ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ヘルマン・ワイル

索引 ヘルマン・ワイル

ヘルマン・クラウス・フーゴー・ワイル(, 1885年11月9日 - 1955年12月8日)は、ドイツの数学者。ドイツ語の発音に従ってヴァイルとも表記される。 数論を含む純粋数学と理論物理学の双方の分野で顕著な業績を残した。20世紀において最も影響力のある数学者であるとともに、初期のプリンストン高等研究所の重要なメンバーであった。研究の大半はプリンストンとスイス連邦工科大学で行われたものであったが、ダフィット・ヒルベルトとヘルマン・ミンコフスキーによって確立されたゲッティンゲン大学の数学の伝統の継承者でもあった。 ワイルは空間、時間、物質、哲学、論理、対称性、数学史など、多岐に渡る分野について多くの論文と著書を残した。彼は一般相対性理論と電磁気学を結び付けようとした最初の人物の一人であり、アンリ・ポアンカレやヒルベルトの唱えた'普遍主義'について、同時代の誰よりも深く理解していた。特にマイケル・アティヤは、数学上の問題に取り組む際、常にワイルが先行する研究を行っていたと述懐している。 アンドレ・ヴェイユ と名前がよく似ているため、.

94 関係: 型理論可算集合実数対称群対称性山内恭彦下村寅太郎一般相対性理論一様分布位相幾何学形式主義 (数学)マイケル・アティヤチューリッヒチューリッヒ大学ハンブルクバートランド・ラッセルヨハン・ゴットリープ・フィヒテライツェン・エヒベルトゥス・ヤン・ブラウワーリー代数リーマン幾何学リーマンゼータ関数リーマン面ルートヴィヒ・マクシミリアン大学ミュンヘンヘルマン・ミンコフスキープリンストン高等研究所ツァイトシュリフト・フュア・フィジークディオファントス近似ドイツドイツ語ダフィット・ヒルベルトベルンハルト・リーマンアルベルト・アインシュタインアンリ・ポアンカレアンドレ・ヴェイユエルンスト・カッシーラーエルヴィン・シュレーディンガーエトムント・フッサールクルト・ゲーデルゲージ理論ゲオルク・ヴィルヘルム・フリードリヒ・ヘーゲルゲオルク・アウグスト大学ゲッティンゲンゲオルク・カントールジョン・フォン・ノイマンスピノールスイス連邦工科大学哲学内山龍雄国家社会主義ドイツ労働者党理論物理学空間...純粋数学物理学物質遠山啓順序集合表現 (数学)論理学背理法重力場量子力学量子力学の数学的基礎電磁場電磁気学集合抽象代数学排中律構造主義斜交群数学数学史数学的直観主義数学者数理物理学数論時空時間11月9日12月8日1885年1904年1908年1913年1918年1920年代1921年1922年1923年1928年1929年1930年1933年1938年1951年1955年 インデックスを展開 (44 もっと) »

型理論

型理論(かたりろん、Type theory)は、数理論理学の一分野であり、「型」の階層を構築し、それぞれの型に数学的(あるいはそれ以外の)実体を割り当てるものである。階型理論(かいけいりろん、Theory of Types)とも。ある型のオブジェクトはその前提となる型のオブジェクトから構築される。この場合の「型」とは形而上的な意味での「型」である。バートランド・ラッセルは、彼が発見したラッセルのパラドックスにより素朴集合論の問題が明らかにされたことを受けて、型理論を構築した。型理論の詳細はホワイトヘッドとラッセルの 『プリンキピア・マテマティカ』にある。 型理論は、プログラミング言語の理論における型システムのベースにもなっている。「型システム」と「型理論」の語はほぼ同義として扱われることもあるが、ここでは、この記事では数理論理学の範囲を説明し、プログラミング言語の理論については型システムの記事で説明する。.

新しい!!: ヘルマン・ワイルと型理論 · 続きを見る »

可算集合

可算集合(かさんしゅうごう、countable set 又は denumerable set)もしくは可付番集合とは、おおまかには、自然数全体と同じ程度多くの元を持つ集合のことである。各々の元に 1, 2, 3, … と番号を付けることのできる、すなわち元を全て数え上げることのできる無限集合と表現してもよい。 有限集合も、数え上げることができる集合という意味で、可算集合の一種とみなすことがある。そのため、はっきりと区別を付ける必要がある場合には、冒頭の意味での集合を可算無限集合と呼び、可算無限集合と有限集合を合わせて高々可算の集合と呼ぶ。可算でない無限集合を非可算集合という。非可算集合は可算集合よりも「多く」の元を持ち、全ての元に番号を付けることができない。そのような集合の存在は、カントールによって初めて示された。.

新しい!!: ヘルマン・ワイルと可算集合 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: ヘルマン・ワイルと実数 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: ヘルマン・ワイルと対称群 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: ヘルマン・ワイルと対称性 · 続きを見る »

山内恭彦

山内 恭彦(やまのうち たかひこ、1902年7月2日 - 1986年10月14日)は、日本の理論物理学者。東京大学名誉教授。理学博士(東京帝国大学、1938年)。神奈川県生まれ。祖父は山内堤雲(六三郎)。.

新しい!!: ヘルマン・ワイルと山内恭彦 · 続きを見る »

下村寅太郎

下村 寅太郎(しもむら とらたろう、1902年(明治35年)8月17日 - 1995年(平成7年)1月22日)は、日本の哲学者・科学史家。 科学史から芸術・美術史、精神史まで幅広い論考著述を行った。.

新しい!!: ヘルマン・ワイルと下村寅太郎 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: ヘルマン・ワイルと一般相対性理論 · 続きを見る »

一様分布

一様分布(いちようぶんぷ)は、離散型あるいは連続型の確率分布である。 サイコロを振ったときの、それぞれの目の出る確率など、すべての事象の起こる確率が等しい現象のモデルである。 生態学の場合、一様分布とは個体間がほぼ等距離の分布を指す。分布様式を参照。.

新しい!!: ヘルマン・ワイルと一様分布 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: ヘルマン・ワイルと位相幾何学 · 続きを見る »

形式主義 (数学)

数学における形式主義()とは、数学における命題を少数の記号によって表し、証明において使われる推論を純粋に記号の操作と捉える考え方のことを指す。.

新しい!!: ヘルマン・ワイルと形式主義 (数学) · 続きを見る »

マイケル・アティヤ

マイケル・アティヤ(Michael F. Atiyah、1929年4月22日 - )は、アティヤ=シンガーの指数定理、ゲージ理論の研究などで知られるイギリスの数学者。現代最高の数学者の一人とみなされている。父はアラブ研究で知られる歴史家の、弟は弁護士の。 その発想は素直で自然であり、数学の諸分野、また理論物理学までをも結びつけるスケールの大きさが印象的である。業績が多分野に関係するせいか、数学者には珍しく共著の論文が多い。 サイモン・ドナルドソン、ナイジェル・ヒッチン、ピーター・クロンハイマー、フランシス・カーワン、ルース・ローレンスなど優れた弟子を育て、また、エドワード・ウィッテンを見出したことでも知られる。 1983年に英国王室よりナイトの称号を得る。1990年から1995年まで王立協会会長を務めた。.

新しい!!: ヘルマン・ワイルとマイケル・アティヤ · 続きを見る »

チューリッヒ

チューリッヒ(ドイツ語:,; スイスドイツ語: )は、スイス最大の都市でチューリッヒ州の州都である。スイス中央部にあり 、チューリッヒ湖の北西端に位置している。チューリッヒ市の人口は約390,000人で、には200万人近くが居住している,.

新しい!!: ヘルマン・ワイルとチューリッヒ · 続きを見る »

チューリッヒ大学

チューリッヒ大学(University of Zurich、独語:Universität Zürich)は、スイス連邦のチューリッヒにある総合大学である。隣にチューリッヒ工科大学がある。 神学部、法学部、経済学部、医学部、獣医学部、哲学部、数学・自然科学部があり、ペスタロッチ、レントゲン、アインシュタインなどが籍を置いて、学んだことがある。アインシュタインはこの大学に学位論文を提出して博士号を得ている。.

新しい!!: ヘルマン・ワイルとチューリッヒ大学 · 続きを見る »

ハンブルク

ハンブルク(Hamburg、低ザクセン語・Hamborg (Hamborch) )は、ドイツの北部に位置し、エルベ川河口から約100kmほど入った港湾都市。正式名称は自由ハンザ都市ハンブルク(Freie und Hansestadt Hamburg、フライエ・ウント・ハンゼシュタット・ハンブルク)。行政上では、ベルリン特別市と同様に、一市単独で連邦州(ラント)を構成する特別市(都市州)なので、ハンブルク特別市やハンブルク州と呼ばれる。人口約175万人。国際海洋法裁判所がある。.

新しい!!: ヘルマン・ワイルとハンブルク · 続きを見る »

バートランド・ラッセル

3代ラッセル伯爵、バートランド・アーサー・ウィリアム・ラッセル(Bertrand Arthur William Russell, 3rd Earl Russell, OM, FRS、1872年5月18日 - 1970年2月2日)は、イギリスの哲学者、論理学者、数学者であり、社会批評家、政治活動家である。ラッセル伯爵家の貴族であり、イギリスの首相を2度務めた初代ラッセル伯ジョン・ラッセルは祖父にあたる。名付け親は同じくイギリスの哲学者ジョン・スチュアート・ミル。ミルはラッセル誕生の翌年に死去したが、その著作はラッセルの生涯に大きな影響を与えた。生涯に4度結婚し、最後の結婚は80歳のときであった。1950年にノーベル文学賞を受賞している。.

新しい!!: ヘルマン・ワイルとバートランド・ラッセル · 続きを見る »

ヨハン・ゴットリープ・フィヒテ

ヨハン・ゴットリープ・フィヒテ(Johann Gottlieb Fichte、1762年5月19日 - 1814年1月27日)は、ドイツの哲学者である。先行のイマヌエル・カントの哲学に大きく影響を受け、のちのG.W.F.ヘーゲルやフリードリヒ・シェリングらに影響を与えたドイツ観念論の哲学者である。息子のイマヌエル・フィヒテ(通称:小フィヒテ)も哲学者。ナポレオン占領下のベルリンでの講演「ドイツ国民に告ぐ」で広く知られる。.

新しい!!: ヘルマン・ワイルとヨハン・ゴットリープ・フィヒテ · 続きを見る »

ライツェン・エヒベルトゥス・ヤン・ブラウワー

ライツェン・エヒベルトゥス・ヤン・ブラウワー(Luitzen Egbertus Jan Brouwer、1881年2月27日 - 1966年12月2日)はオランダの数学者。ブラウエル、ブローウェルなどとも表記される。トポロジーにおいて不動点定理をはじめとする多大な業績を残し、また数学基礎論においては直観主義数学の創始者として知られる。.

新しい!!: ヘルマン・ワイルとライツェン・エヒベルトゥス・ヤン・ブラウワー · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: ヘルマン・ワイルとリー代数 · 続きを見る »

リーマン幾何学

リーマン幾何学(リーマンきかがく、Riemannian geometry)とは、リーマン計量や擬リーマン計量と呼ばれる距離の概念を一般化した構造を持つ図形を研究する微分幾何学の分野である。このような図形はリーマン多様体、擬リーマン多様体とよばれる。ドイツの数学者ベルンハルト・リーマンに因んでこの名前がついている。1850年代に確立された。 楕円・放物・双曲の各幾何学は、リーマン幾何学では、曲率がそれぞれ正、0、負の一定値をとる空間(それぞれ球面、ユークリッド空間、双曲空間)上の幾何学と考えられる。なお、楕円幾何学のことをリーマン幾何と呼ぶことがあるが、本稿で述べるリーマン幾何学はそれとは異なるものである。 アルベルト・アインシュタインは、重力、即ち、一様ではなく湾曲した時空を記述するのに擬リーマン多様体の枠組みが有効であることを見いだし、リーマン幾何学を数学的核心とした一般相対性理論を構築した。 3.

新しい!!: ヘルマン・ワイルとリーマン幾何学 · 続きを見る »

リーマンゼータ関数

1.

新しい!!: ヘルマン・ワイルとリーマンゼータ関数 · 続きを見る »

リーマン面

数学、特に複素解析においてリーマン面(Riemann surface)とは、連結な複素 1 次元の複素多様体のことである。ベルンハルト・リーマンにちなんで名付けられた。 リーマン面は、複素平面を変形したものと考えられる。 各点の近くで局所的には、複素平面の部分に似ているが、大域的位相は大きく異なり得る。例えば、球面、トーラス、または互いに糊付けした二枚の面のように見え得る。 リーマン面の主要な意味合いは、正則関数がそこで定義できることである。 今日、リーマン面は正則関数、特に、平方根や自然対数等の多価関数の大域的振る舞いを研究するための自然な土台と考えられている。 全てのリーマン面は向きづけ可能な実 2 次元の実解析的多様体(従って曲面)であって、正則関数を一義的に定義するために必要な追加的構造(特に複素構造)を含む。2 次元実多様体は、それが向き付け可能な場合、かつその場合に限り、(通常は、等価でない複数の方法により)リーマン面にすることができる。従って、球面やトーラスは複素構造を持ち得るが、メビウスの輪、クラインの壺および射影平面は持ち得ない。 リーマン面は、でき得る限り良い特性を有しているという幾何学的事実から、他の曲線、多様体または代数多様体に対し一般化の直感および動機をしばしばもたらす。リーマン・ロッホの定理は、この影響の第一の例である。.

新しい!!: ヘルマン・ワイルとリーマン面 · 続きを見る »

ルートヴィヒ・マクシミリアン大学ミュンヘン

ルートヴィヒ・マクシミリアン大学ミュンヘン(Ludwig-Maximilians-Universität München)は、ドイツ・バイエルン州ミュンヘンにある大学。州立大学である。「英タイムズ・ハイアー・エデュケーション」による「世界大学ランキング」では、30位。ドイツにおけるエクセレンス・イニシアティブ(Exzellenzinitiative)に指定された11大学の一つで、ミュンヘン工科大学、カールスルーエ工科大学と共に最初に選ばれた三校のうちの一つである。ミュンヘン工科大学、ルプレヒト・カール大学ハイデルベルクとは様々なランキングで国内一位の座を争っている(後述)。通称、ミュンヘン大学。 1472年に下バイエルン=ランツフート公ルートヴィヒ9世によってインゴルシュタット大学として創設されたが、北のプロテスタント系ライプツィヒ大学と対立して長らくイエズス会の支配下におかれ、閉鎖を繰り返しつつ、ナポレオン戦争の後の1826年にバイエルン王ルートヴィヒ1世によってミュンヘンに移転再創設された。.

新しい!!: ヘルマン・ワイルとルートヴィヒ・マクシミリアン大学ミュンヘン · 続きを見る »

ヘルマン・ミンコフスキー

ヘルマン・ミンコフスキーまたはヘルマン・ミンコウスキー(Hermann Minkowski, 1864年6月22日 - 1909年1月12日)は、ロシア(リトアニア)生まれのユダヤ系ドイツ人数学者。ミンコフスキー空間と呼ばれる四次元の空間により、アルベルト・アインシュタインの特殊相対性理論に数学的基礎を与えた。また、時空を表すための方法として光円錐を考えた。その他に数論や幾何学に関する業績がある。 病理学者のオスカル・ミンコフスキーは兄。.

新しい!!: ヘルマン・ワイルとヘルマン・ミンコフスキー · 続きを見る »

プリンストン高等研究所

プリンストン高等研究所(プリンストンこうとうけんきゅうじょ、Institute for Advanced Study)は、アメリカ合衆国ニュージャージー州プリンストン市にある研究所。自然科学、数学、社会科学、歴史学の四部門を持ち、世界でももっとも優れた学術研究機関の一つとされる。 中核となるのは27名の教授陣。いずれも最高レベルの研究者であるが、特に物理学と数学の研究が有名である。なお「教授」とはいうものの、原則として授業負担はなく、各自の研究を進めることに加え、毎年世界各地から招聘される約190名の研究者を選抜することが主な職務である。 正式名称は「高等研究所」(Institute for Advanced Study)だが、類似の名称の研究所は内外に数多くあるため、日本では「プリンストン高等研究所」と呼ばれることが多い。プリンストン大学とは直接の関係はないが、同大学など近隣の大学とは密接な協力関係にあり、特にプリンストン大学は高等研究所の草創期に、研究者に対しオフィスを提供するなどしていた。.

新しい!!: ヘルマン・ワイルとプリンストン高等研究所 · 続きを見る »

ツァイトシュリフト・フュア・フィジーク

『ツァイトシュリフト・フュア・フィジーク』(Zeitschrift für Physik)は、1997年までドイツ物理学会によりシュプリンガー・フェアラークから出版されていた物理学の学術雑誌。1920年創刊。20世紀の初めには物理学で最も権威ある雑誌の一つであり、その黄金時代は量子力学の黄金時代と重なっていた。.

新しい!!: ヘルマン・ワイルとツァイトシュリフト・フュア・フィジーク · 続きを見る »

ディオファントス近似

ディオファントス近似(ディオファントスきんじ、Diophantine approximation)とはある数(実数など)を別のより単純な構造を持つ数(有理数など)で近似する方法やその値、あるいはそれについて研究する数論の一分野である。アレクサンドリアのディオファントスに因む。 最初の問題は、実数が有理数によってどのぐらいよく近似できるかを知ることであった。この問題のために、有理数 が実数 の「良い」近似であるとは、 と の差の絶対値が、 を分母が小さい別の有理数に置き換えたときに小さくならないこととする。この問題は連分数によって18世紀に解かれた。 与えられた数の「最もよい」近似が分かり、この分野の主要な問題は、上記の差のよい上界と下界の分母の関数としての表示を見つけることである。 これらの上下界は近似される実数の性質の依存すると思われる。有理数の別の有理数による近似に対する下界は代数的数に対しての下界よりも大きい。後者はそれ自身すべての実数に対する下界よりも大きい。したがって代数的数に対する上下界よりもよく近似できる実数はもちろん超越数である。これによりリウヴィルは1844年に最初の明示的な超越数を生み出した。後に や が超越数であることの証明が類似の方法により得られた。 ディオファントス近似は、無理数や超越数の研究と深く関連している。実際、代数的数については次数や高さに依存して近似の精度に限界があることが知られている。また、不定方程式など、数学上の他の問題でもディオファントス近似に帰着することが多い。例えば、ペル方程式 y2.

新しい!!: ヘルマン・ワイルとディオファントス近似 · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: ヘルマン・ワイルとドイツ · 続きを見る »

ドイツ語

ドイツ語(ドイツご、独:Deutsch、deutsche Sprache)は、インド・ヨーロッパ語族・ゲルマン語派の西ゲルマン語群に属する言語である。 話者人口は約1億3000万人、そのうち約1億人が第一言語としている。漢字では独逸語と書き、一般に独語あるいは独と略す。ISO 639による言語コードは2字が de、3字が deu である。 現在インターネットの使用人口の全体の約3パーセントがドイツ語であり、英語、中国語、スペイン語、日本語、ポルトガル語に次ぐ第6の言語である。ウェブページ数においては全サイトのうち約6パーセントがドイツ語のページであり、英語に次ぐ第2の言語である。EU圏内では、母語人口は域内最大(ヨーロッパ全土ではロシア語に次いで多い)であり、話者人口は、英語に次いで2番目に多い。 しかし、歴史的にドイツ、オーストリアの拡張政策が主に欧州本土内で行われたこともあり、英語、フランス語、スペイン語のように世界語化はしておらず、基本的に同一民族による母語地域と、これに隣接した旧支配民族の使用地域がほとんどを占めている。上記の事情と、両国の大幅な領土縮小も影響して、欧州では非常に多くの国で母語使用されているのも特徴である。.

新しい!!: ヘルマン・ワイルとドイツ語 · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: ヘルマン・ワイルとダフィット・ヒルベルト · 続きを見る »

ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

新しい!!: ヘルマン・ワイルとベルンハルト・リーマン · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: ヘルマン・ワイルとアルベルト・アインシュタイン · 続きを見る »

アンリ・ポアンカレ

ュール=アンリ・ポアンカレ(、1854年4月29日 – 1912年7月17日)はナンシー生まれのフランスの数学者。数学、数理物理学、天体力学などの重要な基本原理を確立し、功績を残した。フランス第三共和制大統領・レーモン・ポアンカレはアンリの従弟(いとこ)。.

新しい!!: ヘルマン・ワイルとアンリ・ポアンカレ · 続きを見る »

アンドレ・ヴェイユ

アンドレ・ヴェイユ(André Weil, 1906年5月6日 - 1998年8月6日)は、フランスの数学者で、20世紀を代表する数学者の一人である。思想家のシモーヌ・ヴェイユは妹、児童文学者のは娘である。.

新しい!!: ヘルマン・ワイルとアンドレ・ヴェイユ · 続きを見る »

エルンスト・カッシーラー

ッシーラー エルンスト・カッシーラー(Ernst Cassirer、1874年7月28日 - 1945年4月13日)は、ユダヤ系のドイツの哲学者、思想史家。新カント派に属し、“知識の現象学”を基礎にしながら、シンボル=象徴体系としての文化に関する壮大な哲学を展開した。 息子のも新カント派の哲学者となった。.

新しい!!: ヘルマン・ワイルとエルンスト・カッシーラー · 続きを見る »

エルヴィン・シュレーディンガー

ルヴィーン・ルードルフ・ヨーゼフ・アレクサンダー・シュレーディンガー(オーストリア語: Erwin Rudolf Josef Alexander Schrödinger、1887年8月12日 - 1961年1月4日)は、オーストリア出身の理論物理学者。 1926年に波動形式の量子力学である「波動力学」を提唱。次いで量子力学の基本方程式であるシュレーディンガー方程式や、1935年にはシュレーディンガーの猫を提唱するなど、量子力学の発展を築き上げたことで名高い。 1933年にイギリスの理論物理学者ポール・ディラックと共に「新形式の原子理論の発見」の業績によりノーベル物理学賞を受賞。1937年にはマックス・プランク・メダルが授与された。 1983年から1997年まで発行されていた1000オーストリア・シリング紙幣に肖像が使用されていた。.

新しい!!: ヘルマン・ワイルとエルヴィン・シュレーディンガー · 続きを見る »

エトムント・フッサール

トムント・グスタフ・アルブレヒト・フッサール(Edmund Gustav Albrecht Husserl、IPA:、1859年4月8日 - 1938年4月27日)は、オーストリアの哲学者、数学者である。ファーストネームの「エトムント」は「エドムント」との表記もあり、またラストネームの「フッサール」は古く「フッセル」または「フッセルル」との表記も用いられた。.

新しい!!: ヘルマン・ワイルとエトムント・フッサール · 続きを見る »

クルト・ゲーデル

ルト・ゲーデル(Kurt Gödel, 1906年4月28日 - 1978年1月14日)は、オーストリア・ハンガリー二重帝国(現チェコ)のブルノ生まれの数学者・論理学者である。業績には、完全性定理及び不完全性定理、連続体仮説に関する研究が知られる。.

新しい!!: ヘルマン・ワイルとクルト・ゲーデル · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

新しい!!: ヘルマン・ワイルとゲージ理論 · 続きを見る »

ゲオルク・ヴィルヘルム・フリードリヒ・ヘーゲル

ルク・ヴィルヘルム・フリードリヒ・ヘーゲル(Georg Wilhelm Friedrich Hegel, 1770年8月27日 - 1831年11月14日)は、ドイツの哲学者である。ヨハン・ゴットリープ・フィヒテ、フリードリヒ・シェリングと並んで、ドイツ観念論を代表する思想家である。18世紀後半から19世紀初頭の時代を生き、領邦分立の状態からナポレオンの侵攻を受けてドイツ統一へと向かい始める転換期を歩んだ。 シュトゥットガルトのヘーゲルハウスにあるポートレイト.

新しい!!: ヘルマン・ワイルとゲオルク・ヴィルヘルム・フリードリヒ・ヘーゲル · 続きを見る »

ゲオルク・アウグスト大学ゲッティンゲン

旧大講堂 大学内の風景 ゲオルク・アウグスト大学ゲッティンゲン(Georg-August-Universität Göttingen, 略称:GAU)は、ドイツのニーダーザクセン州ゲッティンゲンに位置する大学。ドイツに9つあるエクセレントセンターの一つ。ハノーファー選帝侯ゲオルク・アウグスト(英国王としてはジョージ2世)によって1737年に設立された。大学名はこの創設者にちなむものである。ゲッティンゲン大学とも通称する。.

新しい!!: ヘルマン・ワイルとゲオルク・アウグスト大学ゲッティンゲン · 続きを見る »

ゲオルク・カントール

ルク・カントール ゲオルク・フェルディナント・ルートヴィッヒ・フィリップ・カントール(Georg Ferdinand Ludwig Philipp Cantor, 1845年3月3日 - 1918年1月6日)は、ドイツで活躍した数学者。.

新しい!!: ヘルマン・ワイルとゲオルク・カントール · 続きを見る »

ジョン・フォン・ノイマン

ョン・フォン・ノイマン(ハンガリー名:Neumann János(ナイマン・ヤーノシュ、)、ドイツ名:ヨハネス・ルートヴィヒ・フォン・ノイマン、John von Neumann, Margittai Neumann János Lajos, Johannes Ludwig von Neumann, 1903年12月28日 - 1957年2月8日)はハンガリー出身のアメリカ合衆国の数学者。20世紀科学史における最重要人物の一人。数学・物理学・工学・計算機科学・経済学・気象学・心理学・政治学に影響を与えた。第二次世界大戦中の原子爆弾開発や、その後の核政策への関与でも知られる。.

新しい!!: ヘルマン・ワイルとジョン・フォン・ノイマン · 続きを見る »

スピノール

数学および物理学におけるスピノル(spinor; スピノール、スピナー)は、特に直交群の理論に於いて空間ベクトルの概念を拡張する目的で導入された複素ベクトル空間の元である。これらが必要とされるのは、与えられた次元における回転群の全体構造を見るためには余分の次元を必要とするからである。 もっと形式的に、スピノルは与えられた二次形式付きベクトル空間から、代数的なあるいは量子化の手続きを用いることで構成される幾何学的な対象として定義することもできる。与えられた二次形式は、スピノルのいくつかことなる型を記述するかも知れない。与えられた型のスピノル全体の成す集合は、それ自身回転群の作用を持つ線型空間であるが、作用の符号について曖昧さがある。それゆえに、スピノル全体の空間は回転群のを導く。符号の曖昧さは、スピノル全体の空間を、スピン群 Spin(n) のある線型表現と見なすことによって除くこともできる。この形式的な観点では、スピノルについての多くの本質的で代数的な性質が(空間幾何での話に比べて)よりはっきり見て取れるが、もとの空間幾何との繋がりはわかりにくい。他にも、複素係数の使用が最小限に押さえられる。 一般のスピノルは、1913年にエリ・カルタンによって発見された。後に、スピノルは、電子や他のフェルミ粒子の内在する角運動量、即ちスピン角運動量の性質を研究するために、量子力学に適用された。今日、スピノルは物理学の様々な分野で用いられている。古典的に、が非相対論的な電子のスピンを記述するのに用いられた。ディラック方程式では、相対論的な電子の量子状態を数学的に記述する際に、ディラック・スピノルが必須となる。場の量子論では、相対論的な多粒子系の状態は、スピノルで記述される。 数学、殊に微分幾何学およびにおいて、スピノルが発見されて以来、代数的位相幾何学・微分位相幾何学、斜交幾何学、ゲージ理論、複素代数幾何、指数定理、および特殊ホロノミー などに対して幅広い応用がなされている。.

新しい!!: ヘルマン・ワイルとスピノール · 続きを見る »

スイス連邦工科大学

イス連邦工科大学(スイスれんぽうこうかだいがく、Eidgenössische Technische Hochschule, ETH、École Polytechnique Fédérale, EPF)は、スイスにある工学系の単科大学である。.

新しい!!: ヘルマン・ワイルとスイス連邦工科大学 · 続きを見る »

哲学

哲学(てつがく、Φιλοσοφία、philosophia、philosophy、philosophie、Philosophie)は、語義的には「愛智」を意味する学問的活動である。日本語辞典の広辞苑では、次のように説明している。 観念論的な形而上学に対して、唯物論的な形而上学もある。諸科学が分化独立した現在では、哲学は学問とされることが多いが、科学とされる場合哲学は「自然および社会,人間の思考,その知識獲得の過程にかんする一般的法則を研究する科学」である。出典は、青木書店『哲学事典』。もある。.

新しい!!: ヘルマン・ワイルと哲学 · 続きを見る »

内山龍雄

内山 龍雄(うちやま りょうゆう、1916年(大正5年)8月28日 - 1990年(平成2年)8月30日)は、日本の男性理論物理学者。大阪大学名誉教授。重力場を含む一般ゲージ場の創設者である。.

新しい!!: ヘルマン・ワイルと内山龍雄 · 続きを見る »

国家社会主義ドイツ労働者党

国家社会主義ドイツ労働者党(こっかしゃかいしゅぎドイツろうどうしゃとう、Nationalsozialistische Deutsche Arbeiterpartei 、略称: NSDAP)は、かつて存在したドイツ国の政党。一般にナチス、ナチ党などと呼ばれる(詳細は#名称を参照)。1919年1月に前身のドイツ労働者党が設立され、1920年に改称した。指導者原理に基づく指導者(Führer)アドルフ・ヒトラーが組織全体の意思決定を行い、カリスマ的支配を行っていた。1933年の政権獲得後、ドイツ国に独裁体制を敷いたものの(ナチス・ドイツ)、1945年にドイツ国が第二次世界大戦で敗戦し崩壊したことに伴い事実上消滅し、連合国によって禁止(非合法化)された。.

新しい!!: ヘルマン・ワイルと国家社会主義ドイツ労働者党 · 続きを見る »

理論物理学

論物理学(りろんぶつりがく、)は、物理学において、理論的な模型や理論的仮定(主に数学的な仮定)を基に理論を構築し、既知の実験事実(観測や観察の結果)や、自然現象などを説明し、かつ未知の現象に対しても予想する物理理論を扱う分野のこと。実験物理学と対比して使われる言葉。 手段として、伝統的な紙と鉛筆によるもの以外に、現在ではコンピュータによる数値的なシミュレーション、数値解析、物理シミュレーションなどにおいて使用される計算機も重要なものの一つとなっている。このシミュレーションなどによる計算物理学分野も、通常は理論物理学に含める。ただ計算物理学を、理論、実験以外の第三の分野と捉える考え方もある。 物理学が理論物理学と実験物理学に分化したのは、19世紀後半から20世紀初頭にかけての物理学の急速な発展に原因がある。それまでの物理学の知識の集積は、一人の物理学者が実験と理論の両方を十分カバーできる程度のものであった。しかし急速な発展の結果、物理学の領域はあまりにも巨大化・複雑化しすぎて、全体を把握することが困難となった。理論的な考察を行なうために習得しなければならない数学的手法や既存の物理理論も膨大な量になって、習得に何年もかかるようになった。このため、それぞれ担当分野に分かれて研究を進める他なくなったのである。ロシア(旧ソ連)のレフ・ダヴィドヴィッチ・ランダウが自国の物理学者志望の学生に課した「理論ミニマム」教程(最低限の知識)にもそれが現れている。.

新しい!!: ヘルマン・ワイルと理論物理学 · 続きを見る »

空間

間(くうかん)とは、.

新しい!!: ヘルマン・ワイルと空間 · 続きを見る »

純粋数学

純粋数学(じゅんすいすうがく、pure mathematics)とは、しばしば応用数学と対になる概念として、応用をあまり意識しない数学の分野に対して用いられる総称である。 数学のどの分野が純粋数学でありどの分野が応用数学であるかという社会的に広く受け入れられた厳密な合意があるわけではなく、区別は便宜的なものとして用いられることが多い。また数学がより広範な範囲で利用されるに従い、分野としての純粋と応用との区別はあいまいで困難なものとなってきている。ただし、純粋数学という用語を用いる場合の志向としては、議論される数学の厳密性、抽象性を基とした数学単体での美しさを重視する傾向がある。.

新しい!!: ヘルマン・ワイルと純粋数学 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: ヘルマン・ワイルと物理学 · 続きを見る »

物質

物質(ぶっしつ)は、.

新しい!!: ヘルマン・ワイルと物質 · 続きを見る »

遠山啓

遠山 啓(とおやま ひらく、1909年8月21日 - 1979年9月11日)は、熊本県下益城郡(現・宇城市)出身の日本の数学者。数学教育の分野でよく知られる。.

新しい!!: ヘルマン・ワイルと遠山啓 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: ヘルマン・ワイルと順序集合 · 続きを見る »

表現 (数学)

数学における表現(ひょうげん、representation, Darstellung)とは、ある体系に対してそれを類型的に書き表すことのできる数理モデルを構成すること、あるいは構成されたモデルそのもののことを言う。公理によって定義される抽象空間、たとえばユークリッド空間のようなものに座標を入れて数の組からなる空間 Rn と見なしたり、たとえば抽象群のようなものをある具体的な空間上の変換群として表すような、扱いやすさ・具体性を増すようなものが通常は扱われる。 線型写像の行列による表現(行列表現)や、群の置換による表現(置換表現)などは典型的な表現の例である。とくに、ガロア理論(ガロアの逆問題)はガロア群を根の置換として表すという意味で表現の理論の一つであるということができる。また ''p'' 進数の概念は類体論の研究において代数関数の類似物として有理数を“表現”することによってクルト・ヘンゼルが得たものである。 構成される表現は多くの場合、もとの体系に対して何らかの意味で「潰れている」。潰れていない表現は忠実 (faithful) であるとか同型的 (isomorphic) であるなどという。忠実な表現はもちろん重要であるが、一般にはある体系の表現の全体というものを考えることによってもとの体系を「復元」することが興味の対象となる。したがって、表現の分類によってもとの体系を特徴付けることが、表現に関する理論の研究の大きな指針の一つとなる。あるいは表現の仕方に依らずに決まる性質を抽出することによって元の体系の分類を与えるようなことも考えられる。 一般に表現論と呼ばれる分野では、典型的に群や環などといった代数系(一般にはリー群やリー環のような位相を伴う系)の線型空間・射影空間あるいはもっと一般の加群などにおける表現(線型表現・射影表現)が取り扱われる。これはつまり、作用を持つ加群の理論である。そこでは抽象的な群・環を線型写像の成す群・環として、とくに有限次元空間における表現はさらに行列によって、書き表されることになり、古典群と呼ばれる一般線型群の代数的な部分群・商群たちやその上の調和解析が、関数解析学や組合せ論などの言葉を用いて展開される。線型表現などでは特に、空間に係数が考えられるため、係数の取替えによる類似の議論や類似物の構成がしばしば行われるが、標数 0 の場合の通常表現や正標数の場合のモジュラー表現などを比較すると、それらの様子は大きく変わってくる。.

新しい!!: ヘルマン・ワイルと表現 (数学) · 続きを見る »

論理学

論理学(ろんりがく、)とは、「論理」を成り立たせる論証の構成やその体系を研究する学問である。.

新しい!!: ヘルマン・ワイルと論理学 · 続きを見る »

背理法

背理法(はいりほう、proof by contradiction, reduction to the absurd, indirect proof, apagogical argument など、reductio ad absurdum)とは、ある命題 P を証明したいときに、P が偽であると仮定して、そこから矛盾を導くことにより、P が偽であるという仮定が誤り、つまり P は真であると結論付けることである。帰謬法(きびゅうほう)とも言う。 P を仮定すると、矛盾が導けることにより、P の否定 ¬P を結論付けることは否定の導入などと呼ばれる。これに対して ¬P を仮定すると矛盾が導けることにより P を結論付けることを狭義の背理法あるいは否定の除去ということがある。否定の導入と狭義の背理法をあわせて広義の背理法ということもある。 一般的には、背理法と言った場合広義の背理法を指す。否定の導入により、¬P から矛盾が導けた場合、¬¬P を結論できるが、いわゆる古典論理では推論規則として二重否定の除去が認められているため、結局 P が結論できることになる。排中律や二重否定の除去が成り立たない直観論理では、狭義の背理法による証明は成立しないが、否定の導入や、¬¬¬P から ¬P を結論することは、認められる。 背理法を使って証明される有名な定理には、\sqrt が無理数であること、素数が無限に存在すること、中間値の定理,ハイネ・カントールの定理などがあり、無限を相手にした証明には基本的に背理法のスタイルを取らざるを得ないものが多くある。 しかし例えば、\sqrt が無理数である(すなわち有理数でない)ことの証明は、狭義の背理法ではなく否定の導入によって証明することができる。 背理法の証明において仮定に矛盾する結論を導く場合は,容易に非背理法証明に直すことができる.たとえば,ハイネ・カントールの定理:「有界閉集合上の連続関数は一様連続である」は,有界閉集合上の連続関数 f は一様連続でないと仮定して議論を進め, f が連続でないことを導いて矛盾を出すが,これは連続性を仮定せず「有界閉集合上の関数 f が一様連続でない」と仮定し,連続でないことを示すことによって,対偶としてハイネ・カントールの定理が直接証明できる(((P かつ Q)⇒R) ⇔ ((P かつ ¬R)⇒¬Q) ということを用いる)..

新しい!!: ヘルマン・ワイルと背理法 · 続きを見る »

重力場

重力場の概念図 重力場(じゅうりょくば、)とは、万有引力(重力)が作用する時空中に存在する場のこと。 重力を記述する手法としては、ニュートンの重力理論に基づく手法と、アインシュタインによる一般相対性理論に基づく手法がある。.

新しい!!: ヘルマン・ワイルと重力場 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: ヘルマン・ワイルと量子力学 · 続きを見る »

量子力学の数学的基礎

量子力学の数学的基礎(りょうしりきがくのすうがくてききそ、die Mathematische Grundlagen der Quantenmechanik)は、ジョン・フォン・ノイマン(ら)によってなされた、量子力学で扱う物理量や状態といった概念の基礎付け(形式化)の仕事、およびそれについて1932年に刊行した論文および書籍のタイトルである。 これにより、ハイゼンベルク-ボルン-ジョルダンによる行列力学とシュレディンガーによる波動力学を抽象ヒルベルト空間のクラスに帰属する理論として統一が行なわれたただし、その統一にあたってはディラックによる擬関数(現:超関数)であるδ関数を数学的フィクションとして認容した上で行なわれた。。.

新しい!!: ヘルマン・ワイルと量子力学の数学的基礎 · 続きを見る »

電磁場

電磁場(でんじば,, EMF)、あるいは電磁界(でんじかい)は、電場(電界)と磁場(磁界)の総称。 電場と磁場は時間的に変化する場合には、互いに誘起しあいながらさらにまた変化していくので、まとめて呼ばれる。 電磁場の変動が波動として空間中を伝播するとき、これを電磁波という。 電場、磁場が時間的に一定で 0 でない場合は、それぞれは分離され静電場、静磁場として別々に扱われる。 電磁場という用語を単なる概念として用いる場合と、物理量として用いる場合がある。 概念として用いる場合は電場の強度と電束密度、あるいは磁場の強度と磁束密度を明確に区別せずに用いるが、物理量として用いる場合は電場の強度と磁束密度の組であることが多い。 また、これらの物理量は電磁ポテンシャルによっても記述され、ラグランジュ形式などで扱う場合は電磁ポテンシャルが基本的な物理量として扱われる。このような場合には電磁ポテンシャルを指して電磁場という事もある。 電磁場のふるまいは、マクスウェルの方程式、あるいは量子電磁力学(QED)によって記述される。マクスウェルの方程式を解いて、電磁場のふるまいについて解析することを電磁場解析と言う。.

新しい!!: ヘルマン・ワイルと電磁場 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: ヘルマン・ワイルと電磁気学 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: ヘルマン・ワイルと集合 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: ヘルマン・ワイルと抽象代数学 · 続きを見る »

排中律

排中律(はいちゅうりつ、Law of excluded middle)とは、論理学において、任意の命題 P に対し"P ∨ ¬P"(P であるか、または P でない)が成り立つことを主張する法則である。これは、論理の古典的体系では基本的な属性であり、同一律、無矛盾律とともに、(古典的な)思考の三原則のひとつに数えられる。しかし、論理体系によっては若干異なる法則となっている場合もあり、場合によっては排中律が全く成り立たないこともある(例えば直観論理)。 (第三の命題が排除される原理)あるいは(第三の命題・可能性は存在しない)と称され、Law of excluded middle(中間の命題は排除されて存在しない法則)または (第三の命題が排除される法則)と呼ばれ、これらが日本語での排中という表記につながり、排中原理と呼ばれる。 排中律は論理から導かれる法則ではない。また principle of bivalence とは異なる主張である。 修辞学では排中律が誤解されて利用されることがあり、誤謬の原因となっている。.

新しい!!: ヘルマン・ワイルと排中律 · 続きを見る »

構造主義

構造主義(こうぞうしゅぎ、)とは、狭義には1960年代に登場して発展していった20世紀の現代思想のひとつである。広義には、現代思想から拡張されて、あらゆる現象に対して、その現象に潜在する構造を抽出し、その構造によって現象を理解し、場合によっては制御するための方法論を指す語である。.

新しい!!: ヘルマン・ワイルと構造主義 · 続きを見る »

斜交群

数学において、斜交群(しゃこうぐん、symplectic group)またはシンプレクティック群は、極めて密接に関連するが、異なる 2 つの群を意味し得る。 この記事では、この二つの群を Sp(2n, F) および Sp(n) と記す。 前者と区別するため、後者は屡、コンパクト斜交群と呼ばれる。 多くの筆者が若干異なる記号を使う傾向にあるが、それは、2 の因数だけ異なる。 ここでの記号は、群を表現するために使う行列の大きさに合わせることとする。.

新しい!!: ヘルマン・ワイルと斜交群 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ヘルマン・ワイルと数学 · 続きを見る »

数学史

数学史(すうがくし、英語:history of mathematics)とは、数学の歴史のこと。第一には、数学上の発見の起源についての研究であり、副次的な興味として、過去の数学においてどのような手法が一般的であったかや、どのような記号が使われたかなども調べられている。.

新しい!!: ヘルマン・ワイルと数学史 · 続きを見る »

数学的直観主義

数学的直観主義(すうがくてきちょっかんしゅぎ)とは、数学の基礎を数学者の直観におく立場のことを指す。.

新しい!!: ヘルマン・ワイルと数学的直観主義 · 続きを見る »

数学者

数学者(すうがくしゃ、mathematician)とは、数学に属する分野の事柄を第一に、調査および研究する者を指していう呼称である。.

新しい!!: ヘルマン・ワイルと数学者 · 続きを見る »

数理物理学

数理物理学(すうりぶつりがく、Mathematical physics)は、数学と物理学の境界を成す科学の一分野である。数理物理学が何から構成されるかについては、いろいろな考え方がある。典型的な定義は、Journal of Mathematical Physicsで与えているように、「物理学における問題への数学の応用と、そのような応用と物理学の定式化に適した数学的手法の構築」である。 しかしながら、この定義は、それ自体は特に関連のない抽象的な数学的事実の証明にも物理学の成果が用いられている現状を反映していない。このような現象は、弦理論の研究が数学の新地平を切り拓きつつある現在、ますます重要になっている。 数理物理には、関数解析学/量子力学、幾何学/一般相対性理論、組み合わせ論/確率論/統計力学などが含まれる。最近では弦理論が、代数幾何学、トポロジー、複素幾何学などの数学の重要分野と交流を持つようになってきている。.

新しい!!: ヘルマン・ワイルと数理物理学 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: ヘルマン・ワイルと数論 · 続きを見る »

時空

時空(じくう、spacetime)は、時間と空間を合わせて表現する物理学の用語、または、時間と空間を同時に、場合によっては相互に関連したものとして扱う概念である。時空間()とも。.

新しい!!: ヘルマン・ワイルと時空 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: ヘルマン・ワイルと時間 · 続きを見る »

11月9日

11月9日(じゅういちがつここのか)はグレゴリオ暦で年始から313日目(閏年では314日目)にあたり、年末まであと52日ある。.

新しい!!: ヘルマン・ワイルと11月9日 · 続きを見る »

12月8日

12月8日(じゅうにがつようか)は、グレゴリオ暦で年始から342日目(閏年では343日目)にあたり、年末まであと23日ある。.

新しい!!: ヘルマン・ワイルと12月8日 · 続きを見る »

1885年

記載なし。

新しい!!: ヘルマン・ワイルと1885年 · 続きを見る »

1904年

記載なし。

新しい!!: ヘルマン・ワイルと1904年 · 続きを見る »

1908年

記載なし。

新しい!!: ヘルマン・ワイルと1908年 · 続きを見る »

1913年

記載なし。

新しい!!: ヘルマン・ワイルと1913年 · 続きを見る »

1918年

記載なし。

新しい!!: ヘルマン・ワイルと1918年 · 続きを見る »

1920年代

1920年代(せんきゅうひゃくにじゅうねんだい)は、西暦(グレゴリオ暦)1920年から1929年までの10年間を指す十年紀。.

新しい!!: ヘルマン・ワイルと1920年代 · 続きを見る »

1921年

記載なし。

新しい!!: ヘルマン・ワイルと1921年 · 続きを見る »

1922年

記載なし。

新しい!!: ヘルマン・ワイルと1922年 · 続きを見る »

1923年

記載なし。

新しい!!: ヘルマン・ワイルと1923年 · 続きを見る »

1928年

記載なし。

新しい!!: ヘルマン・ワイルと1928年 · 続きを見る »

1929年

記載なし。

新しい!!: ヘルマン・ワイルと1929年 · 続きを見る »

1930年

記載なし。

新しい!!: ヘルマン・ワイルと1930年 · 続きを見る »

1933年

記載なし。

新しい!!: ヘルマン・ワイルと1933年 · 続きを見る »

1938年

記載なし。

新しい!!: ヘルマン・ワイルと1938年 · 続きを見る »

1951年

記載なし。

新しい!!: ヘルマン・ワイルと1951年 · 続きを見る »

1955年

記載なし。

新しい!!: ヘルマン・ワイルと1955年 · 続きを見る »

ここにリダイレクトされます:

Hermann Weylヘルマン・ヴァイル

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »