ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

カップ積

索引 カップ積

数学、とくに代数トポロジーにおいて、カップ積(cup product)は次数 p, q の2つのから次数 p + q の新しいコサイクルを作る手法である。カップ積はコホモロジーに結合的(かつ分配的)な次数付きの可換な積演算を定義し、空間 X のコホモロジーは次数付き環 H∗(X) となる。これをコホモロジー環と呼ぶ。カップ積は1935年から1938年に、、の研究によって導入され、1944年に Samuel Eilenberg によって完全なる一般性をもって導入された。.

20 関係: 埋め込み (数学)単体可微分多様体外積代数代数的位相幾何学位相空間ド・ラームコホモロジーホモロジー代数学キャップ積コホモロジー環サミュエル・アイレンベルグ絡み数環準同型特異ホモロジー鎖複体関手横断性 (数学)次数付き環準同型数学

埋め込み (数学)

数学において、埋め込み(うめこみ、embedding, imbedding)とは、数学的構造間の構造を保つような単射のことである。 It is suggested by, that the word "embedding" is used instead of "imbedding" by "the English", i.e. the British.

新しい!!: カップ積と埋め込み (数学) · 続きを見る »

単体

単体(たんたい、simple substance)とは、単一の元素からできている純物質のことである。 水素 (H2)、酸素 (O2) などの等核二原子分子や、ナトリウム (Na)、金 (Au) などの純金属が含まれる。 これに対して、水 (H2O) など2種類以上の元素からできている純物質は化合物という。 酸素 (O2) とオゾン (O3)、あるいは赤リンと黄リンのように、同じ元素からできた単体であっても、異なる性質を示す場合がある。 このような単体同士の関係を同素体という。 たとえば、ダイヤモンドとグラファイトを混ぜ合わせた物質は、単一の炭素原子からできているが、密度・融点・沸点などの物理的性質が一定にさだまらないので純物質ではなく(したがって単体でもなく)、2種類の単体(炭素の同素体)の混合物である。.

新しい!!: カップ積と単体 · 続きを見る »

可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

新しい!!: カップ積と可微分多様体 · 続きを見る »

外積代数

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。.

新しい!!: カップ積と外積代数 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: カップ積と代数的位相幾何学 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: カップ積と位相空間 · 続きを見る »

ド・ラームコホモロジー

ド・ラームコホモロジー(de Rham cohomology)とは可微分多様体のひとつの不変量で、多様体上の微分形式を用いて定まるベクトル空間である。多様体の位相不変量である特異コホモロジーとド・ラームコホモロジーは同型になるというド・ラームの定理がある。.

新しい!!: カップ積とド・ラームコホモロジー · 続きを見る »

ホモロジー代数学

ホモロジー代数学(homological algebra)は、一般の代数的な設定のもとでホモロジーを研究する数学の分野である。それは比較的新しい分野であり、その起源は19世紀の終わりの、(代数トポロジーの前身)と抽象代数学(加群や の理論)の、主にアンリ・ポワンカレとダフィット・ヒルベルトによる研究にまでさかのぼる。 ホモロジー代数学の発展は圏論の出現と密接に結びついている。概して、ホモロジー代数はホモロジー的関手とそれから必然的に生じる複雑な代数的構造の研究である。数学においてきわめて有用で遍在する概念の1つはチェイン複体 (chain complex) の概念であり、これはそのホモロジーとコホモロジーの両方を通じて研究できる。ホモロジー代数は、これらの複体に含まれる情報を得、それを環、加群、位相空間や、他の 'tangible' な数学的対象のホモロジー的不変量の形で描写する手段を提供してくれる。これをするための強力な手法はによって与えられる。 まさにその起源から、ホモロジー代数学は代数トポロジーにおいて非常に多くの役割を果たしている。その影響の範囲は徐々に拡大しており現在では可換環論、代数幾何学、代数的整数論、表現論、数理物理学、作用素環論、複素解析、そして偏微分方程式論を含む。K-理論はホモロジー代数学の手法を利用する独立した分野であり、アラン・コンヌの非可換幾何もそうである。.

新しい!!: カップ積とホモロジー代数学 · 続きを見る »

キャップ積

代数トポロジーにおいて、キャップ積(cap product)は次数 p のと次数 q ≤ p のコチェインから次数 p − q の新しいチェインを作る手法である。キャップ積は1936年ににより、1938年ににより独立に導入された。.

新しい!!: カップ積とキャップ積 · 続きを見る »

コホモロジー環

数学では、特に代数トポロジーでは、位相空間 X のコホモロジー環 (cohomology ring) は、X のコホモロジー群から作られる環であり、環の積としてカップ積を持つ。ここに「コホモロジー」とは、通常、特異コホモロジーであるが、しかし、環の構造はド・ラームコホモロジーのような他の理論でも存在する。コホモロジー環は函手的でもあり、空間の連続写像に対しコホモロジー環上の環準同型を得る。この函手は反変的である。 特に、可換環 R(典型的には、R は Zn、Z、Q、R、あるいは C)を係数として持つ X 上のコホモロジー群 Hk(X; R) に対し、カップ積を定義できる。 カップ積は次のコホモロジー群の直和の上の積を与える。 この積によって、群 H•(X; R) は環となる。実際、自然に N-次数付き環であり、非負の整数 k が次数の役割を持つ。カップ積はこの次数付けと整合している。 k(X;R) on X with coefficients in a commutative ring R (typically R is Zn, Z, Q, R, or C) one can define the cup product, which takes the form The cup product gives a multiplication on the direct sum of the cohomology groups This multiplication turns H•(X;R) into a ring.

新しい!!: カップ積とコホモロジー環 · 続きを見る »

サミュエル・アイレンベルグ

サミュエル・アイレンベルグ(Samuel Eilenberg, 1913年9月30日 - 1998年1月30日)はポーランドのワルシャワ出身の数学者である。ワルシャワ大学で博士号取得、長年コロンビア大学数学科教授を務めた。数学者集団ブルバキのメンバーでもあった。 代数的位相幾何学、ホモロジー代数に大きな業績を残した。 1986年にウルフ賞数学部門受賞。 Category:ポーランドの数学者 Category:位相幾何学者 Category:ウルフ賞数学部門受賞者 Category:グッゲンハイム・フェロー 130930 Category:ブルバキ Category:コロンビア大学の教員 Category:ワルシャワ出身の人物 Category:1913年生 Category:1998年没 Category:数学に関する記事.

新しい!!: カップ積とサミュエル・アイレンベルグ · 続きを見る »

絡み数

絡み数2の有向絡み目 絡み数(からみすう、Linking number)とは、数学において、3次元空間内の2つの有向閉曲線について片方がもう片方の周りをどちらの向きに何回周っているかを表す整数である。位相幾何学の一分野である結び目理論においては、2成分の有向絡み目に対して定義される不変量といえる。.

新しい!!: カップ積と絡み数 · 続きを見る »

環準同型

論や抽象代数学において、環準同型(ring homomorphism)は2つの環の間の構造を保つ関数である。 きちんと書くと、R と S が環であれば、環準同型は以下を満たす関数 である。.

新しい!!: カップ積と環準同型 · 続きを見る »

特異ホモロジー

数学の一分野である代数トポロジーにおいて、特異ホモロジー (singular homology) とは位相空間 X ののある種の集合、いわゆるホモロジー群 (homology group) H_n(X) の研究のことである。直感的に言えば、特異ホモロジーは、各次元 n に対して、空間の n 次元の穴を数える。特異ホモロジーはホモロジー論の例である。これは今では理論のかなり大きな集まりに成長している。様々な理論の中で、特異ホモロジーはかなり具体的な構成に基づいているのでおそらく理解するのが容易なものの1つである。 手短に言えば、特異ホモロジーは標準 ''n''-単体から位相空間への写像をとり、それらから特異チェイン (singular chain) と呼ばれる形式和を作ることによって構成される。単体上の境界作用素は特異チェイン複体を誘導する。すると特異ホモロジーはそのチェイン複体のホモロジーである。得られるホモロジー群はすべてのホモトピー同値な空間に対して同じであり、これがそれらの研究の理由である。これらの構成はすべての位相空間に対して適用することができるので、特異ホモロジーは圏論の言葉で表現できる。そこではホモロジー群は位相空間の圏から次数付きアーベル群の圏への関手になる。これらのアイデアは以下でもっと詳細に説明される。.

新しい!!: カップ積と特異ホモロジー · 続きを見る »

鎖複体

数学において、鎖複体あるいはチェイン複体 (chain complex) と双対鎖複体あるいは余鎖複体、コチェイン複体 (cochain complex) は、元来は代数トポロジーの分野で使われていた。(余)鎖複体は、位相空間の様々な次元の(コ)と(コ)バウンダリの間の関係を表す代数的な手段である。より一般的に、ホモロジー代数では、空間との関係を立ち去った抽象的な鎖複体の研究がされる。ホモロジー代数としての研究では、(余)鎖複体を公理的に代数的構造として扱う。 (余)鎖複体の応用は、通常、ホモロジー群(余鎖複体ではコホモロジー群)を定義し適用する。より抽象的な設定では、様々な同値関係(たとえば、のアイデアで始まるもの)が複体へ適用される。鎖複体は、アーベル圏で定義することも容易にできる。.

新しい!!: カップ積と鎖複体 · 続きを見る »

関手

圏論における関手(かんしゅ、functor)は、圏から圏への構造と両立する対応付けである。関手によって一つの数学体系から別の体系への組織的な対応が定式化される。関手は「圏の圏」における射と考えることもできる。 関手の概念の萌芽はエヴァリスト・ガロアによる群を用いた代数方程式の研究に見ることができる。20世紀はじめのエミー・ネーターらによる加群の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの代数的位相幾何学において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは(基本群のような)代数的対象が位相空間から導かれ、位相空間の間の連続写像は基本群の間の代数的準同型を導いている。その後アレクサンドル・グロタンディークらによる代数幾何学の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。.

新しい!!: カップ積と関手 · 続きを見る »

横断性 (数学)

数学において,横断性(おうだんせい,transversality)は空間がどのように交わるかを記述する概念である.横断性は接することの「対極」と見ることができ,で役割を果たす.微分位相幾何学における一般の交わりの概念を定式化する.交点で交わっている空間の線型化を考えることで定義される..

新しい!!: カップ積と横断性 (数学) · 続きを見る »

次数付き環

数学、特に抽象代数学において、次数付き環(じすうつきかん、graded ring; 次数付けられた環)あるいは次数環とは R_i R_j \subset R_ を満たすアーベル群 R_i の直和として表すことのできる環のことである。多項式環の斉次多項式への分解を一般化した概念である。添え字集合は通常非負の整数の集合か整数の集合であるが、任意のモノイドあるいは群でもよい。直和分解は通常次数化(gradation)あるいは次数付け(grading)と呼ばれる。 次数(付き)加群(graded module)は同様に定義される(正確な定義は下を見よ)。これは次数付きベクトル空間の一般化である。次数付き環でもあるような次数付き加群は次数付き代数(graded algebra)と呼ばれる。次数付き環は次数付き Z-代数と見なすこともできる。 結合性は次数付き環の定義において重要でない(実は全く使われない)。したがってこの概念は非結合的多元環に対しても適用できる。例えば、を考えることができる。.

新しい!!: カップ積と次数付き環 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: カップ積と準同型 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: カップ積と数学 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »