ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

化学結合

索引 化学結合

化学結合(かがくけつごう)は化学物質を構成する複数の原子を結びつけている結合である。化学結合は分子内にある原子同士をつなぎ合わせる分子内結合と分子と別の分子とをつなぎ合わせる分子間結合とに大別でき、分子間結合を作る力を分子間力という。なお、金属結晶は通常の意味での「分子」とは言い難いが、金属結晶を構成する結合(金属結合)を説明するバンド理論では、分子内結合における原子の数を無限大に飛ばした極限を取ることで、金属結合の概念を定式化している。 分子内結合、分子間結合、金属結合のいずれにおいても、化学結合を作る力は原子の中で正の電荷を持つ原子核が、別の原子の中で負の電荷を持つ電子を電磁気力によって引きつける事によって実現されている。物理学では4種類の力が知られているが、電磁気力以外の3つの力は電磁気力よりも遥かに小さい為、化学結合を作る主要因にはなっていない。したがって化学結合の後述する細かな分類、例えば共有結合やイオン結合はどのような状態の原子にどのような形で電磁気力が働くかによる分類である。 化学結合の定式化には、複数の原子がある場合において電子の軌道を決定する必要があり、そのためには量子力学が必須となる。しかし多くの簡単な化合物や多くのイオンにおいて、化学結合に関する定性的な説明や簡単な定量的見積もりを行う分には、量子力学で得られた知見に価電子や酸化数といった分子の構造と構成を使って古典力学的考察を加える事でも可能である。 それに対し複雑な化合物、例えば金属複合体では価電子理論は破綻し、その振る舞いの多くは量子力学を基本とした理解が必要となる。これに関してはライナス・ポーリングの著書、The Nature of the Chemical Bondで詳しく述べられている。.

49 関係: 基本相互作用原子価結合法原子核孤立電子対定量的研究定性的研究三重結合二重結合価電子化学化学式化学物質バンド理論ライナス・ポーリングロンドン分散力パウリの排他原理分子間力分極率周期表イオンイオン化エネルギーイオン結合イオン結晶オクテット則スピン角運動量共鳴理論共有結合疎水効果軌道角運動量閉殻重ね合わせ量子力学金属金属結合金属結晶配位結合酸化数電子電子親和力電子殻電磁相互作用電荷電気双極子電気化学的分極電気陰性度東京化学同人極性水素原子におけるシュレーディンガー方程式の解水素結合

基本相互作用

基本相互作用(きほんそうごさよう、Fundamental interaction)は、物理学で素粒子の間に相互にはたらく基本的な相互作用。 素粒子の相互作用、自然界の四つの力、相互作用とも。.

新しい!!: 化学結合と基本相互作用 · 続きを見る »

原子価結合法

量子化学において原子価結合法(げんしかけつごうほう、valence bond theory、略称: VB法)とは、化学結合を各原子の原子価軌道に属する電子の相互作用によって説明する手法である。.

新しい!!: 化学結合と原子価結合法 · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: 化学結合と原子核 · 続きを見る »

孤立電子対

孤立電子対(こりつでんしつい、lone pair)とは、原子の最外殻の電子対のうち、共有結合に関与していない電子対のこと。それゆえ、非共有電子対(ひきょうゆうでんしつい、unshared electron pair)とも呼ばれる。 英語では、lone pairなので、「lp」と略すこともある。 量子力学的には、電子軌道はエネルギー準位の低いものから占有され、且つ一つの軌道にはスピンの異なる電子しか入ることができない。電子のスピンは+1/2と-1/2の二種類のみであるので対を成して軌道を占有することになる。分子軌道上にない電子はその原子のみに属するので、これを孤立電子対と呼ぶ。有機電子論では反応機構の要素として孤立電子対に独特の役割を想定していたが、量子論を中心とした現代の反応論では「共有結合に関与していない電子対」以上の意味はない。 孤立電子対の電子は金属やルイス酸性物質に配位することが可能であり、孤立電子対を持つ化合物は配位子やルイス塩基として働くことができる。.

新しい!!: 化学結合と孤立電子対 · 続きを見る »

定量的研究

定量的研究(ていりょうてきけんきゅう、quantitative research)は、対象の量的な側面に注目し、数値を用いた記述、分析を伴う研究。対象の質的側面に注目した定性的研究の対概念である。.

新しい!!: 化学結合と定量的研究 · 続きを見る »

定性的研究

定性的研究(ていせいてきけんきゅう、qualitative research、質的調査)は、対象の質的な側面に注目した研究。そこで扱われるデータは定性データと呼ばれる。対象の量的な側面に注目した定量的研究と対を成す概念である。.

新しい!!: 化学結合と定性的研究 · 続きを見る »

三重結合

化学における三重結合(さんじゅうけつごう、triple bond)は、通常の単結合での2つの電子の代わりに6つの結合電子が関与する、2元素間の化学結合である。最も一般的な三重結合は、炭素-炭素間の結合であり、アルキンで見ることができる。その他の三重結合を含む官能基は、シアニドやイソシアニドである。二窒素や一酸化炭素といったいくつかの二原子分子も三重結合を持つ。構造式では、三重結合は2つの結合原子間の3本の平行線として描かれる。 三重結合は、単結合や二重結合よりも強く、短い。結合次数は3である。.

新しい!!: 化学結合と三重結合 · 続きを見る »

二重結合

二重結合(にじゅうけつごう、double bond)は、通常2つの代わりに4つの結合電子が関与する、2元素間の化学結合である。最も一般的な二重結合は、2炭素原子間のものでアルケンで見られる。2つの異なる元素間の二重結合には多くの種類が存在する。例えばカルボニル基は炭素原子と酸素原子間の二重結合を含む。その他の一般的な二重結合は、アゾ化合物 (N.

新しい!!: 化学結合と二重結合 · 続きを見る »

価電子

価電子(かでんし、valence electron)とは、原子内の最外殻の電子殻をまわっている電子のことである。原子価電子(げんしかでんし)ともいう。ただし、最外殻電子がちょうどその電子殻の最大収容数の場合、または最外殻電子が8個の場合、価電子の数は0とする。 原子が化合物や結晶等を構成する際に、それらの化学結合や物性は、その原子内の核外電子が深く関わる。原子内の電子軌道を回る電子には、化学結合や物性に深く関わるものと、ほとんど関係しないものがある。化学結合や物性に関わる電子は、原子内の最外殻など外側を回っている。これらが価電子と言われる。逆に、原子核に近い軌道にある電子(内殻電子)は、通常の物性や化学結合に寄与することはほとんどない(が、例外も存在する)。 固体の絶縁体や半導体における価電子帯を占める電子を指すこともある。固体の金属においては、伝導電子(自由電子)に相当する。 典型元素の価電子は、その元素より原子番号の小さい最初の希ガス原子の核外電子の軌道より外側の軌道を回るものがなる。ただし、典型元素でも、ガリウムの3d軌道のように、比較的浅い内殻電子は、価電子的な振る舞いをし物性や化学結合に寄与する場合がある。例えば、窒化ガリウムでは、化合物の構成に関与している。また、遷移元素では、価電子は最外殻電子を意味していないため、特定の価電子を持っていないと言える。特にf電子をもつ元素では、価電子の定義は必ずしもこのようにはならない場合が少なくない。.

新しい!!: 化学結合と価電子 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

新しい!!: 化学結合と化学 · 続きを見る »

化学式

化学式(かがくしき、chemical formula)とは、化学物質を元素の構成で表現する表記法である。分子からなる物質を表す化学式を分子式(ぶんししき、molecular formula)、イオン物質を表す化学式をイオン式(イオンしき、ionic formula)と呼ぶことがある。化学式と呼ぶべき場面においても、分子式と言い回される場合は多い。 化学式が利用される場面としては、物質の属性情報としてそれに関連付けて利用される場合と、化学反応式の一部として物質を表すために利用される場合とがある。.

新しい!!: 化学結合と化学式 · 続きを見る »

化学物質

化学物質(かがくぶっしつ、chemical substance)とは、分野や文脈に応じて以下のような様々な意味で用いられている言葉である。.

新しい!!: 化学結合と化学物質 · 続きを見る »

バンド理論

固体物理学における固体のバンド理論(バンドりろん、band theory)または帯理論とは、結晶などの固体物質中に分布する電子の量子力学的なエネルギーレベルに関する理論を言う。1920年代後半にフェリックス・ブロッホ、ルドルフ・パイエルス、レオン・ブリルアンらによって確立された。.

新しい!!: 化学結合とバンド理論 · 続きを見る »

ライナス・ポーリング

ライナス・カール・ポーリング(Linus Carl Pauling、1901年2月28日 - 1994年8月19日)は、アメリカ合衆国の量子化学者、生化学者。彼自身は結晶学者、分子生物学者、医療研究者とも自称していた。 ポーリングは20世紀における最も重要な化学者の一人として広く認められている。量子力学を化学に応用した先駆者であり、化学結合の本性を記述した業績により1954年にノーベル化学賞を受賞した。また、結晶構造決定やタンパク質構造決定に重要な業績を残し、分子生物学の草分けの一人とも考えられている。ワトソンとクリックが1953年にDNAの生体内構造である「二重らせん構造」を発表する前に、ポーリングはほぼそれに近い「三重らせん構造」を提唱していた。多方面に渡る研究者としても有名で、無機化学、有機化学、金属学、免疫学、麻酔学、心理学、弁論術、放射性崩壊、核戦争のもたらす影響などの分野でも多大な貢献があった。 1962年、地上核実験に対する反対運動の業績によりノーベル平和賞を受賞した。ポーリングは単独でノーベル賞を複数回受賞した数少ない人物の一人である。後年、大量のビタミンCや他の栄養素を摂取する健康法を提唱し、更にこの着想を一般化させて分子矯正医学を提唱、それを中心とした数冊の本を著してこれらの概念、分析、研究、及び洞察を一般社会に紹介した。.

新しい!!: 化学結合とライナス・ポーリング · 続きを見る »

ロンドン分散力

ンドン分散力(ロンドンぶんさんりょく、London dispersion force)は、極性分子などが恒常的に持つ電荷や多極子ではなく、分子や原子などに量子論的に生じる一時的な電気双極子間の引力によって生じる弱い分子間力である。フリッツ・ロンドンにより示された。単に分散力、ロンドン力と呼ばれたり、誘起双極子-誘起双極子相互作用とも呼ばれる。また、ファンデルワールス力も狭義にはロンドン分散力を指す。 量子論的には電子は分子中を確率論的に分布する。したがって無極性分子中であっても、電子が一様に分布しない確率は十分に存在する。電子分布が一様でない時には、分子には一時的な多極子が生じる。この多極子が近くにあるほかの一時的な多極子と相互作用する。このようにして無極性分子にロンドン力が生じる。ロンドン力は極性分子にも存在するが、極性分子のもつ永久双極子の相互作用などの方が全相互作用に占める割合が大きくなるので、ロンドン力は重要ではなくなる。相互作用の大きさについては、分子間力を参照。 分子中の電子密度は他の多極子の影響を受けてさらに再分布する。たとえば、正電荷の近傍に電子は集まり、負電荷からは退く。従って、分子に一時的に生じる多極子は、近くの極性分子や別の無極性分子に生じた一時的な多極子により誘起される。一般的には前者は励起双極子といい、ロンドン力とは区別される。 ロンドン力は、ヘリウムなどの中性原子間で長距離に働く唯一の引力であり、窒素やメタンなどの無極性分子間(分子内の原子間ではない)に働く主要な引力項である。ロンドン力が存在しなければ、希ガス間に働く引力はなくなるため、液体ヘリウムのような液体を得ることはできないことになる。分子間の万有引力(重力相互作用)は非常に小さいため、分子の物理的・化学的性質には影響せず、液体ヘリウム等を得るのには不十分である。 ロンドン力は、問題とする原子または分子が大きくなるに従って強くなる。これは、電子の分布がより一様でなくなる確率が高くなるからである。たとえば、ハロゲン分子間のロンドン力は、小さいほうから順にフッ素(F2)、塩素(Cl2)、臭素(Br2)、ヨウ素(I2)である。これはフッ素、塩素が室温で気体であるのに対し、臭素は液体、ヨウ素は固体であることとも対応している。ロンドン力はまた、分子の表面積が大きくなると強くなり、したがって分子間距離が近くなる。.

新しい!!: 化学結合とロンドン分散力 · 続きを見る »

パウリの排他原理

パウリの排他原理(パウリのはいたげんり、Pauli exclusion principle)とは、2 つ以上のフェルミ粒子は同一の量子状態を占めることはできない、というものであり、1925年にヴォルフガング・パウリが提出したフェルミ粒子に関する仮定であるW.

新しい!!: 化学結合とパウリの排他原理 · 続きを見る »

分子間力

分子間力(ぶんしかんりょく、intermolecular force)は、分子同士や高分子内の離れた部分の間に働く電磁気学的な力である。力の強い順に並べると、次のようになる。.

新しい!!: 化学結合と分子間力 · 続きを見る »

分極率

分極率(ぶんきょくりつ、polarizability)とは、原子や分子の電子雲などがもつ電荷分布の相対的な偏りを表す物理量である。電荷分布は近くに存在するイオンや双極子の存在などによって引き起こされる外部電場によって歪められる。この歪められた電荷分布の通常の状態からの偏差が分極率である。.

新しい!!: 化学結合と分極率 · 続きを見る »

周期表

周期表(しゅうきひょう、)は、物質を構成する基本単位である元素を、それぞれが持つ物理的または化学的性質が似たもの同士が並ぶように決められた規則(周期律)に従って配列した表である。日本では1980年頃までは「周期律表」と表記されている場合も有った。.

新しい!!: 化学結合と周期表 · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

新しい!!: 化学結合とイオン · 続きを見る »

イオン化エネルギー

イオン化エネルギー(イオンかエネルギー、英語:ionization energy、電離エネルギー、イオン化ポテンシャルとも言う)とは、原子、イオンなどから電子を取り去ってイオン化するために要するエネルギー。ある原子がその電子をどれだけ強く結び付けているのかの目安である。 気体状態の単原子(または分子の基底状態)の中性原子から取り去る電子が1個目の場合を第1イオン化エネルギー(IE1)、2個目の電子を取り去る場合を第2イオン化エネルギー(IE2)、3個目の電子を取り去る場合を第3イオン化エネルギー(IE3)・・・(以下続く)と言うShriver & Atkins (2001), p.39。。単にイオン化エネルギーといった場合、第1イオン化エネルギーのことを指すことがある。 イオン化エネルギーの一般的な傾向は、s軌道とp軌道の相対的エネルギーとともに、電子の結合に対する有効核電荷核電荷の効果を考えることによって説明できる。 原子核の正電荷が増すにつれ、与えられた軌道にある負に荷電した電子はより強いクーロン引力を受け、より強く保持される。ヘリウムの1s電子を除去するには水素の1s電子を除去するよりも多くのエネルギーを必要とする。 周期表の同じ周期の中で最高のイオン化エネルギーは希ガスのものであり、希ガスは安定な閉殻電子配置をもつといわれる。 主量子数nの値が小さい内殻電子のイオン化エネルギーは価電子に比べ格段に大きいShriver & Atkins (2001), p.43。。たとえば電子3個のリチウムではIE1は5.32eV であるが、1sからのIE2は75.6eVである。2s軌道の電子は1s軌道の電子ほど強く保持されていない。 最低のイオン化エネルギーは周期表の左端にある第1族元素のものである。これらの原子のひとつから電子1個を除くと希ガス原子と同じ閉殻電子配置を持つイオンになる。 どの原子からも最も容易に失われる電子は最高エネルギー軌道にある電子からである。.

新しい!!: 化学結合とイオン化エネルギー · 続きを見る »

イオン結合

イオン結合(イオンけつごう、英語:ionic bond)は正電荷を持つ陽イオン(カチオン)と負電荷を持つ陰イオン(アニオン)の間の静電引力(クーロン力)による化学結合である。この結合によってイオン結晶が形成される。共有結合と対比され、結合性軌道が電気陰性度の高い方の原子に局在化した極限であると解釈することもできる。 イオン結合は金属元素(主に陽イオン)と非金属元素(主に陰イオン)との間で形成されることが多いが、塩化アンモニウムなど、非金属の多原子イオン(ここではアンモニウムイオン)が陽イオンとなる場合もある。イオン結合によってできた物質は組成式で表される。.

新しい!!: 化学結合とイオン結合 · 続きを見る »

イオン結晶

イオン結晶(イオン結合結晶, ionic crystal)はイオン結合によって形成される結晶のこと。.

新しい!!: 化学結合とイオン結晶 · 続きを見る »

オクテット則

テット則(-そく、Octet rule)は原子の最外殻電子の数が8個あると化合物やイオンが安定に存在するという経験則。オクテット説(-せつ)、八隅説(はちぐうせつ)ともいう。 第二周期の元素や第三周期のアルカリ金属、アルカリ土類金属までにしか適用できないが、多くの有機化合物に適用できる便利な規則である(→18電子則)。ただし、カルボカチオンや無機化合物を中心とする多くの例外も存在する。.

新しい!!: 化学結合とオクテット則 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: 化学結合とスピン角運動量 · 続きを見る »

共鳴理論

二酸化窒素の寄与構造の内の2種類 化学における共鳴理論(きょうめいりろん)とは、量子力学的共鳴の概念により、共有結合を説明しようとする理論である。.

新しい!!: 化学結合と共鳴理論 · 続きを見る »

共有結合

H2(右)を形成している共有結合。2つの水素原子が2つの電子を共有している。 共有結合(きょうゆうけつごう、covalent bond)は、原子間での電子対の共有をともなう化学結合である。結合は非常に強い。ほとんどの分子は共有結合によって形成される。また、共有結合によって形成される結晶が共有結合結晶である。配位結合も共有結合の一種である。 この結合は非金属元素間で生じる場合が多いが、金属錯体中の配位結合の場合など例外もある。 共有結合はσ結合性、π結合性、金属-金属結合性、アゴスティック相互作用、曲がった結合、三中心二電子結合を含む多くの種類の相互作用を含む。英語のcovalent bondという用語は1939年に遡る。接頭辞のco- は「共同」「共通」などを意味する。ゆえに、「co-valent bond」は本質的に、原子価結合法において議論されているような「原子価」(valence)を原子が共有していることを意味する。 分子中で、水素原子は共有結合を介して2つの電子を共有している。共有結合性は似た電気陰性度の原子間で最大となる。ゆえに、共有結合は必ずしも同種元素の原子の間だけに生じるわけではなく、電気陰性度が同程度であればよい。3つ以上の原子にわたる電子の共有を伴う共有結合は非局在化している、と言われる。.

新しい!!: 化学結合と共有結合 · 続きを見る »

疎水効果

水効果(そすいこうか、hydrophobic effect)は、水などの極性溶媒中で非極性分子(あるいは非極性基)が溶媒と分離し凝集する性質のことである。疎水性相互作用は、疎水効果によって非極性分子間に働く引力的相互作用をあらわす。疎水効果は、タンパク質のフォールディング、タンパク質・タンパク質相互作用、脂質二重膜の形成などの駆動力であると考えられている。 簡単に言えば、疎水性分子同士が水にはじかれ、集合する現象である。疎水結合とも呼ばれるが、疎水性分子間に結合が形成されるわけではなく、疎水性分子間に直接引力が働かなくても疎水効果は生じる。.

新しい!!: 化学結合と疎水効果 · 続きを見る »

軌道角運動量

軌道角運動量(きどうかくうんどうりょう、)とは、特に量子力学において、位置とそれに共役な運動量の積で表される角運動量のことである。 例えば原子の中で電子は、原子核が周囲に作る軌道を運動する。電子の全角運動量のうち、電子がその性質として持つスピン角運動量を除く部分が軌道角運動量である。.

新しい!!: 化学結合と軌道角運動量 · 続きを見る »

閉殻

閉殻 (へいかく、closed shell)とは、原子の最外殻に最大数の電子が入っている状態のことである。.

新しい!!: 化学結合と閉殻 · 続きを見る »

重ね合わせ

重ね合わせ(かさねあわせ、superposition)は、量子力学の基本的な性質である。.

新しい!!: 化学結合と重ね合わせ · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 化学結合と量子力学 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: 化学結合と金属 · 続きを見る »

金属結合

金属結合(きんぞくけつごう、metallic bond)とは、金属で見られる化学結合である。金属原子はいくつかの電子を出して陽イオン(金属結晶の格子点に存在する正電荷を持つ金属の原子核)と、自由電子(結晶全体に広がる負電荷をもったもの)となる。規則正しく配列した陽イオンの間を自由電子が自由に動き回り、これらの間に働くクーロン力(静電気力、静電引力)で結び付けられている。一部では共有結合の一種とみなす主張があるが、原子集団である結晶場で結合電子を共有していて、典型的な共有結合は2原子間でしか共有されていないので、計算手法等が著しく異なり混乱を招くので主流ではない。π結合は分子、あるいはグラフェン内の多くの原子で結合軌道が形成されるので一種の金属結合的性質を持ち、それがグラファイト系物質の導電性の源泉となっている。 金属の場合、最外殻電子など電子の一部は特定の原子核の近傍に留まらず結晶全体に非局在化しており、この様な状態の電子を擬似的な自由電子と呼ぶ。金属の電気伝導性や熱伝導度が高いことは自由電子の存在に起因していると考えられ、それゆえ、自由電子は伝導電子とも呼ばれる。自由電子の分子軌道はほぼ同一のエネルギー準位のエネルギーバンドを形成し、電子ガスとも呼ばれるような自由電子の状態を形成する。電子は光子と相互作用するので、金属の持つ特性である反射率、金属光沢は自由電子のエネルギーバンドの状況を反映していると考えられている。 自由電子の量子力学的説明は自由電子やバンド理論を参照されたい。 一方、金属の原子核は周囲に一様に広がる自由電子ガスと相互作用しているため、原子位置のずれに対するエネルギー障壁は低く、それゆえ、金属は展性や延性が高いと考えられている。それは、電子軌道として局在性(結合異方性)の高いp、d電子ではなくs電子主体の結合だからともいえ、それが等極結合的でありながら最密充填性の高い結晶構造(面心立方、六方最密)を得る源泉ともなっている。 金属結合における結合エネルギーは核外電子に参加する自由電子の範囲で異なり、数十~数百kJ/molの値をとる。例えばアルカリ金属の場合、閉殻電子は自由電子に関与せず、もっぱら価電子(最外殻電子)が金属結合に関与している。そのため結合エネルギーも弱く、80~160 kJ/mol程度である。一方、タングステンなどは結合エネルギーは850 kJ/molにも達するが、これは内殻電子も結合に関与するためであると考えられている。 2種類以上の金属を融解させ混合し、冷却すれば合金ができる。.

新しい!!: 化学結合と金属結合 · 続きを見る »

金属結晶

金属結晶 (きんぞくけっしょう) は、金属結合によって形成される結晶のこと。 金属結晶中では金属原子は最外殻電子を切り離し陽イオンとなっている。この切り離された電子が自由電子となり結晶構成原子間を自由に動き回ることで結晶が保たれている。このため金属結晶は延性、展性、電気伝導性や熱伝導性に富み、独特の金属光沢をもつ。結晶なのに延典性(塑性加工性)に富むことを驚きの出発点とし、とくに米国人により転位論が確立され、材料強度学における重要な地位を確立している。また、強度やトライボロジー特性に優れた鉄鋼材料の一種である工具鋼などは、熱処理を行うことで急激な金属結晶の変化が生じマルテンサイト構造になることでその優れた特性を得、塑性加工などの過酷な摩擦現象がおこる用途に用いられる。 【例】 いわゆる金属は、全て金属結晶であるとは言えない(金属的性質を示す準結晶やアモルファス金属などを除く←アモルファスは結晶ではない)。 金属では多形は一般的であり、それは温度変化にともなってしばしば起こる。異なる構造は通常温度の増加に応じて、α、β、γ、…という記号で区別される。例えばα-Feは906℃まで安定であり、1401℃でγ-Feに変化し、1530℃で再びα-Feに変わる。β-Feは通常の条件下では安定ではなく、高圧下でのみ存在する。.

新しい!!: 化学結合と金属結晶 · 続きを見る »

配位結合

配位結合(はいいけつごう、Coordinate bond)とは、結合を形成する二つの原子の一方からのみ結合電子が分子軌道に提供される化学結合である。 見方を変えると、電子対供与体となる原子から電子対受容体となる原子へと、電子対が供給されてできる化学結合であるから、ルイス酸とルイス塩基との結合でもある。したがって、プロトン化で生成するオキソニウムイオン(より正確にはオニウムイオン)は配位結合により形成される。 またオクテット則を満たさない第13族元素の共有結合化合物は、強いルイス酸であり配位結合により錯体を形成する。 あるいは遷移金属元素の多くは共有結合に利用される価電子の他に空のd軌道などを持つ為、多くの種類の金属錯体が配位結合により形成される。.

新しい!!: 化学結合と配位結合 · 続きを見る »

酸化数

酸化数(さんかすう、英: Oxidation number)とは、対象原子の電子密度が、単体であるときと比較してどの程度かを知る目安の値である。1938年に米国のウェンデル・ラティマー (Wendell Mitchell Latimer) が考案した。 酸化とはある原子が電子を失うことであるから、単体であったときより電子密度が低くなっている。それに対して還元とはある原子が電子を得ることであるから、単体であったときより電子密度が高くなっている。 ある原子が酸化状態にある場合、酸化数は正の値をとり、その値が大きいほど電子不足の状態にあることを示す。逆に還元状態にある場合には負の数値をとり、その値が大きいほど電子過剰の状態にあることを示す。 酸化数はローマ数字で記述するのが通例である。.

新しい!!: 化学結合と酸化数 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: 化学結合と電子 · 続きを見る »

電子親和力

電子親和力(でんししんわりょく、英語:electron affinity、EA)は、原子、分子(場合により、固体や表面も対象となる)に1つ電子を与えた時に放出または吸収されるエネルギー。放出の場合は正、吸収の場合は負と定義する。電子親和力が負であることは、陰イオンになり難いことを意味する。 この時(左辺、右辺の原子、イオンはそれぞれ同じものとする。またエネルギーの符号は考えず、量のみのを比較する)、.

新しい!!: 化学結合と電子親和力 · 続きを見る »

電子殻

電子殻(でんしかく、electron shell)は、原子構造の模型において、原子核を取り巻く電子軌道の集まりをいう。言わば電子の収容場所のことで、それにいかに電子が入っているかを示すのが電子配置である。.

新しい!!: 化学結合と電子殻 · 続きを見る »

電磁相互作用

電磁相互作用(でんじそうごさよう)は、電場あるいは磁場から電荷が力を受ける相互作用のことをいい、基本相互作用の一つである。電磁気学によって記述される。場の理論においてラグランジアンに対してU(1)ゲージ対称性を付与することで現れるU(1)ゲージ場の成分が電磁気学におけるいわゆるスカラーポテンシャル及びベクトルポテンシャルと対応し、また自身についても対応する自由ラグランジアンを持っている。ラグランジュ形式で議論することで、物質に対応する変数でオイラーラグランジュ方程式を解くことで電磁場から物質に対しての影響を、逆に電磁場に対応する変数でオイラーラグランジュ方程式を解くことで物質側から電磁場に与える影響を導き出すことができ、それぞれ、通常の力学でのローレンツ力とマクスウェル方程式のうちのガウスの法則とアンペールマクスウェル方程式を導出することになる。.

新しい!!: 化学結合と電磁相互作用 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: 化学結合と電荷 · 続きを見る »

電気双極子

電気双極子()とは、大きさの等しい正負の電荷が対となって存在する状態のことである。.

新しい!!: 化学結合と電気双極子 · 続きを見る »

電気化学的分極

電気化学的分極(でんきかがくてきぶんきょく、electrochemical polarization)とは、電極電位を静止電位からずらす操作、または、電極電位が静止電位からずれる現象のことを言う。言い換えれば、外部回路に電流が流れるように電極電位をずらす操作、または、外部回路に電流が流れることによって電極電位がずれる現象が電気化学的分極である。誤解がないときは単に分極(ぶんきょく、polarization)とも言う。電極が単純電極(電極反応が1種類)の場合は過電圧とほぼ同じである。.

新しい!!: 化学結合と電気化学的分極 · 続きを見る »

電気陰性度

電気陰性度(でんきいんせいど、electronegativity)は、分子内の原子が電子を引き寄せる強さの相対的な尺度であり、ギリシャ文字のχで表されるShriver & Atkins (2001), p.45。。 異種の原子同士が化学結合しているとする。このとき、各原子における電子の電荷分布は、当該原子が孤立していた場合と異なる分布をとる。これは結合の相手の原子からの影響によるものであり、原子の種類により電子を引きつける強さに違いが存在するためである。 この電子を引きつける強さは、原子の種類ごとの相対的なものとして、その尺度を決めることができる。この尺度のことを電気陰性度と言う。一般に周期表の左下に位置する元素ほど小さく、右上ほど大きくなる。.

新しい!!: 化学結合と電気陰性度 · 続きを見る »

東京化学同人

株式会社 東京化学同人(とうきょうかがくどうじん)は、主に理・工・農・薬・医・家政学系などの教科書類、専門書、辞典類および雑誌を出版・販売する日本の出版社。.

新しい!!: 化学結合と東京化学同人 · 続きを見る »

極性

極性.

新しい!!: 化学結合と極性 · 続きを見る »

水素原子におけるシュレーディンガー方程式の解

本項、水素原子におけるシュレーディンガー方程式の解(すいそげんしにおけるシュレーディンガーほうていしきのかい)では、ハミルトニアンが と書ける二粒子系の時間非依存なシュレーディンガー方程式の厳密解を解く(式中の記号の意味は後述)。 物理学的にはこれは、.

新しい!!: 化学結合と水素原子におけるシュレーディンガー方程式の解 · 続きを見る »

水素結合

doi.

新しい!!: 化学結合と水素結合 · 続きを見る »

ここにリダイレクトされます:

多重結合

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »