働きかけを受けた場合に、その系がある特徴的な振る舞いを見せる現象をいう。特定の周期は対象とする系ごとに異なり、その逆数を固有振動数とよぶ。 物理現象としての共鳴・共振は、主に の訳語であり、物理学では「共鳴」、電気を始め工学的分野では「共振」ということが多い。 共鳴が知られることになった始原は音を伴う振動現象であると言われるが、現在では、理論式の上で等価・類似の現象も広く共鳴と呼ばれる(バネの振動・電気回路・核磁気共鳴など)。.

新しい!!: 求電子剤と共鳴 · 続きを見る »

硫酸

硫酸(りゅうさん、sulfuric acid)は、化学式 H2SO4 で示される無色、酸性の液体で硫黄のオキソ酸の一種である。古くは緑礬油(りょくばんゆ)とも呼ばれた。化学薬品として最も大量に生産されている。.

新しい!!: 求電子剤と硫酸 · 続きを見る »

第17族元素

17族元素(だいじゅうななぞくげんそ、halogèneアロジェーヌ、halogen ハロゲン)は周期表において第17族に属する元素の総称。フッ素・塩素・臭素・ヨウ素・アスタチン・テネシンがこれに分類される。ただしアスタチンは半減期の長いものでも数時間であるため、その化学的性質はヨウ素よりやや陽性が高いことがわかっている程度である。またテネシンは2009年にはじめて合成されており、わかっていることはさらに少ない。 フッ素、塩素、臭素、ヨウ素は性質がよく似ており、アルカリ金属あるいはアルカリ土類金属と典型的な塩を形成するので、これら元素からなる元素族をギリシャ語の 塩 alos と、作る gennao を合わせ「塩を作るもの」という意味の「halogen ハロゲン」と、18世紀フランスで命名された。これらの任意の元素を表すために化学式中ではしばしば X と表記される。任意のハロゲン単体を X2 と表す。.

新しい!!: 求電子剤と第17族元素 · 続きを見る »

相間移動触媒

間移動触媒 (そうかんいどうしょくばい、Phase Transfer Catalyst、略称 PTC) は、水に不溶の有機化合物と有機溶媒に不溶の試薬を反応させるために使用される少量の試薬のことである。 水にも有機溶媒にも可溶な長鎖アルキルアンモニウムカチオンを持つ塩(テトラブチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ベンジルジメチルオクタデシルアンモニウム塩など)、あるいはクラウンエーテルなどが使用される。 また、アルカロイドなどから誘導したキラルなアンモニウム塩を相間移動触媒とすることにより、不斉合成を行うことも検討されている。.

新しい!!: 求電子剤と相間移動触媒 · 続きを見る »

芳香族化合物

芳香族化合物(ほうこうぞくかごうぶつ、aromatic compounds)は、ベンゼンを代表とする環状不飽和有機化合物の一群。炭化水素のみで構成されたものを芳香族炭化水素 (aromatic hydrocarbon)、環構造に炭素以外の元素を含むものを複素芳香族化合物 (heteroaromatic compound) と呼ぶ。狭義には芳香族化合物は芳香族炭化水素と同義である。 19世紀ごろ知られていた芳香をもつ化合物の共通構造であったことから「芳香族」とよばれるようになった。したがって匂い(芳香)は芳香族の特性ではない。.

新しい!!: 求電子剤と芳香族化合物 · 続きを見る »

過酸

過酸(かさん、peroxy acid)は、オキソ酸のヒドロキシ基 (−OH) をヒドロペルオキシド基 (−O−OH) に置き換えた構造を持つ物質のことである。英語読みそのままでペルオキソ酸ともいう。金属粉など共雑物があると急速に分解し、場合によっては爆発するが、共雑物が少ない状態で過酸を内面が滑らかな容器で保存する場合は比較的安定である。あるいは塩として単離できるものもある。.

新しい!!: 求電子剤と過酸 · 続きを見る »

過酸化物

過酸化物(かさんかぶつ、peroxide)は、有機化合物では官能基としてペルオキシド構造 (-O-O-) または過カルボン酸構造(-C(.

新しい!!: 求電子剤と過酸化物 · 続きを見る »

遷移状態

遷移状態(せんいじょうたい、英語:transition state)とは、化学反応の過程で原系から生成系に変換するときに通る最もエネルギーの高い状態のことである。 例えば、2つの分子の衝突によって反応が開始するとき、衝突によって力学的エネルギーが分子内部のエネルギーに変換され、2つの分子の構造は元の構造とは異ったゆがんだ構造となり、元の構造のときよりもエネルギーが高い。このような構造の内、最もエネルギーの高い状態を遷移状態と呼び、その周辺の状態を活性錯体(または活性複合体、活性錯合体)と呼ぶ。 遷移状態は、一般の反応中間体のように直接観測することはできない。しかしフェムト秒単位での赤外分光法により、遷移状態にごく近い反応中間体を捉えることが可能になっており、遷移状態は一般には元の結合が残る一方で新たな結合が形成されつつある状態であると考えられている。 遷移状態の概念は反応速度論において非常に重要である。原系と遷移状態とのエネルギー差が反応の活性化エネルギーに相当し、遷移状態のエネルギーが低い方が活性化エネルギーを獲得する分子の数が増して反応が進みやすくなる。遷移状態の概念は1935年頃ヘンリー・アイリングやマイケル・ポランニーらによって「遷移状態理論」として導入され、アイリングの「絶対反応速度論」などとして発展した。(記事 反応速度論に詳しい) 酵素による触媒作用の1つの要因として、遷移状態が安定化される(すなわち遷移状態のエネルギーが低下する)ことにより活性化エネルギーが減少する効果がある。これを応用して、目的とする反応の遷移状態に類似した化合物を用いて抗体酵素を得る研究がされている。.

新しい!!: 求電子剤と遷移状態 · 続きを見る »

親電子置換反応

親電子置換反応(しんでんしちかんはんのう)とはカチオン分子種が置換する反応のことをいう。ベンゼン核上π電子に対してカチオン種が置換する。 通常カチオン種が安定に存在する強酸性条件化で反応が進行し、π電子とカチオン種との反応が律速段階となる。 代表的な反応としてニトロ化、ブロモ化(ハロゲン化)、スルホン化反応が挙げられる。前二者はin situで生成するカチオン種NO2+、Br+が反応化学種であることが速度論的に検証されている。例外として、スルフォン化の反応種は同じく速度論的に検証した結果SO3であると考えられている。これは、三つも酸素化された硫黄原子がI効果によりカチオン並みの親電子性を示すためである。 置換する位置は、π電子密度と相関があると考えられており、置換基効果によりオルト-パラ配向性ないしはメタ配向性を示す。多重置換のベンゼン核の場合も、ハメット則の相加性により異性体比率の傾向を予測できることが多い。.

新しい!!: 求電子剤と親電子置換反応 · 続きを見る »

触媒

触媒(しょくばい)とは、特定の化学反応の反応速度を速める物質で、自身は反応の前後で変化しないものをいう。また、反応によって消費されても、反応の完了と同時に再生し、変化していないように見えるものも触媒とされる。「触媒」という用語は明治の化学者が英語の catalyser、ドイツ語の Katalysator を翻訳したものである。今日では、触媒は英語では catalyst、触媒の作用を catalysis という。 今日では反応の種類に応じて多くの種類の触媒が開発されている。特に化学工業や有機化学では欠くことができない。また、生物にとっては酵素が重要な触媒としてはたらいている。.

新しい!!: 求電子剤と触媒 · 続きを見る »

転位反応

転位反応(てんいはんのう、英語:rearrangement reaction)とは、化合物を構成する原子または原子団(基)が結合位置を変え、分子構造の骨格変化を生じる化学反応の総称である。一方、原子または原子団(基)が骨格に変化を与えずに結合位置を変える化学反応(メトキシ基やアセチル基の分子内転移など)を転移反応とよぶ。 反応形式別に、自己の分子骨格内で基が移動する分子内転位(ぶんしないてんい、intramolecular rearrangement)、基が一度遊離して異なる分子にも移動しうるものを分子間転位(ぶんしかんてんい、intermolecular rearrangement)と呼ぶ。 また反応機構別に求核転位(求核反応)、求電子転位(求電子反応)、シグマトロピー転位(シグマトロピー反応)、ラジカル転位(ラジカル反応)と呼び分けられる。 異性化の多くはプロトン(水素イオン)の転位を反応機構とし、生体内では酵素(EC.5群に属する異性化酵素)によって頻繁に転位反応が起こされている(注:EC.2群に属する転移酵素は分子内でなく分子間で原子団を移すものである)。.

新しい!!: 求電子剤と転位反応 · 続きを見る »

臭化水素

臭化水素(しゅうかすいそ、Hydrogen bromide)とはハロゲン化水素のひとつで、水素と臭素の化合物。化学式は HBr。標準状態では無色の刺激臭を持つ気体だが、液化させることもできる。水溶液は強酸の臭化水素酸である。臭化水素酸に脱水剤を加えると臭化水素を遊離させることができる。毒物及び劇物取締法に定める劇物に該当する。法律上の名称はブロム水素。.

新しい!!: 求電子剤と臭化水素 · 続きを見る »

臭素

臭素(しゅうそ、bromine)は、原子番号 35、原子量 79.9 の元素である。元素記号は Br。ハロゲン元素の一つ。 単体(Br2、二臭素)は常温、常圧で液体(赤褐色)である。分子量は 159.8。融点 -7.3 ℃、沸点 58.8 ℃。反応性は塩素より弱い。刺激臭を持ち、猛毒である。海水中にも微量存在する。.

新しい!!: 求電子剤と臭素 · 続きを見る »

酢酸水銀(II)

酢酸水銀(II)(さくさんすいぎん(II)、Mercury(II) acetate)は、化学式がHg(O2CCH3)2の化合物である。通常は略してHg(OAc)2と書かれる。不飽和有機化合物から有機水銀化合物を合成する試薬として用いられる。 芳香族炭化水素はHg(OAc)2によって“水銀化”(mercuration)を受ける。水銀上に残った酢酸基は塩化物によって除去することができる。 Hg2+中心はアルケンに付加し、水酸化物とアルコキシドの付加を誘導する。例えば、メタノール中でアクリル酸メチルを酢酸水銀(II)で処理するとα-水銀エステルを与える。 二価水銀は硫黄配位子としての相性が非常に良く、Hg(OAc)2はチオールの保護基であるアセトアミドメチル基の除去試薬として使うことができる。また、Hg(OAc)2はチオカーボネートエステルからジチオカーボネートに変換する一般的な試薬である。.

新しい!!: 求電子剤と酢酸水銀(II) · 続きを見る »

酸(さん、acid)は化学において、塩基と対になってはたらく物質のこと。酸の一般的な使用例としては、酢酸(酢に3〜5%程度含有)、硫酸(自動車のバッテリーの電解液に使用)、酒石酸(ベーキングに使用する)などがある。これら三つの例が示すように、酸は溶液、液体、固体であることができる。さらに塩化水素などのように、気体の状態でも酸であることができる。 一般に、プロトン (H+) を与える、または電子対を受け取る化学種。化学の歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの酸の定義が存在する。 酸としてはたらく性質を酸性(さんせい)という。一般に酸の強さは酸性度定数 Ka またはその負の常用対数 によって定量的に表される。 酸や塩基の定義は相対的な概念であるため、ある系で酸である物質が、別の系では塩基としてはたらくことも珍しくはない。例えば水は、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用するが、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞う。 酸解離定数の大きい酸を強酸、小さい酸を弱酸と呼ぶ。さらに、100%硫酸より酸性の強い酸性媒体のことを、特に超酸(超強酸)と呼ぶことがある。 「—酸」と呼ばれる化合物には、酸味を呈し、その水溶液のpHは7より小さいものが多い。.

新しい!!: 求電子剤と酸 · 続きを見る »

酸化剤

酸化剤のハザードシンボル 酸化とは、ある物質が酸と化合する、水素を放出するなどの化学反応である。酸化剤(さんかざい、Oxidizing agent、oxidant、oxidizer、oxidiser)は、酸化過程における酸の供給源になる物質である。主な酸化剤は酸素であり、一般的な酸化剤は酸素を含む。 酸化反応に伴い熱やエネルギーが発生し、燃焼や爆発は、急激な酸化現象である。酸化剤は燃料や爆薬が燃焼する際に加えられて、酸素を供給する役割を果たす。一般に用いられる酸化剤としては空気,酸素,オゾン,硝酸,ハロゲン (塩素,臭素,ヨウ素) などがある。.

新しい!!: 求電子剤と酸化剤 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: 求電子剤と電子 · 続きを見る »

速度定数

速度定数(そくどていすう)は化学反応において生成物または反応物が増減する速さを表す量である。 反応速度に関する全般的な理論については反応速度論を、定式化の詳細は反応速度を参照のこと。.

新しい!!: 求電子剤と速度定数 · 続きを見る »

HOMO/LUMO

HOMO(ホモ、Highest Occupied Molecular Orbital)または最高被占軌道は電子に占有されている最もエネルギーの高い分子軌道で、LUMO(ルモ、Lowest Unoccupied Molecular Orbital)または最低空軌道は電子に占有されていない最もエネルギーの低い分子軌道である。合わせてフロンティア軌道と呼ばれることもある。HOMO と LUMO の間のエネルギー差は HOMO-LUMO エネルギーギャップと呼ばれる。 基本的に有機半導体においては、HOMO準位と真空準位のエネルギー差がイオン化エネルギー、LUMO準位と真空準位のエネルギー差が電子親和力となる。 有機半導体における「HOMOレベル」の対応関係は、無機半導体または量子ドットにおける「価電子バンド」の関係と同じである。伝導体と LUMO レベルとの間にも似た関係がある。.

新しい!!: 求電子剤とHOMO/LUMO · 続きを見る »

HSAB則

HSAB則(エイチエスエービーそく)は、酸および塩基の相性を、硬いおよび軟らかいという表現を使って分類したものである。HSABは Hard and Soft Acids and Bases の略である。.

新しい!!: 求電子剤とHSAB則 · 続きを見る »

捕捉剤

捕捉剤(ほそくざい、scavenger)とは連鎖反応や分解を停止させる目的で添加する化学物質である。例えば、ラジカル捕捉剤(ラジカルほそくざい、redical scavenger)や酸素捕捉剤(さんそほそくざい、oxgen scavenger)のように捕捉する化学種とともに言い表される。 捕捉剤を貯蔵目的に応用したものは安定剤(あんていざい、stabilizer)、防止剤(ぼうしざい)や保存剤(ほぞんざい)と称される場合もある。.

新しい!!: 求電子剤と捕捉剤 · 続きを見る »

水素化ホウ素ナトリウム

水素化ホウ素ナトリウム(すいそかホウそナトリウム、sodium borohydrideもしくはsodium tetrahydroborate)は 化学式を NaBH4 で表される無機化合物で、ケトンやアルデヒドなどを始めとするさまざまな有機化合物の還元反応に用いられる代表的な還元剤のひとつである。ハーバート・ブラウンによって初めて合成され、偶然にその還元力が見出された。.

新しい!!: 求電子剤と水素化ホウ素ナトリウム · 続きを見る »

水素化ジイソブチルアルミニウム

水素化ジイソブチルアルミニウム(すいそかジイソブチルアルミニウム、diisobutylaluminium hydride)は有機合成において汎用される還元剤である。DIBAL, DIBAH, DIBAL-H などと略される。化学式は 2AlH、もしくはイソブチル基を iBu と略記し iBu2AlH と表される。もともとはアルケンを重合させる際の共触媒として開発された化合物である。.

新しい!!: 求電子剤と水素化ジイソブチルアルミニウム · 続きを見る »

求核剤

求核剤(きゅうかくざい、nucleophile)とは、電子密度が低い原子(主に炭素)へ反応し、多くの場合結合を作る化学種のことである。広義では、求電子剤と反応する化学種を求核剤と見なす。求核剤が関与する反応はその反応様式により求核置換反応あるいは求核付加反応などと呼称される。求核剤は、反応機構を図示する際に英語名の頭文字をとり、しばしばNuと略記される。 求核剤として反応性の高い化学種のほとんどは孤立電子対を持つ。アニオンであることも多い。例として、各種カルバニオン、アミンまたはその共役塩基(アミド)、アルコールまたはその共役塩基(アルコキシド)、ハロゲン化物イオンなど、多数が挙げられる。 一方、求核剤が攻撃対象とする炭素原子(反応中心炭素)の多くは、電気陰性度が高い原子(酸素、ハロゲンなど)に隣接するなどの理由によりその電子密度が低下している。例として、カルボニル基、ハロゲン化アルキル、シアノ基 などの炭素原子が挙げられる。これらは、後述する有機金属試薬を求核剤として作用させると、反応して炭素-炭素結合を作る。カルボニル基を攻撃する求核剤をハード求核剤、飽和した炭素を攻撃するものをソフト求核剤という。 求核的反応において孤立電子対の授受に着目すると、求核剤はルイス塩基として、反応中心炭素はルイス酸と見なすことができる。 求核的反応は、溶媒効果、隣接基効果、あるいは立体効果(立体障害)などの影響を受けることがある。溶媒効果は求核種の反応性に影響を与える。隣接基効果や立体効果は、反応速度や、生成物の選択性に影響する。また、求核的反応の反応性を評価、予測する経験則として、HSAB則、ハメット則が知られる。有機電子論の項目も参照されたい。 グリニャール試薬や有機リチウム化合物を代表とする各種有機金属試薬は、多様な基質に対し高い反応性を示すことから、有機合成法上、炭素-炭素結合を得たいときに用いられる重要な求核剤である。特に立体特異的な求核置換反応(SN2反応)や求核付加反応は選択的立体制御を可能にすることから不斉合成において多用される。.

新しい!!: 求電子剤と求核剤 · 続きを見る »

有機化学

有機化学(ゆうきかがく、英語:organic chemistry)は、有機化合物の製法、構造、用途、性質についての研究をする化学の部門である。 構造有機化学、反応有機化学(有機反応論)、合成有機化学、生物有機化学などの分野がある。 炭素化合物の多くは有機化合物である。また、生体を構成するタンパク質や核酸、糖、脂質といった化合物はすべて炭素化合物である。ケイ素はいくぶん似た性質を持つが、炭素に比べると Si−Si 結合やSi.

新しい!!: 求電子剤と有機化学 · 続きを見る »

1,2-ジブロモエタン

1,2-ジブロモエタンは分子式 C2H4Br2、構造式 CH2Br−CH2Br で表される有機化合物である。藻や昆布などにより少量が合成されるため海にごく微量が存在しているが、大半は人工的に合成されている。無色の液体で甘い臭いがする。.

新しい!!: 求電子剤と1,2-ジブロモエタン · 続きを見る »

ここにリダイレクトされます:

求電子体求電子攻撃求電子性求電子試薬

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »