ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ホップ代数

索引 ホップ代数

数学において,ホップ代数(ホップだいすう,Hopf algebra)は,に因んで名づけられた代数的構造であり,同時に(単位的結合)代数かつ(余単位的余結合的)余代数であり,これらの構造の整合性により双代数になっており,さらにある性質を満たすを備えたものである.ホップ代数の表現論は特に見事である,なぜならば整合的な余積,余単位射,対合射の存在により,表現のテンソル積,自明表現,双対表現を構成できるからである. ホップ代数は,その起源であり の概念と関係する代数的位相幾何学,の理論,群論(群環の概念によって),そして多数の他の場所で,自然に生じ,おそらく双代数の最もよく知られた種類となっている.ホップ代数はそれ自身も研究されていて,一方では例の特定のクラスが,他方では分類問題が,多く研究されている.それらは物性物理学や量子的場の理論から弦理論まで多様な応用を持つ. 定理 (ホップ) を標数 0 の体上の有限次元次数付き余可換ホップ代数とする.このとき は(代数として)奇数次の生成元による自由外積代数である..

56 関係: 単位的環可換体可換図式可換環双対 (圏論)双対ベクトル空間双代数多様体の射外積代数対合環対称代数一元体交換子交換法則代数的位相幾何学代数群弦理論位相空間余代数ラグランジュの定理 (群論)リー代数リー群テンソル代数ホモロジー (数学)ベクトル空間ベクトル空間の双対系アメリカ数学会カップ積クニーズニク・ザモロドチコフ方程式ケンブリッジ大学出版局コンパクト群コホモロジーシュプリンガー・サイエンス・アンド・ビジネス・メディア商体商群線型写像群 (数学)群環群論結合多元環物性物理学非可換幾何表現論関数の台量子化 (物理学)量子群配置集合連続 (数学)構造定数 (数学)標数...次数付き環正規部分群準同型数学整域普遍包絡代数 インデックスを展開 (6 もっと) »

単位的環

数学、特に環論における単位的環(たんいてきかん、unital/unitary ring)、単位環(たんいかん、unit ring)あるいは単位元持つ環 (ring with unit/unity/identity) は、乗法単位元を持つ環のことを言う。.

新しい!!: ホップ代数と単位的環 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: ホップ代数と可換体 · 続きを見る »

可換図式

5項補題の証明で使われる可換図式 数学、特に圏論において、可換図式 (commutative diagram) は、対象(あるいは頂点)と射(あるいは矢、辺)の図式であって、始点と終点が同じである図式のすべての向き付きの道が合成によって同じ結果になるようなものである。可換図式は代数学において方程式が果たすような役割を圏論において果たす(Barr-Wells, Section 1.7 を参照)。 図式は可換でないかもしれない、すなわち図式の異なる道の合成は同じ結果にならないかもしれないことに注意する。明確化のために、「この可換図式」(this commutative diagram) あるいは「図式は交換する」(the diagram commutes) といったフレーズが使われる。.

新しい!!: ホップ代数と可換図式 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: ホップ代数と可換環 · 続きを見る »

双対 (圏論)

圏論という数学の分野において,双対性(そうついせい,duality)は圏 の性質と反対圏 の双対的な性質の間の対応である.圏 についてのステートメントが与えられると,各射の始域と終域を入れ替え,2つの射の合成の順序を入れ替えることによって,反対圏 についての対応する双対命題が得られる.双対性は,そのようなものとして,ステートメントに関するこの操作の下で正しさが不変であるという主張である.言い換えると,あるステートメントが について正しければ,その双対のステートメントは について正しい.また,あるステートメントが について間違いならば,その双対のステートメントは について間違いである. が与えられたとき,その反対圏 はしばしばそれ自体が抽象的である. は数学的実践から生じる圏である必要はない.この場合,別の圏 と が圏として同値であるとき, も と双対にあると言われる. とその反対圏 が同値であるとき,そのような圏は自己双対 (self-dual) である..

新しい!!: ホップ代数と双対 (圏論) · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

新しい!!: ホップ代数と双対ベクトル空間 · 続きを見る »

双代数

数学において,体 上の双代数(そうだいすう,bialgebra)とは, 上のベクトル空間であって,単位的結合代数かつ余代数であるようなものである.代数構造と余代数構造はさらなる公理によって整合性を持つ.具体的には,余積と余単位はともに単位的代数の準同型である,あるいは同じことであるが,代数の積と単位射はともに余代数の準同型である.(これらのステートメントは同じ可換図式によって表されるから同値である.) 類似している双代数は双代数準同型によって関連付けられる.双代数の準同型は代数と余代数両方の準同型であるような線型写像である. 可換図式の対称性に反映されているように,双代数の定義は自己双対であり,したがって, の双対を定義できるならば( が有限次元ならいつでも可能である),自動的に双代数になる..

新しい!!: ホップ代数と双代数 · 続きを見る »

多様体の射

代数幾何学においてアフィン多様体の間の正則写像(せいそくしゃぞう、regular map)とは、それが多項式によって与えられる写像であることを言う。陽に書けば、 がそれぞれアフィン多様体 の(あるいは代数的集合)であるとき、 から への正則写像 は、各 が座標環 (I は X を定義するイデアル)に属するものとして、 なる形に書ける。ゆえに像 は に含まれる(つまり、 の定義方程式を満たす)。 より一般に、抽象代数多様体間の写像 が一点 において正則 (regular at a point)とは、 の近傍 と の近傍 が存在して、制限写像 が と との 上の写像として正則となることを言う。さらに が の任意の点において正則であるとき、 は正則 (regular) であるという。 代数多様体間の射は、その始域と終域にザリスキー位相を入れたとき連続でなければならない。より厳密に、抽象代数多様体をある種の局所環付き空間として定義するとき(例えば射影多様体に対する「環付き構造」は射影多様体の項を参照せよ)、この定義のもとでの代数多様体間の射とは台とする局所環付き空間の間の射のことを言う(故にたとえばこの射は定義により連続になる)。 となる特別の場合を考えるとき、正則写像 は正則函数 (regular function) と呼ばれ、これは微分幾何におけるスカラー函数に対応するものである。即ち、スカラー函数が一点 において正則 (regular) となるのは、 の適当な近傍においてそれが有理函数(つまり多項式の商)に書けて、かつその分母が において消えていないときに限られる。正則函数環(つまり、座標環あるいはより抽象的に構造層の大域切断の環)はアフィン代数幾何において基本的対象である。一方、連結射影多様体上の正則函数は定数しかない(これは複素解析におけるリウヴィルの定理の類似とみなせる)から、射影代数幾何では(正則函数ではなくて)直線束(あるいは因子)の大域切断を考えるのが普通である。 事実として、既約代数曲線 上の函数体 を取ると、この函数体に属する任意の函数 は から 上の射影直線への射として実現することができる。その像 は一点か、さもなくば射影直線全体である(これはの帰結である)。つまり、 が実際に定数なのでない限り、 は のどこかの点において値が となることを認めなければならない。いま、 のそのような(値が となる)点における振る舞いは、そのほかの点におけるよりも(ある意味で)悪くはならない。つまり、 は射影直線上にとった無限遠点として、それはメビウス変換によってどこでも好きなところに移すことができる。しかし幾何学的な必要により、函数の終域を(射影直線ではなく)アフィン直線に限らねばならないとすれば、有限な値しかとれないので、不十分である。 上の有理函数が正則であるための必要十分条件は、それが極を持たぬことである。これはハルトークスの拡張定理の類似である。 正則写像は定義によりアフィン多様体の圏における射である。特にアフィン多様体の間の正則写像は、その座標環の間の環準同型に反変的に一対一対応する。 逆もまた正則であるような正則写像は双正則(そうせいそく、biregular)であるといい、代数多様体の圏における同型射である。代数多様体間の射で台となる位相空間の間の同相となるものは必ずしも同型射ではない(反例はフロベニウス射 t \mapsto t^p で与えられる)。他方、 が双射双有理かつ の終域が正規代数多様体ならば は双正則である(参照)。 正則および双正則は非常に強い条件(射影空間上の定数でない正則函数は存在しない)から、それより弱い条件であるや双有理写像が同じくらいよく用いられる。 が代数多様体の間の射ならば、 の像はその閉包の稠密開集合を含む(を参照)。 複素代数多様体の間の正則写像は(複素解析的な意味での)正則写像 (holomorphic map) である(実際には少し差異があって、本項に言う代数幾何的な意味で正則 (regular) となるのは特異点が除去可能であるような有理型写像なのであるが、実用上はこの差異は無視されるのが普通)。特に、複素数平面の中への正則写像は、まさに通常の(複素解析的な意味の)正則函数に他ならない。.

新しい!!: ホップ代数と多様体の射 · 続きを見る »

外積代数

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。.

新しい!!: ホップ代数と外積代数 · 続きを見る »

対合環

数学、特に抽象代数学における対合環(ついごうかん、involutory ring)、-環(スターかん、∗-ring)記法について: 対合 は後置により表される単項演算で、そのグリフはミーンライン付近やや上方に中心がくるように右肩にのせて のように書くが、"" のように中心がミーンライン上にくるようにはしない(スター記号 * とスター演算記号 ∗ との混同に注意: アスタリスクの項も参照)。あるいは対合付き環(ついごうつきかん、involution)は、環構造と両立する対合(共軛演算、随伴)を備える代数系である。可換 -環 上の結合多元環 がそれ自身 -環でもあるとき、二つの -環の -構造が両立するならば、 を -環 上の 対合多元環(ついごうたげんかん、involutive algebra; 対合代数)、-多元環(スターたげんかん、∗-algebra; -代数)あるいは対合付き多元環(ついごうつきたげんかん、algebra with involution; 対合つき代数)という。 対合環における対合(-演算)は複素数体における複素共軛を一般化するものであり、また対合多元環における対合は複素行列環における共軛転置あるいはヒルベルト空間上の線型作用素のエルミート共軛を一般化するものである。.

新しい!!: ホップ代数と対合環 · 続きを見る »

対称代数

数学において、体 K 上のベクトル空間 V 上で定義される対称代数(たいしょうだいすう、symmetric algebra)S(V) あるいは Sym(V) は、V を含む K 上の自由可換単位的結合代数である。 対称代数の元は、座標の取り方に依らず V の元を不定元とする多項式に対応する。このとき、対称代数の双対 S(V&lowast) の元は V 上の多項式(函数)に対応する。 対称代数と V 上の対称テンソル空間とを混同してはならない。.

新しい!!: ホップ代数と対称代数 · 続きを見る »

一元体

数学において一元体(いちげんたい、field with one element)あるいは標数 1 の体 (field of characteristic one) とは、「ただひとつの元からなる有限体」と呼んでもおかしくない程に有限体と類似の性質を持つ数学的対象を示唆する仮想的な呼称である。しばしば、一元体を F1 あるいは Fun"un" はフランス語で "1" の意味の単語であり、また一元体という対象がもつ数学的な豊かさへのわくわくする期待感を英語のfunと掛けたものともなっている。 で表す。通常の抽象代数学的な意味での「ただひとつの元からなる体」は存在せず、「一元体」の呼称や「F1」といった表示はあくまで示唆的なものでしかないということには留意すべきである。その代わり、F1 の概念は、抽象代数学を形作る旧来の材料である「集合と作用」が、もっとほかのより柔軟な数学的対象で置き換わるべきといった方法論を提供するものと考えられている。そういった新しい枠組みにおける理論で一元体を実現しているようなものは未だ存在していないが、標数 1 の体に類似した対象についてはいくつか知られており、それらの対象もやはり用語を流用して象徴的に一元体 F1 と呼ばれている。なお、一元体上の数学は日本の黒川信重ら一部の数学者によって、絶対数学と呼ばれている。 F1 が旧来の意味の体にならないことは、体が通常加法単位元 0 と乗法単位元 1 という二つの元を持つことから明らかである。制限を緩めて、ただひとつの元からなる環を考えても、それは 0.

新しい!!: ホップ代数と一元体 · 続きを見る »

交換子

数学における交換子(こうかんし、commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特に量子力学における交換子の役割については、交換関係 (量子力学)の項を参照。.

新しい!!: ホップ代数と交換子 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: ホップ代数と交換法則 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: ホップ代数と代数的位相幾何学 · 続きを見る »

代数群

代数幾何学において,代数群(だいすうぐん,algebraic group, あるいは群多様体,group variety)とは,代数多様体であるような群であって,積と逆元を取る演算がその多様体上の正則写像によって与えられるものである. 圏論のことばでは,代数群は代数多様体の圏におけるである..

新しい!!: ホップ代数と代数群 · 続きを見る »

弦理論

弦理論(げんりろん、string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。.

新しい!!: ホップ代数と弦理論 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: ホップ代数と位相空間 · 続きを見る »

余代数

余代数(よだいすう、coalgebra)とは、単位元を持つ結合代数に対して、圏の双対をとったものをいう。.

新しい!!: ホップ代数と余代数 · 続きを見る »

ラグランジュの定理 (群論)

群論において、ラグランジュの定理(英語:Lagrange's theorem)とは、次のような定理である。 実は、任意の群に対し、(選択公理を認めれば)指数を用いて次のような式が成り立つ。.

新しい!!: ホップ代数とラグランジュの定理 (群論) · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: ホップ代数とリー代数 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: ホップ代数とリー群 · 続きを見る »

テンソル代数

数学におけるベクトル空間 上のテンソル代数(テンソルだいすう、tensor algebra) または は 上の任意階のテンソル全体がテンソル積を乗法として成す体上の多元環である。これは多元環をベクトル空間とみなすの左随伴となるという意味において 上の自由多元環、すなわち普遍性を満たすという意味で を含む多元環として「最も一般」のものである。 テンソル代数はまた二種類の余代数構造を持つ。一つは簡素で双代数を定めないが、もう一つはより複雑なもので双代数を導き、さらに対蹠射を以ってホップ代数へ拡張することができる。; 注意: 本項において多元環(代数)は単位的かつ結合的なものと仮定する。.

新しい!!: ホップ代数とテンソル代数 · 続きを見る »

ホモロジー (数学)

数学、とくに代数的位相幾何学や抽象代数学において、ホモロジー (homology) (「同一である」ことを意味するギリシャ語のホモス (ὁμός) に由来)は与えられた数学的対象、例えば位相空間や群に、アーベル群や加群の列を対応させる一つの一般的な手続きをいう。より詳しい背景については ホモロジー論 を見られたい。また、ホモロジーの手法の位相空間に対する具体的な適用については特異ホモロジーを、群についてのそれは群コホモロジーを、それぞれ参照されたい。 位相空間に対しては、ホモロジー群は一般にホモトピー群よりもずっと計算しやすく、したがって、空間を分類する道具としてはより手軽に扱えるものといえるだろう。.

新しい!!: ホップ代数とホモロジー (数学) · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: ホップ代数とベクトル空間 · 続きを見る »

ベクトル空間の双対系

数学の函数解析学周辺分野におけるベクトル空間の双対系(そうついけい、dual system)あるいは双対組 (dual pair; 双対対) は、付随する双線型形式(内積, pairing)を持つようなベクトル空間の対である。 ノルム線型空間の研究においてよく用いられる函数解析学的方法に、もとの空間とその連続的双対空間、すなわちもとの空間上の連続線型形式全体の成すベクトル空間との関係性を調べるというものがある。双対対はこのような双対性の概念を一般化して、素性の良い双線型形式によって「双対性」が与えられる任意のベクトル空間の対を考えるものである。付随する双線型形式を用いて、半ノルムから極位相を定めると、ベクトル空間は局所凸空間(ノルム空間の一般化)になる。.

新しい!!: ホップ代数とベクトル空間の双対系 · 続きを見る »

アメリカ数学会

アメリカ数学会(アメリカすうがくかい、英語:American Mathematical Society、略称:AMS)は、アメリカ合衆国の数学の学会である。現会員数は、32000人。 イギリス滞在中にロンドン数学会の影響を受けたトーマス・フィスクによって1888年に設立された。1894年7月に、現在の名前で再編成された。 AMS は組版処理ソフトウェア TeX の主唱者であり、AmS-TeX や AmS-LaTeX の開発を支援した。また、との合弁事業で MathJax オープンソースプロジェクトを管理している。.

新しい!!: ホップ代数とアメリカ数学会 · 続きを見る »

カップ積

数学、とくに代数トポロジーにおいて、カップ積(cup product)は次数 p, q の2つのから次数 p + q の新しいコサイクルを作る手法である。カップ積はコホモロジーに結合的(かつ分配的)な次数付きの可換な積演算を定義し、空間 X のコホモロジーは次数付き環 H∗(X) となる。これをコホモロジー環と呼ぶ。カップ積は1935年から1938年に、、の研究によって導入され、1944年に Samuel Eilenberg によって完全なる一般性をもって導入された。.

新しい!!: ホップ代数とカップ積 · 続きを見る »

クニーズニク・ザモロドチコフ方程式

数学において、クニーズニク・ザモロドチコフ方程式(Knizhnik–Zamolodchikov equations)、あるいは、KZ方程式(KZ equations)は、固定されたレベルでのアフィンリー代数(の表現)に付随する共形場理論の相関函数が満たすべき、付加する一連の制限条件である。これらの方程式は、(primary field)の N-点函数が満たす(regular singular point)を持つ複素偏微分方程式系を形成し、リー代数か(vertex algebra)のどちらかの定式化を使い導出することができる。共形場理論の種数 0 の部分の構造は、これらの方程式のモノドロミー的な性質の中にコード化されている。特に、プライマリ場のブレイディングやフュージョン(あるいは、それらに付随する表現)は、4-点函数の性質から導出することができる。このため、KZ方程式は単一な行列に値を持つフックス型の一階複素常微分方程式へ帰着される。もともとは、ロシアの物理学者である(Vadim Knizhnik)と(Alexander Zamolodchikov)が、超幾何微分方程式の(connection coefficients)に関する古典的なガウスの公式を使い、SU(2)に対する理論を導いた。.

新しい!!: ホップ代数とクニーズニク・ザモロドチコフ方程式 · 続きを見る »

ケンブリッジ大学出版局

ンブリッジ大学出版局(Cambridge University Press)は、ケンブリッジ大学の出版事業を手がける出版社である。1534年、ヘンリー8世により特許状が発せられたのを起こりとする世界最古の出版社、かつ世界第2の規模の大学出版局であり、聖書や学術誌の出版も手掛けている。 「出版活動を通して、大学の理念である全世界における学問、知識、研究の促進を推し進めること」を使命として掲げている。これは、ケンブリッジ大学規約中の「Statute J」に規定されている。そして、「公益のため継続的に出版活動を行い、ケンブリッジという名前の評価を高めること」を目的としている。 ケンブリッジ大学出版局は、学術、教育分野の書籍の出版を行なっており、ヨーロッパ、中東、アフリカ、アメリカ、アジア太平洋といった地域で事業を展開している。世界中に50以上の事業所を持ち、2000人近くの従業員を抱え、4万以上のタイトルの書籍を発行している。その種類は、専門書、教科書、研究論文、参考書、 300近くに及ぶ学術誌、聖書、祈祷書、英語教育教材、教育ソフト、電子出版など、多岐にわたる。.

新しい!!: ホップ代数とケンブリッジ大学出版局 · 続きを見る »

コンパクト群

数学において,コンパクト(位相)群とは位相がコンパクトな位相群である.コンパクト群は離散位相をいれた有限群の自然な一般化であり,重要な性質が持ち越される.コンパクト群は群作用と表現論に関してよく理解された理論を持つ. 以下では常に群はハウスドルフと仮定する..

新しい!!: ホップ代数とコンパクト群 · 続きを見る »

コホモロジー

数学、とくにホモロジー論と代数トポロジーにおいて、コホモロジー (cohomology) はコチェイン複体から定義されるアーベル群の列を意味する一般的な用語である。つまり、コホモロジーはコチェイン、コサイクル、そしてコバウンダリの抽象的な研究として定義される。コホモロジーは、を、ホモロジーがもっているよりも洗練された代数的構造をもつ位相空間に割り当てる手法と見ることができる。コホモロジーはホモロジーの構成の代数的な双対から生じる。より抽象的でない言葉で言えば、基本的な意味でのコチェインは'量'をホモロジー論のチェインに割り当てる。 位相幾何学におけるその起源から、このアイデアは20世紀後半の数学において主要な手法となった。チェインについての位相的不変関係としてのホモロジーの最初の考えから、ホモロジーとコホモロジーの理論の応用の範囲は幾何学と抽象代数学に渡って拡がった。用語によって、多くの応用においてコホモロジー、反変理論、がホモロジーよりも自然であるという事実が隠されがちである。基本的なレベルではこれは幾何学的な状況において関数とを扱う。空間 X と Y、そして Y 上のある種の関数 F が与えられたとすると、任意の写像 f: X → Y に対して、f との合成は X 上の関数 F o f を引き起こす。コホモロジー群はまたしばしば自然な積、カップ積をもっており、環の構造を与える。この特徴のために、コホモロジーはホモロジーよりも強い不変量である。ホモロジーでは区別できないある種の代数的対象を区別できるのである。.

新しい!!: ホップ代数とコホモロジー · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: ホップ代数とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

商体

数学における整域の分数体(ぶんすうたい、field of fractions)あるいは商体(しょうたい、field of quotients)とは、与えられた整域に対してそれを部分環として含む最小の体である。整域 R の商体の元は a ≠ 0 および b なる整域 R の元によって分数 b/a の形に表される。環 R の商体が K であることを K.

新しい!!: ホップ代数と商体 · 続きを見る »

商群

数学において,商群(しょうぐん,quotient group, factor group)あるいは剰余群,因子群とは,群構造を保つ同値関係を用いて,大きい群から似た元を集めて得られる群である.例えば,n を法とした加法の巡回群は,整数から,差が の倍数の元を同一視し,そのような各類(合同類と呼ばれる)に1つの実体として作用する群構造を定義することによって得られる.群論と呼ばれる数学の分野の一部である. 群の商において,単位元の同値類はつねにもとの群の正規部分群であり,他の同値類たちはちょうどその正規部分群の剰余類たちである.得られる商は と書かれる,ただし はもとの群で は正規部分群である.(これは「(ジーモッドエヌ)」と読まれる."mod" は modulo の略である.) 商群の重要性の多くはその準同型との関係に由来する.第一同型定理は任意の群 の準同型による像はつねに のある商と同型であると述べている.具体的には,準同型 による の像は と同型である,ただし は の核 を表す. 商群の双対概念は部分群であり,これらが大きい群から小さい群を作る2つの主要な方法である.任意の正規部分群 は,大きい群から部分群 の元の間の差異を除去して得られる,対応する商群を持つ.圏論では,商群は商対象の例であり,これは部分対象の双対である.商対象の他の例は,商環,商線型空間,商位相空間,商集合を参照..

新しい!!: ホップ代数と商群 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: ホップ代数と線型写像 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: ホップ代数と群 (数学) · 続きを見る »

群環

代数学において、与えられた群および環に対する群環(ぐんかん、group ring)は、与えられた群と環の構造を自然に用いて構成される。群環はそれ自身が、与えられた環を係数環とし与えられた群を生成系とする自由加群であって、なおかつ与えられた群の演算を生成元の間の演算として「線型に」延長したものを積とする環を成す。俗に言えば、群環は与えられた群の与えられた環の元を「重み」とする形式和の全体である。与えられた環が可換であるとき、群環は与えられた環上の多元環(代数)の構造を持ち、群多元環(ぐんたげんかん、group algebra; 群代数)(あるいは短く群環これは少々紛らわしいが、任意の群環は係数環の中心上の群多元環となるから、その文脈で何を係数環としているかが明らかならば混乱の虞は無いであろう。)と呼ばれる。 群環は、特に有限群の表現論において重要な役割を果たす代数的構造である。無限群の群環はしばしば位相を加味した議論を必要とするため位相群の群環の項へ譲り、本項は主に有限群の群環を扱う。また、より一般の議論は群ホップ代数を見よ。.

新しい!!: ホップ代数と群環 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: ホップ代数と群論 · 続きを見る »

結合多元環

数学における(結合)線型環あるいは結合的代数または結合多元環(けつごうたげんかん、associative algebra)は、結合的な環であって、かつそれと両立するような、何らかの体上の線型空間(若しくはもっと一般の可換環上の加群)の構造を備えたものである。即ち、線型環 A は(結合律や分配律を含む)幾つかの公理を満足する二項演算(内部演算)としての加法と乗法を備え、同時に乗法と両立するスカラー(体 K や環 R の元)による乗法(外部演算)を備える。 分野によっては、線型環が乗法単位元 1 を持つと仮定することが典型的である場合もある。このような余分の仮定を満たすことを明らかにする場合には、そのような線型環を単型線型環(単位的(結合)多元環)と呼ぶ。.

新しい!!: ホップ代数と結合多元環 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: ホップ代数と物性物理学 · 続きを見る »

非可換幾何

数学における非可換幾何(ひかかんきか、noncommutative geometry)とは可換性が成り立たない(「積」について xy と yx が一致しない)ような代数構造に対する空間的・幾何学的な解釈を研究する分野である。通常の幾何学では様々な関数の積に関して可換性が要求されるが、その条件を外すことによってどんな現象がとらえられるかが追求される。.

新しい!!: ホップ代数と非可換幾何 · 続きを見る »

表現論

表現論(ひょうげんろん、representation theory)とは、ベクトル空間の線型変換として代数構造を表現することにより研究し、代数構造上の加群を研究する数学の一分野である。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象は、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が群の要素が行列の積により正則行列で表現されている。 Classic texts on representation theory include and.

新しい!!: ホップ代数と表現論 · 続きを見る »

関数の台

数学における、ある函数の台(だい、)とは、その函数の値が 0 とならない点からなる集合、あるいはそのような集合の閉包のことを言う。この概念は、解析学において特に幅広く用いられている。また、何らかの意味で有界な台を備える函数は、様々な種類の双対に関する理論において主要な役割を担っている。.

新しい!!: ホップ代数と関数の台 · 続きを見る »

量子化 (物理学)

物理学において、量子化(りょうしか、quantization)は古典力学で理解されていた物理現象を"量子力学"の文脈によって説明し直す過程である。これは、場の量子化についても言及する。.

新しい!!: ホップ代数と量子化 (物理学) · 続きを見る »

量子群

数学と理論物理学において、用語量子群(りょうしぐん、quantum group)は付加構造を持った様々な種類の非可換代数を指す。一般に、量子群はある種のホップ代数である。ただ1つの包括的な定義があるわけではなく、広範に類似した対象の族がある。 用語「量子群」は最初量子可積分系の理論において現れた。ウラジーミル・ドリンフェルト (Володи́мир Дрі́нфельд) と神保道夫によってホップ代数のある特定のクラスとして定義されたのだった。同じ用語は古典リー群あるいはリー環を変形したあるいはそれに近い他のホップ代数に対しても用いられる。例えば、ドリンフェルトと神保の仕事の少し後にによって導入された、量子群の `bicrossproduct' のクラスである。 ドリンフェルトのアプローチでは、量子群は補助的なパラメーター q あるいは h に依存したホップ代数として生じる。この代数は、q.

新しい!!: ホップ代数と量子群 · 続きを見る »

配置集合

数学の集合論における配置集合(はいちしゅうごう、Belegungsmenge)あるいは集合の冪(べき、exponentiation ensembliste)は、二つの集合 に対する演算で、 から への写像全体の集合を割り当てるものである。この集合は や などと書かれる。これはまた、 で添字付けられた の元の族の全体 F^E.

新しい!!: ホップ代数と配置集合 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: ホップ代数と連続 (数学) · 続きを見る »

構造定数 (数学)

分配多元環の構造定数(こうぞうていすう、structure constant, structure coeficient)とは、与えられた自由加群に対して、それを分配多元環とするための積構造を決定する定数のことである。.

新しい!!: ホップ代数と構造定数 (数学) · 続きを見る »

標数

標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

新しい!!: ホップ代数と標数 · 続きを見る »

次数付き環

数学、特に抽象代数学において、次数付き環(じすうつきかん、graded ring; 次数付けられた環)あるいは次数環とは R_i R_j \subset R_ を満たすアーベル群 R_i の直和として表すことのできる環のことである。多項式環の斉次多項式への分解を一般化した概念である。添え字集合は通常非負の整数の集合か整数の集合であるが、任意のモノイドあるいは群でもよい。直和分解は通常次数化(gradation)あるいは次数付け(grading)と呼ばれる。 次数(付き)加群(graded module)は同様に定義される(正確な定義は下を見よ)。これは次数付きベクトル空間の一般化である。次数付き環でもあるような次数付き加群は次数付き代数(graded algebra)と呼ばれる。次数付き環は次数付き Z-代数と見なすこともできる。 結合性は次数付き環の定義において重要でない(実は全く使われない)。したがってこの概念は非結合的多元環に対しても適用できる。例えば、を考えることができる。.

新しい!!: ホップ代数と次数付き環 · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

新しい!!: ホップ代数と正規部分群 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: ホップ代数と準同型 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ホップ代数と数学 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

新しい!!: ホップ代数と整域 · 続きを見る »

普遍包絡代数

(普遍)包絡代数(ふへんほうらくだいすう、universal enveloping algebra, algèbre enveloppante)あるいは(普遍)展開代数とは、任意のリー代数 \mathfrak から構成される、ある性質を満たす単位的結合代数 U(\mathfrak) と準同型写像 i\colon\mathfrak\to U(\mathfrak) の組 (U(\mathfrak), i) のことをいう。.

新しい!!: ホップ代数と普遍包絡代数 · 続きを見る »

ここにリダイレクトされます:

ホップ環対蹠射

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »