ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

群環

索引 群環

代数学において、与えられた群および環に対する群環(ぐんかん、group ring)は、与えられた群と環の構造を自然に用いて構成される。群環はそれ自身が、与えられた環を係数環とし与えられた群を生成系とする自由加群であって、なおかつ与えられた群の演算を生成元の間の演算として「線型に」延長したものを積とする環を成す。俗に言えば、群環は与えられた群の与えられた環の元を「重み」とする形式和の全体である。与えられた環が可換であるとき、群環は与えられた環上の多元環(代数)の構造を持ち、群多元環(ぐんたげんかん、group algebra; 群代数)(あるいは短く群環これは少々紛らわしいが、任意の群環は係数環の中心上の群多元環となるから、その文脈で何を係数環としているかが明らかならば混乱の虞は無いであろう。)と呼ばれる。 群環は、特に有限群の表現論において重要な役割を果たす代数的構造である。無限群の群環はしばしば位相を加味した議論を必要とするため位相群の群環の項へ譲り、本項は主に有限群の群環を扱う。また、より一般の議論は群ホップ代数を見よ。.

74 関係: 加群のテンソル積加群の直和半単純半単純環半直積単集合可逆元可換体可換環対称双線型形式巡回群中心 (代数学)平方剰余の相互法則代数学代数的閉体代数的構造位相群の群環位数 (群論)マシュケの定理ポントリャーギン双対モノイド環モジュラー表現論プランシュレルの定理パーセヴァルの等式フロベニウス多元環フーリエ変換ニコラ・ブルバキベクトル空間の双対系アルティン・ウェダーバーンの定理アーベル群ガウス和シューアの補題ジャコブソン根基スカラー (数学)円分多項式内積共役類線型結合線型部分空間群 (数学)群の表現群上の加群群ホップ代数環 (数学)環上の加群環上の多元環畳み込み直既約加群違いを除いて類関数...表現論行列環補有限複素数調和解析部分群部分環関数の台自己準同型環自由加群離散空間連続 (数学)標数正規部分群指示関数指標理論指標群有限群有限生成加群既約表現数学原論数論整拡大1の冪根 インデックスを展開 (24 もっと) »

加群のテンソル積

数学において、加群のテンソル積 (tensor product of modules) は双線型写像(例えば積)についての議論を線型写像(加群準同型)の言葉でできるようにする構成である。その加群の構成はベクトル空間のテンソル積の構成と類似であるが、可換環上の加群の組に対して実行して第三の加群を得ることができ、また任意の環上の左加群と右加群の組に対しても実行できてアーベル群が得られる。テンソル積は抽象代数学、ホモロジー代数学、代数トポロジー、代数幾何学の分野において重要である。ベクトル空間に関するテンソル積の普遍性は抽象代数学のより一般的な状況に拡張される。それによって線型演算を通じて双線型あるいは多重線型演算を研究することができる。代数と加群のテンソル積はのために使うことができる。可換環の場合には、加群のテンソル積を繰り返して加群のテンソル代数を作ることができ、加群の積を普遍的な方法で定義することができる。.

新しい!!: 群環と加群のテンソル積 · 続きを見る »

加群の直和

抽象代数学における直和(ちょくわ、direct sum)は、いくつかの加群を一つにまとめて新しい大きな加群にする構成である。加群の直和は、与えられた加群を「不必要な」制約なしに部分加群として含む最小の加群であり、余積の例である。双対概念であると対照をなす。 この構成の最もよく知られた例はベクトル空間(体上の加群)やアーベル群(整数環 Z 上の加群)を考えるときに起こる。構成はバナッハ空間やヒルベルト空間をカバーするように拡張することもできる。.

新しい!!: 群環と加群の直和 · 続きを見る »

半単純

半単純(はんたんじゅん).

新しい!!: 群環と半単純 · 続きを見る »

半単純環

数学、特に代数学において、環 A が A-加群として半単純加群、すなわち、非自明な部分加群をもたない A-加群の直和であるとき、A を半単純環という。これは、同型の違いを除いて、(可換とは限らない)体上の全行列環の有限個の直積である。 この概念は数学の多くの分野において現れる。例えば、線型代数学、数論、、リー群論、リー環論が挙げられる。これは例えば、の証明に役立つ。 半単純多元環の理論はシューアの補題とアルティン・ウェダーバーンの定理を基盤としている。.

新しい!!: 群環と半単純環 · 続きを見る »

半直積

群論において、群の半直積(はんちょくせき、semidirect product)とは、ふたつの群から新たな群を作り出す方法の一種。 群の直積の一般化であり、通常の直積をその特別な場合として含む。.

新しい!!: 群環と半直積 · 続きを見る »

単集合

数学における単集合(たんしゅうごう、singleton; 単元集合、単項集合、一元集合)あるいは単位集合()は、唯一の元からなる集合である。一つ組 (1-tuple) や単項列 (a sequence with one element) と言うこともできる。 例えば、 という集合は単集合である。.

新しい!!: 群環と単集合 · 続きを見る »

可逆元

数学、とくに代数学における可逆元(かぎゃくげん、invertible element)または単元(たんげん、unit)とは、一般に代数系の乗法と呼ばれる二項演算に対する逆元を持つ元のことをいう。.

新しい!!: 群環と可逆元 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 群環と可換体 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: 群環と可換環 · 続きを見る »

対称双線型形式

線型代数学における対称双線型形式(たいしょうそうせんけいけいしき、symmetric bilinear form, symmetric bilinear functional)は、ベクトル空間上の対称な双線型形式を言う。平たく言えば、実ベクトル空間上の標準内積を一般化した概念である。対称双線型形式は、直交極性や二次曲面の研究に非常に重要である。 文脈上、双線型形式について述べていると明らかな場合は、単に短く対称形式と呼ぶこともある。対称双線型形式は二次形式と近しい関係にあり、この両者の差異に関する詳細はの項目を参照。.

新しい!!: 群環と対称双線型形式 · 続きを見る »

巡回群

群論における巡回群(じゅんかいぐん、cyclic group、monogenous group)とは、ただ一つの元で生成される群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元 (generator) あるいは原始元 (primitive) と呼ばれる。.

新しい!!: 群環と巡回群 · 続きを見る »

中心 (代数学)

数学の分野である代数学において、多元環や群などの中心 (center, Zentrum) は考えている構造の部分集合であって、乗法に関してすべての元と交換する元全体からなる。.

新しい!!: 群環と中心 (代数学) · 続きを見る »

平方剰余の相互法則

整数論』(1801年)で平方剰余の相互法則の最初の証明を公開した。 (へいほうじょうよ、quadratic residue)とは、ある自然数を法としたときの平方数のことであり、平方剰余の相互法則(へいほうじょうよのそうごほうそく、quadratic reciprocity)は、ある整数 が別の整数 の平方剰余であるか否かを判定する法則である。.

新しい!!: 群環と平方剰余の相互法則 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 群環と代数学 · 続きを見る »

代数的閉体

数学において、体 が代数的に閉じているまたは代数的閉体(だいすうてきへいたい、; 代数閉体)であるとは、一次以上の任意の 係数変数多項式が 上に根を持つこと、あるいは同じことであるが、一次以上の任意の 係数一変数多項式が一次多項式の積として書けることである。 代数学の基本定理は、複素数体 が代数的閉体であることを主張する定理である。一方で、有限体 、有理数体 や実数体 は代数的閉体ではない。.

新しい!!: 群環と代数的閉体 · 続きを見る »

代数的構造

数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。 また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。 なお、分野(あるいは人)によっては代数系そのもの、あるいは代数系のもつ算法族のことを代数的構造とよぶこともあるようである。 後者は、代数系の代数構造とも呼ばれる。 現代では、代数学とは代数系を研究する学問のことであると捉えられている。.

新しい!!: 群環と代数的構造 · 続きを見る »

位相群の群環

数学において、局所コンパクト群の群環(ぐんかん、group algebra)とは、その群の表現が適当な環の表現の表現として読み替えることができるような(いくつかの)構成法が与えられたときの、その環(ふつうは作用素環あるいはもっと一般のバナハ代数)を総称して呼ぶものである。そういった環は、位相を抜きにして考えた群に対する群環と同じような働きを果たす。.

新しい!!: 群環と位相群の群環 · 続きを見る »

位数 (群論)

数学の分野である群論において、m.

新しい!!: 群環と位数 (群論) · 続きを見る »

マシュケの定理

数学、特に群の表現論においてマシュケの定理(マシュケのていり、Maschke's theorem)とは、有限群の表現の既約表現への分解に関する定理である。ハインリヒ・マシュケに名を因む。有限群 G のある標数 0 の体上の有限次元表現 (V, ρ) に対し、任意の G-不変部分空間 U は G-不変な直和補因子 W を持つこと、言い換えれば、表現 (V, ρ) が完全可約であることを述べるものである。より一般に、有限体のような正標数 p の体に対しても、p が群 G の位数を割り切らないならば、マシュケの定理は成り立つ。.

新しい!!: 群環とマシュケの定理 · 続きを見る »

ポントリャーギン双対

数学、殊に調和解析および位相群の理論においてポントリャーギン双対性(ポントリャーギンそうついせい、Pontryagin duality)はフーリエ変換の一般的な性質を説明する。ポントリャーギン双対は実数直線あるいは有限アーベル群上の函数の、たとえば.

新しい!!: 群環とポントリャーギン双対 · 続きを見る »

モノイド環

抽象代数学におけるモノイド環(モノイドかん、monoid ring)あるいはモノイド多元環(モノイドたげんかん、monoid algebra; モノイド代数)は、(単位的)環とモノイドから構成される単位的多元環で、多項式環の概念を一般化するものである。 実際、環 上の一変数多項式環 は と( を含む)自然数全体の成す(加法的)モノイド (あるいは適当な不定元 を用いて乗法的に書いた可換モノイド )から得られるモノイド環 であり、同様に(加法)モノイド は -変数の多項式環 を与える。 与えられたモノイドがさらに群を成すとき、得られるモノイド環は群環と呼ばれる。.

新しい!!: 群環とモノイド環 · 続きを見る »

モジュラー表現論

数学の一分野としてのモジュラー表現論(モジュラーひょうげんろん、modular representation theory)は表現論の一部として、有限群 G の正標数の体 K 上での線型表現を研究する。群論への応用を持つのみならず、モジュラー表現論は代数幾何学、符号理論、組合せ論、数論など他の数学分野においても自然に生じてくる。 有限群論において、ブラウアーがモジュラー表現論を用いて証明した指標理論的な結果は、有限単純群の分類の過程で、特にそのシロー 2-群が適当な意味において小さすぎるために純群論的手法では従順でないと特徴付けられる単純群に対して、重要な役割を果たした。また、グローバーマンがブラウアーの展開した理論を用いて示した、有限群の位数 2 の元の埋め込みに関する一般的な結果は、''Z''∗-定理と呼ばれ、分類を進めるうえで特に有効であった。 係数体 K の標数が群 G の位数を整除しないならば、マシュケの定理によりモジュラー表現は完全可約となり、これは通常表現(標数 0 の表現)と同様である。マシュケの定理の証明は群の位数が割れないことに依拠しており、これは K の標数が G の位数を整除するときには意味を成さない。この場合、表現は必ずしも完全可約に限らず、通常表現の場合あるいは標数が群の位数と互いに素の場合とは対照的である。以下ではほとんどの場合、体 K は十分大きい(例えば K が代数閉体ならば十分)ものと暗黙に仮定する(さもなくば、主張をもう少し仔細に込み入ったものとせねばならないであろう)。.

新しい!!: 群環とモジュラー表現論 · 続きを見る »

プランシュレルの定理

数学におけるプランシュレルの定理(プランシュレルのていり、Plancherel theorem)は、1910年にの得た調和解析における結果で、函数の平方絶対値 (squared modulus) の積分は、その周波数スペクトルの平方絶対値の積分に等しいことを述べるものである。 より明確に定式化すると、函数が ''L''1('''R''') にも L2(R) にも属するならば、そのフーリエ変換は L2(R) に属し、フーリエ変換写像は L2-ノルムに関して等距変換になる。このことから、フーリエ変換写像を L1(R) ∩ L2(R) に制限したものは、線型等距変換写像 L2(R) → L2(R) に一意的に拡張できることがわかる。この等距変換は実際にはユニタリ作用素になる。実質的に、これは自乗可積分函数のフーリエ変換について考えることを可能にするものである。 プランシュレルの定理は n-次元ユークリッド空間 Rn 上の主張としてもやはり有効である。またより一般に局所コンパクト可換群に対してもこの定理は成立する。非可換な局所コンパクト群についても適当な技術的仮定を満足するものについては、プランシュレルの定理の一種で意味を持つようなものが存在するが、これは非可換調和解析に属する主題である。 フーリエ変換のユニタリ性は、自然科学や工学の分野でしばしばパーシヴァルの定理 と呼ばれる。これは旧来の(より一般性の少ない)フーリエ級数のユニタリ性を示した結果の名称の流用である。.

新しい!!: 群環とプランシュレルの定理 · 続きを見る »

パーセヴァルの等式

数学の解析学の分野において、の名にちなむパーセヴァルの等式(パーセヴァルのとうしき、)は、函数のフーリエ級数の総和可能性に関する基本的な結果である。幾何学的には、内積空間に対するピタゴラスの定理と見なされる。 大雑把に言うと、この等式では、函数のフーリエ係数の二乗の和が、その函数の二乗の積分と等しいことが示される。すなわち が成立する。ここで cn は ƒ のフーリエ係数で、次式で与えられる: 正確には、この結果は ƒ が自乗可積分あるいはより一般に ''L''2−π,π に属する場合に成立する。類似の結果として、函数のフーリエ変換の二乗の積分が、その函数の二乗の積分と等しいというプランシュレルの定理がある。すなわち、1 次元の場合は、 に対して次の等式が成立する:.

新しい!!: 群環とパーセヴァルの等式 · 続きを見る »

フロベニウス多元環

フロベニウス多元環(フロベニウスたげんかん、Frobenius algebra)、あるいはフロベニウス代数とは、数学の表現論や加群論において有限次元な単位的結合多元環のうち、良い双対理論を与える特別な双線型形式を持つものをいう。 フロベニウス多元環は1930年代に Brauer と Nesbitt によって有限群のモジュラー表現の一般化として研究され始め、Frobenius にちなんで名づけられた。中山は および特に において豊かな双対理論を初めて発見した。デュドネはこれを用いて においてフロベニウス多元環を特徴づけ、フロベニウス多元環のこの性質を perfect duality と呼んだ。フロベニウス多元環は準フロベニウス環(右正則表現が移入的なネーター環)へと一般化された。最近では、フロベニウス多元環への関心は、位相的場の理論との関連からも高まっている。 体上の有限次元多元環に対しては以下のようなクラスの階層がある。.

新しい!!: 群環とフロベニウス多元環 · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: 群環とフーリエ変換 · 続きを見る »

ニコラ・ブルバキ

ニコラ・ブルバキ(Nicolas Bourbaki, ブールバキとも)は架空の数学者であり、主にフランスの若手の数学者集団のペンネームである。当初この数学者集団は秘密結社として活動し、ブルバキを一個人として活動させ続けた。日本で出版された38冊に及ぶ数学原論や、定期的に開催されるで有名。.

新しい!!: 群環とニコラ・ブルバキ · 続きを見る »

ベクトル空間の双対系

数学の函数解析学周辺分野におけるベクトル空間の双対系(そうついけい、dual system)あるいは双対組 (dual pair; 双対対) は、付随する双線型形式(内積, pairing)を持つようなベクトル空間の対である。 ノルム線型空間の研究においてよく用いられる函数解析学的方法に、もとの空間とその連続的双対空間、すなわちもとの空間上の連続線型形式全体の成すベクトル空間との関係性を調べるというものがある。双対対はこのような双対性の概念を一般化して、素性の良い双線型形式によって「双対性」が与えられる任意のベクトル空間の対を考えるものである。付随する双線型形式を用いて、半ノルムから極位相を定めると、ベクトル空間は局所凸空間(ノルム空間の一般化)になる。.

新しい!!: 群環とベクトル空間の双対系 · 続きを見る »

アルティン・ウェダーバーンの定理

抽象代数学において、アルティン・ウェダーバーンの定理 (Artin–Wedderburn theorem) は半単純環や半単純代数の分類定理である。.

新しい!!: 群環とアルティン・ウェダーバーンの定理 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 群環とアーベル群 · 続きを見る »

ガウス和

数学におけるガウス和(ガウスわ、)とは、ある特別な1の冪根の有限和である。典型的に で与えられる。ここで和はある有限可換環 R の元 r について取られ、ψ(r) は加法群 R+ から(複素平面の)単位円への群準同型で、χ(r) は単数群 R× から単位円への群準同型である。単元でない r については と拡張する。ガウス和はガンマ関数の有限体における類似物である。 このような和は数論において至る所で現れる。例えば、あるディリクレ指標 χ に対して L(s, &chi) と L(1 − s) を関連付ける方程式が を含むような、ディリクレのL関数の関数等式に現れる。ただし は χ の複素共役である。 カール・フリードリヒ・ガウスによって元々考えられていたケースは、R が素数 p を法とする剰余体 Z/pZ で χ がルジャンドル記号であるであった。その場合、ガウスは p が 4 を法として 1 と合同であるか 3 と合同であるかに応じて G(&chi).

新しい!!: 群環とガウス和 · 続きを見る »

シューアの補題

数学において、シューアの補題(シューアのほだい、Schur's lemma)とは、群の表現や代数の表現に関する基本的できわめて有用な定理である。群の場合には、シューアの補題は M と N が群 G の有限次元既約表現加群であり、φ が群の作用と可換な M から N への線型写像とすると、φ は可逆であるか、または φ.

新しい!!: 群環とシューアの補題 · 続きを見る »

ジャコブソン根基

数学、より詳しくは抽象代数学の一分野である環論において、環 R のジャコブソン根基あるいはヤコブソン根基(Jacobson radical)とは、すべての単純右 R-加群を零化する R の元からなるイデアルである。定義において「右」の代わりに「左」としても同じイデアルが得られるので、この概念は左右対称的である。環のジャコブソン根基は頻繁に J(R) や rad(R) と表記される。しかしながら、他の環の根基との混乱を避けるため、この記事では前者の表記を使うのがよいであろう。ジャコブソン根基はにちなんで名づけられた。彼は初めてそれを任意の環についてで研究した人である. 環のジャコブソン根基はたくさんの内部的な特徴づけをもっており、単位元をもたない環に対してこの概念をうまく拡張するいくつかの定義も含んでいる。加群の根基はジャコブソン根基の定義を加群を含むように拡張する。ジャコブソン根基は多くの環や加群の理論の結果、例えば中山の補題において、際立った役割を果たす。 Isaacs, Corollary 13.3, p. 180 Somewhat remarkable is that this also equals the intersection of all maximal left ideals of R. Although the Jacobson radical is indeed an ideal, this is not entirely obvious from the previous two characterizations and hence other characterizations are preferred.

新しい!!: 群環とジャコブソン根基 · 続きを見る »

スカラー (数学)

線型代数学では、ベクトル空間のベクトルに対比するものとしての実数をスカラー(scalar)と呼び、ベクトルを定数倍して別のベクトルを作り出す演算としてスカラー乗法(スカラー倍)が定義される。より一般に、実数全体に替えて任意の体、例えば複素数全体を用いてベクトル空間を定義することができるが、そのときのベクトル空間のスカラーとはその体の元のことを示すものということになる。 ベクトル空間の上にスカラー積演算(スカラー倍と混同してはいけない)が定義されれば、二つのベクトルを掛けてスカラーを得ることができる。スカラー積を備えたベクトル空間は内積空間と呼ばれる。 四元数の実部(実成分)のことをスカラー部(スカラー成分)とも呼ぶ。 厳密な言い方ではないが、例えばベクトルや行列、テンソルなどの一般には「複合的」な値で決まる量が、実際には一つの成分に還元されてしまうとき、例えば 1 × n 行列と n × 1 行列の積は厳密には 1 × 1 行列となるが、これをスカラーと見做すことがよく行われる。 行列のスカラー倍を行列の積として実現する「スカラー行列」は、単位行列の適当なスカラー k-倍 kI の形に書ける行列の総称として用いられる。.

新しい!!: 群環とスカラー (数学) · 続きを見る »

円分多項式

円分多項式(えんぶんたこうしき、cyclotomic polynomial, Kreisteilungspolynom)とは1の冪根に関連のある多項式である。具体的には次の式で定義される多項式 を指す。 \Phi_n \left(x\right).

新しい!!: 群環と円分多項式 · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: 群環と内積 · 続きを見る »

共役類

数学、とくに群論において、任意の群は共役類(きょうやくるい、conjugacy class)に分割できる。同じ共役類の元は多くの性質を共有し、非アーベル群の共役類の研究はそれらの構造のたくさんの重要な特徴を明らかにする。.

新しい!!: 群環と共役類 · 続きを見る »

線型結合

線型結合(せんけいけつごう、)は、線型代数学およびその関連分野で用いられる中心的な概念の一つで、平たく言えば、ベクトルの定数倍と加え合わせのことである。一次結合あるいは線型和とも呼ぶ。 いくつかのベクトルを組み合わせると他のベクトルを作ることができる。例えば、2次元数ベクトルを例にとれば、ベクトル v.

新しい!!: 群環と線型結合 · 続きを見る »

線型部分空間

数学、とくに線型代数学において、線型部分空間(せんけいぶぶんくうかん、linear subspace)または部分ベクトル空間(ぶぶんベクトルくうかん、vector subspace)とは、ベクトル空間の部分集合で、それ自身が元の空間の演算により線型空間になっているもののことである。 ベクトル空間のある部分集合が、それ自身ある演算に関してベクトル空間の構造を持っていたとしても、その演算がもとの空間の演算でないならば部分線型空間とは呼ばない、ということに注意されたい。また、文脈により紛れの恐れのない場合には、線型部分空間のことを単に部分空間と呼ぶことがある。.

新しい!!: 群環と線型部分空間 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 群環と群 (数学) · 続きを見る »

群の表現

数学において、群の表現(ぐんのひょうげん、group representation)とは、抽象的な群 の元 に対して具体的な線形空間 の正則な線形変換としての実現を与える準同型写像 のことである。線型空間 の基底を取ることにより、 をより具体的な正則行列として表すことができる。.

新しい!!: 群環と群の表現 · 続きを見る »

群上の加群

数学において、与えられた群 G 上の加群(かぐん、module over G)または G-加群 (G-module) とは、アーベル群 M であって M の群構造と両立する G の作用を持つものをいう。これは ''G'' の表現に広く一般に用いることのできる概念である。群コホモロジーは G-加群の一般論の研究において重要な道具をいくつも提供する。 G-加群という用語はもっといっぱんに、G が線型に(つまり R-加群の自己同型からなる群として)作用する ''R''-加群に対しても用いられる。.

新しい!!: 群環と群上の加群 · 続きを見る »

群ホップ代数

数学における群ホップ代数(ぐんホップだいすう、group Hopf algebra)は、与えられた群とその群作用の対称性に関連する、ある種の構成を言う。群ホップ代数の変形理論は量子群論において基礎を成す。.

新しい!!: 群環と群ホップ代数 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 群環と環 (数学) · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 群環と環上の加群 · 続きを見る »

環上の多元環

数学の殊に環論において可換環上の代数あるいは多元環(たげんかん、algebra)は、体上の多元環の概念において係数体を考えるところを置き換えて可換環を係数環としたものである。 本項においては、環と言えば単位元を持つものと仮定する。.

新しい!!: 群環と環上の多元環 · 続きを見る »

畳み込み

畳み込み(たたみこみ、convolution)とは関数 を平行移動しながら関数 に重ね足し合わせる二項演算である。畳み込み積分、合成積、重畳積分、あるいは英語に倣いコンボリューションとも呼ばれる。.

新しい!!: 群環と畳み込み · 続きを見る »

直既約加群

抽象代数学において、加群が直既約(ちょくきやく、indecomposable)であるとは、その加群が0でなく、2つの0でない部分加群の直和として書けないということである。直既約でない加群は直可約(ちょくかやく、decomposable)と言う。 直既約は単純(既約)よりも弱い概念である。加群 M が単純であるとは「真の部分加群 の形の加群( を含む、このとき になる)は直既約である。すべての有限生成 -加群はこれらの直和である。これが単純であることは (または )であることと同値であることに注意せよ。例えば、位数4の巡回群 は直既約であるが単純でない。この群は位数 の部分群 しか非自明な部分群を持たないが、これは直和因子でない。 整数環 上の加群はアーベル群である。有限生成アーベル群が直既約であることとそれが か素数 と正整数 について.

新しい!!: 群環と直既約加群 · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: 群環と違いを除いて · 続きを見る »

類関数

数学の群論における類関数(るいかんすう、class function)は、群上で定義される関数であって、共軛類上では定数となるもののことをいう。複素数値の類函数はコンパクト群の表現論で重要である。自乗可積分な複素数値類函数は(例えば有限離散群の群環や位相群の群環)の中心元として現れるため、中心函数 (central function) とも呼ばれる。 が位相群のとき、一般に類函数としては可測あるいはさらに連続であるものに限って言う。.

新しい!!: 群環と類関数 · 続きを見る »

表現論

表現論(ひょうげんろん、representation theory)とは、ベクトル空間の線型変換として代数構造を表現することにより研究し、代数構造上の加群を研究する数学の一分野である。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象は、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が群の要素が行列の積により正則行列で表現されている。 Classic texts on representation theory include and.

新しい!!: 群環と表現論 · 続きを見る »

行列環

抽象代数学において、行列環 (matrix ring) は、および行列の乗法のもとで環をなす、行列の任意の集まりである。別の環を成分に持つ n×n 行列全体の集合や無限次行列環 (infinite matrix ring) をなす無限次行列のある部分集合は行列環である。これらの行列環の任意の部分環もまた行列環である。 R が可換環のとき、行列環 Mn(R) は行列多元環 (matrix algebra) と呼ばれる結合多元環である。この状況において、M が行列で r が R の元であれば、行列 Mr は行列 M の各成分に r をかけたものである。 行列環は単位元をもたない環上作ることができるが、終始 R は単位元 1 ≠ 0 をもつ結合的環であると仮定する。.

新しい!!: 群環と行列環 · 続きを見る »

補有限

数学において、集合 X の部分集合 A が補有限(ほゆうげん、cofinite; 余有限)であるとは、A の X における補集合が有限集合であることをいう。すなわち、補有限集合 A は「 ''X'' の'''有限個の例外を除く全て'''の元を含む」ような X の部分集合である。補集合が有限でなく可算である場合、その集合は補可算(あるいは余可算)であるという。 補有限の概念は、有限集合に関するものを無限集合に対して一般化する際に自然に生ずる。特に、直積位相や直和加群などのような無限積について、無限であるのと補有限であるのとで本質的な差異を生むものもある。.

新しい!!: 群環と補有限 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 群環と複素数 · 続きを見る »

調和解析

数学の一分野としての調和解析(ちょうわかいせき、Harmonic analysis)は、関数や信号を基本波の重ね合わせとして表現することに関わるもので、フーリエ級数やフーリエ変換及びその一般化について研究する分野である。19世紀から20世紀を通じて、調和解析の扱う主題は広く、応用も信号処理、量子力学、神経科学など多岐にわたる。 「調和 (harmonic)」の語は、もとは物理的な固有値問題から来たもので、(楽器の弦における調和振動の周波数のように)周波数が他の周波数の整数倍となっているような波を意図したものであるが、現在ではその原義を超えて一般化した使い方をされる。 上の古典フーリエ変換は未だ活発な研究の成されている領域であり、特により一般の緩増加超関数などの対象についてのフーリエ変換に関心が持たれる。例えば、シュワルツ超関数 に適当な仮定を課すときに、それらの仮定を のフーリエ変換に関する仮定に翻訳することを考えることができる。はその一例である。ペイリー・ウィーナーの定理からすぐに従うことに、 がコンパクト台を持つ非零超関数(これにはコンパクト台を持つ関数ももちろん含まれる)ならばそのフーリエ変換がコンパクト台を持つことは起こりえない。これは調和解析的な設定のもとでの非常に初等的な形の不確定性原理と言うことができる(フーリエ級数の収束も参照)。 フーリエ級数はヒルベルト空間論の文脈でも有効に調べられており、調和解析と関数解析学とを結ぶものとなっている。.

新しい!!: 群環と調和解析 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

新しい!!: 群環と部分群 · 続きを見る »

部分環

数学における部分環(ぶぶんかん、subring)は、環 R の部分集合 S で、R の加法と乗法をそこに制限するときそれ自身が環となり、かつ R の単位元を含むものを言う。単位元を持つことを仮定しない場合には、R の演算の制限で S が環を成すことのみを以って部分環を定義する(この場合も自動的に S は R の加法単位元を含む)。後者は前者よりも弱い条件であり、例えば任意のイデアルは(たとえ乗法的単位元を持つ環においても)後者の意味の部分環になる(この部分環が、もとの環とは異なる乗法単位元を持つ場合もあり得る)。(本項で扱う)単位元の存在を定義に含める場合には、R の部分環となるようなイデアルは R 自身に限る。.

新しい!!: 群環と部分環 · 続きを見る »

関数の台

数学における、ある函数の台(だい、)とは、その函数の値が 0 とならない点からなる集合、あるいはそのような集合の閉包のことを言う。この概念は、解析学において特に幅広く用いられている。また、何らかの意味で有界な台を備える函数は、様々な種類の双対に関する理論において主要な役割を担っている。.

新しい!!: 群環と関数の台 · 続きを見る »

自己準同型環

抽象代数学において、アーベル群 X の自己準同型環(endomorphism ring) は、X からそれ自身への準同型写像( 上の自己準同型)すべてからなる集合である。加法は(後述)で定義され、積は写像の合成で定義される。 自己準同型環の元となる「準同型」が何を指すものかは文脈によって異なり、これは考えている対象の圏に依存する。その結果、自己準同型環は対象のいくつかの内在的な性質を受け継いでいる。自己準同型環はしばしばある環上の多元環(代数)であり、自己準同型多元環(endomorphism algebra; 自己準同型代数)とも呼ばれる。.

新しい!!: 群環と自己準同型環 · 続きを見る »

自由加群

数学において、自由加群(じゆうかぐん、free module) とは、加群の圏におけるである。集合 が与えられたとき、 上の自由加群とは を基底 にもつ自由加群である。たとえば、すべてのベクトル空間は自由であり、集合上の自由ベクトル空間は集合上の自由加群の特別な場合である。任意の加群はある自由加群の準同型像である。.

新しい!!: 群環と自由加群 · 続きを見る »

離散空間

数学の位相空間論周辺分野における離散空間(りさんくうかん、discrete space)は、その点がすべてある意味で互いに「孤立」しているような空間で、位相空間(またはそれと同様の構造)の非常に単純で極端な例の一つを与える。.

新しい!!: 群環と離散空間 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 群環と連続 (数学) · 続きを見る »

標数

標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

新しい!!: 群環と標数 · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

新しい!!: 群環と正規部分群 · 続きを見る »

指示関数

数学において指示関数(しじかんすう、indicator function)、集合の定義関数、特性関数(とくせいかんすう、characteristic function)は、集合の元がその集合の特定の部分集合に属するかどうかを指定することによって定義される関数である。.

新しい!!: 群環と指示関数 · 続きを見る »

指標理論

数学,特に群論において,群の表現の指標(しひょう,character)は,群の各元に対応する行列のトレースを対応させる写像である.指標は表現の本質的な情報をより凝縮された形で持っている.ゲオルク・フロベニウスは最初に,指標のみに基づいて,表現の明示的な行列表示は用いずに,を発展させた.これは有限群の複素表現はその指標によって(同型を除いて)決定されるから可能である.正標数の体上の表現,いわゆる「モジュラー表現」の場合には,状況はより繊細であるが,はこの場合にも指標の強力な理論を発展させた.有限群の構造に関する多くの深い定理はモジュラー表現の指標を用いる..

新しい!!: 群環と指標理論 · 続きを見る »

指標群

数学において、指標群 (character group) は複素数値関数による群の表現の群である。これらの関数は一次元行列表現と考えることができ、したがって関連した文脈である指標理論において生じる群指標の特別な場合である。群が行列によって表現されるときにはいつでも、行列のトレースによって定義される関数は指標 (character) と呼ばれる。しかしながら、これらのトレースは一般には群をなさない。これらの 1 次元指標のいくつかの重要な性質は一般の指標に適用する:.

新しい!!: 群環と指標群 · 続きを見る »

有限群

数学および抽象代数学において、有限群(ゆうげんぐん、finite group)とは台となっている集合Gが有限個の元しか持たないような群のことである。20世紀の間数学者は、特に有限群のや、可解群や冪零群 の理論などといった、有限群の理論のさまざまな面を深く研究していた。全ての有限群の構造の完全な決定は余りに遠大な目標だった: あり得る構造の数はすぐに圧倒的に大きくなった。しかし、単純群の完全な分類という目標は達成された。つまり任意の有限群の「組み立て部品」は現在では完全に知られている(任意の有限群は組成列を持つ)。 20世紀の後半には、シュヴァレーやといった数学者によってや関連する群の有限類似の理解が深まった。それらの群の族の一つには有限体上の一般線型群がある。 有限群は、ある数学的・物理的対象の構造を保つ変換が有限個しかない場合に、その対象の対称性を考えるときに出て来る群である。他方で、""を扱っているようにもみなせるリー群の理論は、関連するワイル群の影響を強く受ける。有限次ユークリッド空間に作用する鏡映によって生成される有限群も存在する。それゆえ、有限群の特性は、理論物理学や化学などの分野で役目を持つ。.

新しい!!: 群環と有限群 · 続きを見る »

有限生成加群

数学において、有限生成加群(ゆうげんせいせいかぐん、finitely generated module)とは、有限な生成集合をもつ加群のことである。有限生成 R-加群はまた有限 R-加群 (finite R-module, module of finite type) や R 上有限 (finite over R) とも呼ばれる。 関連した概念に、有限余生成加群 (finitely cogenerated module)、有限表示加群 (finitely presented module)、有限関係加群 (finitely related module)、連接加群 (coherent module) があり、これらはすべてあとで定義される。ネーター環上では、有限生成、有限表示、連接加群の概念は一致する。 たとえば体上の有限生成加群とは単に有限次元ベクトル空間であり、有理整数環上の有限生成加群とは単に有限生成アーベル群である。.

新しい!!: 群環と有限生成加群 · 続きを見る »

既約表現

数学のとくに群あるいは多元環の表現論における(代数的構造の)既約表現(きやくひょうげん、irreducible representation; irrep) とは、真の閉部分表現を持たない非零表現を言う。 複素内積ベクトル空間 V 上の任意の有限次元ユニタリ表現は、既約表現の直和である。既約表現は常に直既約である(すなわち、別の表現の直和にかくことができない)であり、この二つはしばしば混同されるが、例えば上半三角冪零行列として作用する実数の二次元表現など、一般には可約だが直既約な表現が無数に存在する。.

新しい!!: 群環と既約表現 · 続きを見る »

数学原論

数学原論(すうがくげんろん、Éléments de mathématique)は、数学者集団ニコラ・ブルバキ による数学に関するである。2016年現在11の部門からなり、各部門が1つあるいは複数の章に分かれている。最初の巻はエルマン (Hermann) 書店によって1939年から、はじめは小冊子の形で、後に合本として、出版された。編集者との意見の相違から、出版は1970年代にCCLSに代わり、1980年代にはマソン (Masson) 書店に代わった。2006年からは、シュプリンガー・フェアラーク (Springer Verlag) がすべての分冊を再出版している。(なお和訳は絶版である。) 書名の奇妙な "mathématique" は意図的なものであり、通常使われる複数形が示唆するかもしれないことに反し、数学は統一されているという著者の信条を表している。逆に、ブルバキの『数学史』(Éléments d'histoire des mathématiques, 数学史原論)は複数形を用いており、ブルバキ以前には数学はばらばらな分野の集まりであったが、構造の現代的な概念によって統一できるようになったことを示している。 最初の6部門は論理的な順序に従っている。他の部門は初めの6部門に述べられていたことは用いるが、順序立ってはいない。.

新しい!!: 群環と数学原論 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: 群環と数論 · 続きを見る »

整拡大

可換環論において、可換環 B とその部分環 A について、B の元 b が A 係数のモニック多項式の根であるとき、b は A 上整である(integral over A)という。B のすべての元が A 上整であるとき、B は A 上整である、または、B は A の整拡大(integral extension)であるという。 本記事において、環とは単位元をもつ可換環のこととする。.

新しい!!: 群環と整拡大 · 続きを見る »

1の冪根

1の冪根(いちのべきこん、root of unity)、または1の累乗根(いちのるいじょうこん)は、数学において、冪乗して 1 になる(冪単である)ような数のことである。すなわち、ある自然数 n が存在して となる z のことである。通常は複素数の範囲で考えるが、場合によっては ''p'' 進数のような他の数の体系内で考える場合もある。以下では主として複素数の場合について述べる。 自然数 n に対し、m (\zeta_n.

新しい!!: 群環と1の冪根 · 続きを見る »

ここにリダイレクトされます:

群多元環

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »