ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

カルベン

索引 カルベン

ルベン (carbene) とは価電子を六個しか持たず、電荷を持たない、二配位の炭素のことである。或は、そのような炭素を持つ化学種の総称である。 同族元素の類縁体として、シリレン、ゲルミレンがある。また、配位飽和から二電子少ない化学種としては他にニトレンが知られている。カルベンを置換基として見た場合にはアルキリデン基などと呼ばれる。 最も単純な構造のカルベンであるメチレン (methylene、H2C) はジアゾメタンの分解により発生させることができる(メチレンの炭素は2価である。そのため、メチレンだけが無機物とする分類もある。また、methylaneと呼ぶこともある)。 形式上、カルベンを配位子としたものと見なせる金属錯体 (R2C.

21 関係: 不対電子価電子化学種メタンライマー・チーマン反応イミダゾールウルフ転位エチレンカルバニオンカルボカチオンカルベン錯体グラブス触媒シモンズ・スミス反応シクロプロパンジアゾ化合物ジアゾメタンスピン角運動量炭素配位子配位結合

化学において、基(き、group、radical)は、その指し示すものは原子の集合体であるが、具体的には複数の異なる概念に対応付けられているため、どの概念を指すものかは文脈に依存して判断される。 分子中に任意の境界を設定すると、原子が相互に共有結合で連結された部分構造を定義することができる。これは、基(または原子団)と呼ばれ、個々の原子団は「~基」(「メチル基」など)と命名される。 「基」という語は、上に述べた原子団を指す場合と、遊離基(またはラジカル)を意味する場合がある。後者の用語法は、日本語でかつて遊離基の個別名称を原子団同様に「~基」(「メチル基」など)としていたことに由来するが、現在ではほとんどの場合「ラジカル」、「遊離基」と呼ぶ。原語における経緯についてはラジカルの項に詳しい。以上、語義の変遷は、おおかた右図のようにまとめられる。 以下この記事では、原子団たる基(group)について述べる。.

新しい!!: カルベンと基 · 続きを見る »

不対電子

一酸化窒素のN原子上には1つの不対電子がある。 不対電子(ふついでんし、unpaired electron)とは、分子や原子の最外殻軌道に位置する対になっておらず、電子対を作っていない電子のこと。共有結合を作る共有電子対や非共有電子対に比べ、化学的に不安定であり、反応性が高い。有機化学においては、不対電子を持つ、寿命の短いラジカルが反応経路を説明するのに重要な役割を果たしている。 電子は量子数によって決められる電子軌道を運動している。 s軌道やp軌道は、原子価を満たすようにsp3、sp2、spなどの混成軌道を形成するので、不対電子が現れることは少ない。これらの軌道ではラジカルは二量化し、電子が非局在化して安定化する。対照的に、d軌道やf軌道において、不対電子はよく見られる。これは、1つの電子軌道に入ることができる電子の数が多く、結合が弱くなるためである。またこれらの軌道においては、が比較的小さく、二量体にはなりにくい。 たとえば原子番号8の酸素は8個の電子を持つ。1s、2s軌道に各2個、2p軌道には4個の電子が配置される。2p軌道には1個あるいはスピンの向きが反対の2個の電子を入れることのできる軌道が3組あるので、酸素原子の最外殻には1組(2s軌道の2個を除いて)の対になった電子と、対になっていない2個の電子が存在することになる。 酸素分子は酸素原子2個からなるが、酸素分子の分子軌道では、2p軌道の計8個の電子は、もともと対になっている4個(2組)と、共有され対になった2個と、対になっていない2個という配置になる。 また一酸化窒素も不対電子をもつ物質の一つである。 対になっていない電子があることが磁性の特性をきめる。.

新しい!!: カルベンと不対電子 · 続きを見る »

価電子

価電子(かでんし、valence electron)とは、原子内の最外殻の電子殻をまわっている電子のことである。原子価電子(げんしかでんし)ともいう。ただし、最外殻電子がちょうどその電子殻の最大収容数の場合、または最外殻電子が8個の場合、価電子の数は0とする。 原子が化合物や結晶等を構成する際に、それらの化学結合や物性は、その原子内の核外電子が深く関わる。原子内の電子軌道を回る電子には、化学結合や物性に深く関わるものと、ほとんど関係しないものがある。化学結合や物性に関わる電子は、原子内の最外殻など外側を回っている。これらが価電子と言われる。逆に、原子核に近い軌道にある電子(内殻電子)は、通常の物性や化学結合に寄与することはほとんどない(が、例外も存在する)。 固体の絶縁体や半導体における価電子帯を占める電子を指すこともある。固体の金属においては、伝導電子(自由電子)に相当する。 典型元素の価電子は、その元素より原子番号の小さい最初の希ガス原子の核外電子の軌道より外側の軌道を回るものがなる。ただし、典型元素でも、ガリウムの3d軌道のように、比較的浅い内殻電子は、価電子的な振る舞いをし物性や化学結合に寄与する場合がある。例えば、窒化ガリウムでは、化合物の構成に関与している。また、遷移元素では、価電子は最外殻電子を意味していないため、特定の価電子を持っていないと言える。特にf電子をもつ元素では、価電子の定義は必ずしもこのようにはならない場合が少なくない。.

新しい!!: カルベンと価電子 · 続きを見る »

化学種

化学種(かがくしゅ、chemical species)は物質がもつ固有の物理・化学的性質によって他の物質と識別される物質の種類のこと。化合物と違って、イオン、原子、原子団(基とほぼ同じ)、元素、化合物を一括して言う言葉である。.

新しい!!: カルベンと化学種 · 続きを見る »

メタン

メタン(Methan (メターン)、methaneアメリカ英語発音: (メセイン)、イギリス英語発音: (ミーセイン)。)は最も単純な構造の炭化水素で、1個の炭素原子に4個の水素原子が結合した分子である。分子式は CH4。和名は沼気(しょうき)。CAS登録番号は 。カルバン (carbane) という組織名が提唱されたことがあるが、IUPAC命名法では非推奨である。.

新しい!!: カルベンとメタン · 続きを見る »

ライマー・チーマン反応

ライマー・チーマン反応(ライマー・チーマンはんのう、Reimer-Tiemann Reaction)は、フェノールに、クロロホルムと水酸化物イオンを作用させて、オルト位にホルミル基を導入する化学反応である。芳香族アルデヒドの合成法の一種である。 上図のように、フェノールからは、サリチルアルデヒドが得られる。一般に収率はそれほど高くはない。 反応機構は以下のように考えられている。下図を参照のこと。.

新しい!!: カルベンとライマー・チーマン反応 · 続きを見る »

イミダゾール

イミダゾール(imidazole)は、分子式C3H4N2、分子量68.08の五員環上に窒素原子を1,3位に含む複素環式芳香族化合物のアミンの一種である。窒素原子の置換位置が異なる異性体としてピラゾールがある。グリオキサール(HCO-CHO)とアンモニアから合成された為、グリオキサリンとも呼ばれる。ImidazoleはIUPAC慣用名であるが、系統名は1,3-diaza-2,4-cyclopentadieneである。イミダゾール環構造を示す場合は1,3-diazole類と呼ばれる。.

新しい!!: カルベンとイミダゾール · 続きを見る »

ウルフ転位

ウルフ転位(ウルフてんい、Wolff rearrangement)とは、有機化学における転位反応のひとつで、α-ジアゾケトンからケテンが生成する反応である。1912年に L. Wolff により報告された。 ウルフ転位 生成物であるケテンに水やアルコールが求核付加するとカルボン酸やエステルが生成する。.

新しい!!: カルベンとウルフ転位 · 続きを見る »

エチレン

チレン(ethylene、IUPAC命名法では エテン (ethene) )は、分子式 C2H4、構造式 CH2.

新しい!!: カルベンとエチレン · 続きを見る »

カルバニオン

ルバニオン (carbanion) とは、有機化学であらわれる、炭素上に負電荷を有する有機化合物や化学種の総称である。有機合成において、炭素-炭素結合を作るための合成中間体として用いられる。.

新しい!!: カルベンとカルバニオン · 続きを見る »

カルボカチオン

平面構造の''tert''-ブチルカチオン カルボカチオン (carbocation) は炭素原子上に正電荷を持つカチオンのことである。電気的に中性な有機化合物の炭素原子からヒドリドイオンが脱離した形の3価の炭素のカチオンと、電気的に中性な有機化合物の炭素原子にプロトンが付加した形の5価のカチオンがある。 IUPAC命名法では、そのカルボカチオンにヒドリドイオンを付加した炭化水素の語尾を -ylium に変更して命名するか、そのカルボカチオンからプロトンを除去した炭化水素の語尾を -ium に変更して命名する。すなわち CH3+ は CH4 メタン (methane) の語尾を -ylium に変更してメチリウム (methylium)、CH2 メチレン (methylene) の語尾を -ium に変更してメチレニウム (methylenium) と命名する。CH5+ はメタンの語尾を -ium に変更してメタニウム (methanium) と命名する。 このIUPAC命名法に従うと従来3価のカルボカチオンに対してしばしば使用されてきたカルボニウムイオン (carbonium ion) は5価のカチオンと混同する可能性がある。そのため、3価のカルボカチオンについては2価の炭素化合物であるカルベン (carbene) にプロトンが付加した形であることを強調してカルベニウムイオン (carbenium ion) という語が特に使われることもある。.

新しい!!: カルベンとカルボカチオン · 続きを見る »

カルベン錯体

ルベン錯体(カルベンさくたい)とは、カルベンを配位子として持つと考えられる有機金属錯体のことである。すなわち金属と直接結合している炭素の金属以外との結合の数が2つしかないような構造を持つ錯体である。.

新しい!!: カルベンとカルベン錯体 · 続きを見る »

グラブス触媒

ラブス触媒(—しょくばい、Grubbs catalyst)とは、ロバート・グラブスらによって報告されたルテニウムカルベン錯体のことであり、オレフィンメタセシス反応の触媒として主に用いられている。右図に示す2種の錯体がグラブス触媒の代表例として知られており、それぞれ第1世代グラブス触媒、第2世代グラブス触媒と呼ばれている。また、これらの触媒を更に改良したものもいくつか報告されている。一般にグラブス触媒は、オレフィンに対する官能基選択性が高く、また水や酸素にも安定で扱いやすいことから、有機合成化学の分野で広く利用されるようになった。.

新しい!!: カルベンとグラブス触媒 · 続きを見る »

シモンズ・スミス反応

モンズ・スミス反応(シモンズ・スミスはんのう、Simmons–Smith reaction)はジハロアルカンによりアルケンをシクロプロパン化する化学反応のことである。 1958年にハワード・シモンズ・ジュニアとロナルド・スミスによって報告された。もっとも初期に用いられた方法は、塩酸で表面を洗浄して活性化した亜鉛粉末に硫酸銅水溶液を作用させることで調製される亜鉛–銅カップルの存在下、アルケンにエーテル系溶媒中でジヨードメタンを加える方法である。その後、亜鉛の代わりにジエチル亜鉛を使用する改良法が1966年に古川らによって報告され、こちらの方法がより一般的となった。 反応機構は亜鉛にジヨードメタンが酸化的付加して生成する ICH2ZnI という化学種がアルケンと反応するものと考えられている。このような有機金属化学種は反応上カルベンの等価体と考えられることからカルベノイドと総称される。シクロプロパン環の新たに生成する2つのσ結合は協奏的に生成する。そのため、cis-アルケンからは cis 置換のシクロプロパンが、trans-アルケンからは trans 置換のシクロプロパンが得られる立体特異的な反応となる。 また反応する二重結合の近傍にヒドロキシ基などの亜鉛に配位可能な酸素官能基が存在する場合、カルベノイドが酸素官能基に配位してからシクロプロパン化が起こるため、二重結合の酸素官能基がある側の面でシクロプロパン環が形成される立体選択的な反応となる。 なお、亜鉛粉末を硫酸銅で処理せず、単独でこの反応に使用した場合は亜鉛の製造元によって反応の成否が分かれる結果となる。これは亜鉛中に微量不純物として含まれる鉛によって反応が妨害されるためである。亜鉛の精製が電解精錬で行なわれている場合には鉛がほぼ含まれないため、反応は正常に進行する。一方、亜鉛の精製が蒸留で行なわれている場合には微量の鉛が残っているため、反応の収率が著しく低下する。このような亜鉛に対してはクロロトリメチルシランを添加して活性化すると、反応が正常に進行するようになることが知られている。 その他、より活性なサマリウムを使用する方法やトリエチルアルミニウムを使用する方法も報告されている。使用されるジハロアルカンはジヨードメタンが報告される反応の大部分を占めているが、1,1-ジヨードアルカンならいずれも反応に使用できる。ジブロモメタンは超音波の使用や塩化アセチルなどの共存下で反応に使用できる報告がある。クロロヨードメタンはサマリウムでの反応で使用できる。また反応の活性種は ICH2ZnI であるため、ジハロアルカンを使用しなくともこの活性種を生成させれば同様のシクロプロパン化を行なうことができる。このような方法としてジアゾメタンとヨウ化亜鉛を反応させる方法がある。.

新しい!!: カルベンとシモンズ・スミス反応 · 続きを見る »

シクロプロパン

プロパン(cyclopropane)は、分子式 C3H6を持つシクロアルカン分子である。3つの炭素原子が互いにつながり環を形成し、それぞれの炭素原子が2つの水素原子と結合することで、D3h分子対称性を持つ。シクロプロパンおよびプロペンは同じ分子式を持つが異なる構造を持つ構造異性体である。 融点 −127℃、沸点 −33℃、CAS登録番号は 。常温で無色の気体で 4–6 気圧に加圧すると液化する。常温で2.7倍の体積の水に溶解し、エタノール、アセトンに可溶である。 シクロプロパンは吸引すると麻酔作用を示す。現代では、通常条件下でのその極めて高い反応性のためにその他の麻酔薬に取って代わられている。シクロプロパンガスが酸素と混合すると、爆発の危険性が高い。.

新しい!!: カルベンとシクロプロパン · 続きを見る »

ジアゾ化合物

アゾ化合物(—かごうぶつ)は有機化合物の分類の一つで、分子中にジアゾ基 N2.

新しい!!: カルベンとジアゾ化合物 · 続きを見る »

ジアゾメタン

アゾメタン (diazomethane) とは、最も単純な構造のジアゾ化合物で、爆発性がある非常に有毒な黄色気体である。化学式 CH2N2 で、分子量 42.02。融点 −145 ℃、沸点 −23 ℃であり、常温では黄色無臭気の気体。CAS登録番号は 。1894年に、によって発見された。 ジアゾメタン自体は衝撃、熱、光、アルカリ金属の存在により爆発する場合がある。エーテル溶液は比較的安定。水、アルコールが存在すると徐々に反応し分解する。実験室における有機合成で汎用されるO-メチル化剤の一つである。.

新しい!!: カルベンとジアゾメタン · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: カルベンとスピン角運動量 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

新しい!!: カルベンと炭素 · 続きを見る »

配位子

配位子(はいいし、リガンド、ligand)とは、金属に配位する化合物をいう。.

新しい!!: カルベンと配位子 · 続きを見る »

配位結合

配位結合(はいいけつごう、Coordinate bond)とは、結合を形成する二つの原子の一方からのみ結合電子が分子軌道に提供される化学結合である。 見方を変えると、電子対供与体となる原子から電子対受容体となる原子へと、電子対が供給されてできる化学結合であるから、ルイス酸とルイス塩基との結合でもある。したがって、プロトン化で生成するオキソニウムイオン(より正確にはオニウムイオン)は配位結合により形成される。 またオクテット則を満たさない第13族元素の共有結合化合物は、強いルイス酸であり配位結合により錯体を形成する。 あるいは遷移金属元素の多くは共有結合に利用される価電子の他に空のd軌道などを持つ為、多くの種類の金属錯体が配位結合により形成される。.

新しい!!: カルベンと配位結合 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »