ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

数学史

索引 数学史

数学史(すうがくし、英語:history of mathematics)とは、数学の歴史のこと。第一には、数学上の発見の起源についての研究であり、副次的な興味として、過去の数学においてどのような手法が一般的であったかや、どのような記号が使われたかなども調べられている。.

369 関係: 功利主義劉徽そろばん偽名十進法印刷南北朝時代 (中国)反復法 (数値計算)古代ローマ古代エジプト双曲幾何学取り尽くし法墨子墨家多様体大航海時代天元術天文学変換 (数学)始皇帝定理完全五度完全数宋 (王朝)対称性対数小数小数点巨石記念物中央アジア中世中国中国の剰余定理中東帰一算万有引力三角形三角関数三角法三次関数三次方程式一行九章算術平均値の定理平行線公準平方剰余の相互法則平方根幾何学乗法京房...二項定理二重平方数二進法二次方程式亀甲代数学代数学の基本定理代数幾何学張衡 (科学者)位取り記数法位相幾何学微分積分学微分法微分方程式地動説北アフリカ北インドペルシア人ペル方程式ナイル川ナスィールッディーン・トゥースィーミレニアム懸賞問題マラン・メルセンヌマーダヴァマックチューター数学史アーカイブマテオ・リッチマウリヤ朝チューリングマシンチェスターのロバートネイピア数バースのアデラードバースカラ2世バビロニア数学バクシャーリー写本バグダードポール・コーエン (数学者)ポアンカレ予想メソポタミアモジュラー形式モスクワ数学パピルスヤコブ・ベルヌーイユークリッド原論ユークリッド幾何学ヨハネス・ケプラーラテン語リンド数学パピルスリー代数リーマン幾何学ルネ・デカルトルネサンスルドヴィコ・フェラーリルイジアナ州立大学レオナルド・フィボナッチレオンハルト・オイラーレギオモンタヌスロルの定理ロンドン数学会ローマ数字ヴェーダヴォルフガング・ハーケンボナヴェントゥーラ・カヴァリエーリボーヤイ・ヤーノシュボエティウストーマス・ベイズヘレニズムブラーマ・スプタ・シッダーンタブラーマグプタの定理ブラーマグプタの二平方恒等式ブラーマグプタの公式ブラーフミー文字ブラーフミー数字ブラーフマナブラフマグプタブレーズ・パスカルブール論理プラトンプリンプトン322パリパリ大学パーニニパオロ・ルフィニパキスタンパスカルの三角形ヒルベルトの23の問題ピエール・ド・フェルマーピエール=シモン・ラプラスピタゴラスピタゴラスの定理ピタゴラスコンマピタゴラス教団ティマイオスティコ・ブラーエテイラー展開フランスフランス数学会フランソワ・ビエトフラクタルフラクタルアートフロリアン・カジョリフワーリズミーフィボナッチ数フェルマーの最終定理ニュルンベルクニールス・アーベルニコマコスニコラ・ブルバキニコライ・ロバチェフスキーニコラス・メルカトルニコル・オレームホーナー法ダフィット・ヒルベルトベルンハルト・リーマン列 (数学)和算アメリカ数学会アラブ人アラビア語アラビア数学アラビア数字アリストテレスアルキメデスアルゴリズムアル=カーシーアレクサンドリアのディオファントスアンドリュー・ワイルズアーリヤバタアブラーム・ド・モアブルアブル・ワファーアブー・サフル・アル=クーヒーアフリカアイザック・ニュートンアカデメイアイラクインドの歴史インドの数学インダス文字インダス文明イングランドイブン・ハイサムイベリア半島イエズス会イシャンゴの骨イスラム帝国イスラム教ウマル・ハイヤームウィリアム・ローワン・ハミルトンエラトステネスエラトステネスの篩エヴァリスト・ガロアエディンバラ数学会エウドクソスエウクレイデスエコール・ポリテクニークエジプトエジプト中王国エジプト語エジプト数学オーギュスタン=ルイ・コーシーオックスフォード大学オクターヴオスマン帝国カヴァリエリの原理カール・ワイエルシュトラスカール・フリードリヒ・ガウスカオス理論ガリレオ・ガリレイガンマ関数ガウスの消去法キンディーギリシア語クルト・ゲーデルクレモナのジェラルドクレレ誌グリゴリー・ペレルマンケーララ学派ケプラーの法則ゲーム理論ゲーデルの不完全性定理ゲオルク・プールバッハゲオルク・カントールコンピュータネットワークコンゴ民主共和国ゴットフリート・ライプニッツシモン・ステヴィンシュメールシュリニヴァーサ・ラマヌジャンシュルバ・スートラシラクサシピオーネ・デル・フェッロジャイナ教ジョン・ネイピアジョージ・ブールジョージ・G・ジョーゼフジェロラモ・カルダーノスコットランドセント・アンドルーズ大学 (スコットランド)タレスタプルサンスクリットサービト・イブン・クッラ再帰冪乗冪級数円周率円周率の歴史円積問題円錐曲線公理的集合論六十四卦六十進法先史時代国際数学者会議四色定理四次方程式王立協会球面三角法理論砂岩確率論祖沖之秦九韶科挙積分法立方根立方数等差数列等比数列算盤算盤の書算道算術算木級数素描素数素数定理純粋数学約数線型方程式群 (数学)組合せ数学環 (数学)焚書無理数無限無限小直交座標系直角三角形発散級数E8 (数学)音楽理論韻律 (言語学)遺物非ユークリッド幾何学頻度分析 (暗号)順列行列衛星複素解析西洋解析学解析幾何学証明計算機科学計量学記数法高度合成数論理学魔方陣超幾何級数超越数自然対数自然数の分割英語集合集合論連分数連立方程式連続体仮説抽象代数学暗号理論暗号解読恒星年李冶楊輝極限楔形文字楕円幾何学正の数と負の数歴史歴史家沈括波動方程式添え字測量木星朱世傑月経有限単純群の分類易経浮動小数点数文明数学数学基礎論数学の年表数学的帰納法数字数理論理学数論拍子曲線010世紀53平均律6 インデックスを展開 (319 もっと) »

功利主義

功利主義(こうりしゅぎ、utilitarianism)とは、行為や制度の社会的な望ましさは、その結果として生じる効用(功利、有用性、utility)によって決定されるとする考え方である。帰結主義の1つ。「功利主義」という日本語の語感がもたらす誤解を避けるため、「公益主義」や「大福主義」といった訳語が用いることが提案されている。 倫理学、法哲学、政治学、厚生経済学などにおいて用いられる。.

新しい!!: 数学史と功利主義 · 続きを見る »

劉徽

劉 徽(りゅう き、、生没年不詳)は、三国時代の中国の数学者で、魏に住んでいた。前漢の宗室である梁孝王の劉武の玄孫である菑郷侯の劉逢喜(敬王劉定国の孫)の後裔に当たると伝わり、現在の山東省淄博市淄川区の人。若いころに洛陽を訪れ、日光の影の測定に参加したと思われる。祖沖之と共に、古代中国の最も偉大な数学者の1人に数えられるNeedham, Volume 3, 85-86.

新しい!!: 数学史と劉徽 · 続きを見る »

そろばん

そろばん そろばん(漢字表記:算盤、十露盤など)とは計算補助用具の一種で、串(細い棒)で刺した珠(たま)を移動させ、その位置で数を表現し、計算の助けとするもの。 日本では珠を用いた計算補助用具(西洋式には「abacus」と呼ぶもの)全般を指す場合にも、「そろばん(ソロバン)」の語が使われることがあるが、本項では東アジア式のそろばんと日本式のそろばん(英語でsoroban 又は Japanese abacus)の双方を解説し、特に日本式のそろばんについて詳説する。.

新しい!!: 数学史とそろばん · 続きを見る »

偽名

偽名(ぎめい)は、実際の名前を伏せて使われる、偽の名前のこと。.

新しい!!: 数学史と偽名 · 続きを見る »

十進法

十進法(じっしんほう、decimal system)とは、10 を底(てい)とし、底およびその冪を基準にして数を表す方法である。.

新しい!!: 数学史と十進法 · 続きを見る »

印刷

印刷(いんさつ、printing)とは、インキにより、紙などの媒体に文字や絵、写真などの画像を再現することを指し、印刷された物を印刷物という。 現代では2次元の媒体に限らず、車体など3次元の曲面に直接印刷する技術も多数開発されている。印刷がカバーする範囲は極めて広く、気体以外の全ての物体に対して可能であるとされている(ゲル状の物体にすら印刷が可能な技術がある)。.

新しい!!: 数学史と印刷 · 続きを見る »

南北朝時代 (中国)

北魏と宋 北魏と南斉 東西魏と梁 北周、北斉と後梁、陳 中国史における南北朝時代(なんぼくちょうじだい)は、北魏が華北を統一した439年から始まり、隋が中国を再び統一する589年まで、中国の南北に王朝が並立していた時期を指す。 この時期、華南には宋、斉、梁、陳の4つの王朝が興亡した。こちらを南朝と呼ぶ。同じく建康(建業)に都をおいた三国時代の呉、東晋と南朝の4つの王朝をあわせて六朝(りくちょう)と呼び、この時代を六朝時代とも呼ぶ。この時期、江南(長江以南)の開発が一挙に進み、後の隋や唐の時代、江南は中国全体の経済基盤となった。南朝では政治的な混乱とは対照的に文学や仏教が隆盛をきわめ、六朝文化と呼ばれる貴族文化が栄えて、陶淵明や王羲之などが活躍した。 また華北では、鮮卑拓跋部の建てた北魏が五胡十六国時代の戦乱を収め、北方遊牧民の部族制を解体し、貴族制に基づく中国的国家に脱皮しつつあった。北魏は六鎮の乱を経て、534年に東魏、西魏に分裂した。東魏は550年に西魏は556年にそれぞれ北斉、北周に取って代わられた。577年、北周は北斉を滅ぼして再び華北を統一する。その後、581年に隋の楊堅が北周の譲りを受けて帝位についた。589年、隋は南朝の陳を滅ぼし、中国を再統一した。普通は北魏・東魏・西魏・北斉・北周の五王朝を北朝と呼ぶが、これに隋を加える説もある。李延寿の『北史』が隋を北朝に列しているためである。.

新しい!!: 数学史と南北朝時代 (中国) · 続きを見る »

反復法 (数値計算)

数値計算分野における反復法(はんぷくほう、iterative method)とは、求根アルゴリズムの手法のうち、反復計算を使うもの。アルゴリズムが単純であるために古くから用いられ\が提案されてき-->ている。\bold_を求める解とする-->.

新しい!!: 数学史と反復法 (数値計算) · 続きを見る »

古代ローマ

古代ローマ(こだいローマ、Roma antiqua)は、イタリア半島中部に位置した多部族からなる都市国家から始まり、領土を拡大して地中海世界の全域を支配する世界帝国までになった国家の総称である。当時の正式な国号は元老院ならびにローマ市民(Senatus Populusque Romanus)であり、共和政成立から使用されて以来滅亡まで体制が変わっても維持された。伝統的には476年のロムルス・アウグストゥルスの退位をもって古代ローマの終焉とするのが一般的であるが、ユスティニアヌス1世によってイタリア本土が再構成される554年までを古代ローマに含める場合もある。ローマ市は、帝国の滅亡後も一都市として存続し、世界帝国ローマの記憶は以後の思想や制度に様々な形で残り、今日まで影響を与えている。.

新しい!!: 数学史と古代ローマ · 続きを見る »

古代エジプト

古代エジプト(こだいエジプト、Ancient Egypt)は、古代のエジプトに対する呼称。具体的にどの時期を指すかについては様々な説が存在するが、この項においては紀元前3000年頃に始まった第1王朝から紀元前30年にプトレマイオス朝が共和制ローマによって滅ぼされるまでの時代を扱う。.

新しい!!: 数学史と古代エジプト · 続きを見る »

双曲幾何学

双曲幾何学(そうきょくきかがく、)またはボヤイ・ロバチェフスキー幾何学 とは、まっすぐな空間(ユークリッド空間、放物幾何的空間)ではなく、負の曲率を持つ曲がった空間における幾何学である。ユークリッド幾何学の検証ということでサッケリーなども幾つかの定理を導いているが、完全で矛盾のない公理系を持つユークリッド幾何学ではない新しい幾何学と認識してまとめたのは同時期にそれぞれ独立に発表したロバチェフスキー(1829年発表)、ボヤイ(1832年発表)、およびガウス(発表せず)らの功績である。 ユークリッドのユークリッド原論の5番目の公準(任意の直線上にない一点を通る平行な直線がただ一本存在すること、 平行線公準)に対して、それを否定する公理を付け加え、その新たな平行線公理と無矛盾な体系として得られる幾何学である非ユークリッド幾何学の一つである。双曲幾何学の場合には、「ある直線 L とその直線の外にある点 p が与えられたとき、p を通り L に平行な直線は無限に存在する」という公理に支えられて構成される。 双曲幾何学では、ユークリッド原論の平行線公準以外の公理公準はすべて成立する。これは平行線公準が独立した公準であり、ほかの公準からは証明できないということである。なぜならば他の公準から証明できるとすればその他の全ての公準が成り立つ双曲幾何学でも平行線公準が成り立つはずだからである。この幾何学は、もともと平行線公準をユークリッド原論のほかの公準から証明しようとして作られた幾何学だが、皮肉なことにこの幾何学により平行線公準は独立でほかの公準からは証明できないことが証明された。 例えば、平面においては任意の直線にその直線上にない一点を通る平行線は一本しかないが、無限に開き続ける漏斗のようなものにおいては、任意の直線にその直線上にない一点を通る平行線は無限に存在することになる。 このような面はベルトラミーの擬球面と呼ばれ、双曲幾何学の成立する面(双曲平面)の一種である。また、ベルトラミーの擬球面などの双曲平面は、双曲幾何学が完成した後に発見された。.

新しい!!: 数学史と双曲幾何学 · 続きを見る »

取り尽くし法

取り尽くし法(method of exhaustion、methodus exaustionibus)は、与えられた図形の面積や体積を求める手法の1つで、その図形に内接する一連の多角形を描き、それらの面積を元の図形に収束させる方法である。積尽法、窄出法ともいう。また古代人の方法(méthode des anciens)とも呼ばれる。列を正しく構築すれば、n角形の面積と元の図形の面積の差は n が大きくなるにつれて小さくなっていく。この差を恣意的に小さくすれば、その図形の面積は一連の数列で得られる面積によって「取り尽くされ」、とりうる値の下限が体系的に定まる。この方法はアンティポンが起源だが、彼がどこまで明確に理解していたのかは不明である。厳密な理論付けをしたのはエウドクソスである。「取り尽くし法」という用語を最初に使ったのは、Grégoire de Saint-Vincent の Opus geometricum guadraturae circuli et sectionum coni(1647年)である。 取り尽くし法には一般に背理法の一種を必要とする。これは、ある領域の面積を第2の領域の面積と比較することによって求めることに相当し、それを「取り尽くす」ことで真の面積に恣意的に近づけていく。第2の面積より真の面積が大きいことを前提とし、その前提が偽であることを証明する。次に、真の面積が第2の面積より小さいことを前提として、その前提も偽であることを証明する。 取り尽くし法は微分積分学の先駆けと言える。17世紀から19世紀に解析幾何学と厳密な微分積分学が発展し(特に極限に厳密な定義が与えられ)、取り尽くし法は問題の解法としては使われなくなった。.

新しい!!: 数学史と取り尽くし法 · 続きを見る »

墨子

墨子(ぼくし、生没年不詳、紀元前470年~紀元前390年頃?)は中国戦国時代の思想家。河南魯山の人。あるいはその著書名。墨家の始祖。一切の差別が無い博愛主義(兼愛)を説いて全国を遊説した。いわゆる墨子十大主張を主に説いたことで世に知られている。諱は翟(てき、羽の下に隹)という。.

新しい!!: 数学史と墨子 · 続きを見る »

墨家

墨家(ぼくか、ぼっか)は、中国戦国時代に墨子によって興った思想家集団であり、諸子百家の一つ。博愛主義(兼愛交利)を説き、またその独特の思想に基づいて、武装防御集団として各地の守城戦で活躍した。墨家の思想は、都市の下層技術者集団の連帯を背景にして生まれたものだといわれる。代表的な思想家に、墨翟(墨子)がいる。 戦国時代に儒家と並び最大勢力となって隆盛したが、秦の中国統一ののち勢威が衰え消滅した。.

新しい!!: 数学史と墨家 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: 数学史と多様体 · 続きを見る »

大航海時代

大航海時代(だいこうかいじだい)は、15世紀半ばから17世紀半ばまで続いた、ヨーロッパ人によるアフリカ・アジア・アメリカ大陸への大規模な航海が行われた時代。主にポルトガルとスペインにより行われた。.

新しい!!: 数学史と大航海時代 · 続きを見る »

天元術

天元術(てんげんじゅつ)は、中国で生まれた代数問題の解法である。.

新しい!!: 数学史と天元術 · 続きを見る »

天文学

星空を観察する人々 天文学(てんもんがく、英:astronomy, 独:Astronomie, Sternkunde, 蘭:astronomie (astronomia)カッコ内は『ラランデ歴書』のオランダ語訳本の書名に見られる綴り。, sterrenkunde (sterrekunde), 仏:astronomie)は、天体や天文現象など、地球外で生起する自然現象の観測、法則の発見などを行う自然科学の一分野。主に位置天文学・天体力学・天体物理学などが知られている。宇宙を研究対象とする宇宙論(うちゅうろん、英:cosmology)とは深く関連するが、思想哲学を起源とする異なる学問である。 天文学は、自然科学として最も早く古代から発達した学問である。先史時代の文化は、古代エジプトの記念碑やヌビアのピラミッドなどの天文遺産を残した。発生間もない文明でも、バビロニアや古代ギリシア、古代中国や古代インドなど、そしてイランやマヤ文明などでも、夜空の入念な観測が行われた。 とはいえ、天文学が現代科学の仲間入りをするためには、望遠鏡の発明が欠かせなかった。歴史的には、天文学の学問領域は位置天文学や天測航法また観測天文学や暦法などと同じく多様なものだが、近年では天文学の専門家とはしばしば天体物理学者と同義と受け止められる。 天文学 (astronomy) を、天体の位置と人間界の出来事には関連があるという主張を基盤とする信念体系である占星術 (astrology) と混同しないよう注意が必要である。これらは同じ起源から発達したが、今や完全に異なるものである。.

新しい!!: 数学史と天文学 · 続きを見る »

変換 (数学)

数学的意味での変換(へんかん、transformation)とは、点を他の点に移したり、式を他の式に変えたり、座標を取り替えたりすること。.

新しい!!: 数学史と変換 (数学) · 続きを見る »

始皇帝

始皇帝(しこうてい、紀元前259年 - 紀元前210年Wood, Frances.

新しい!!: 数学史と始皇帝 · 続きを見る »

定理

定理(ていり、theorem)とは、数理論理学および数学において、証明された真なる命題をいう。 文脈によっては公理も定理に含む。また、数学においては論説における役割等から、補題(ほだい、lemma)あるいは補助定理(ほじょていり、helping theorem)、系(けい、corollary)、命題(めいだい、proposition)などとも呼ばれることがある。ここでの「命題」と冒頭文に言う命題とは意味が異なることに注意。 一般的に定理は、まずいくつかの条件を列挙し、次にその下で成り立つ結論を述べるという形をしている。例えば、次は代数学の基本定理の述べ方の1つである。 ある一定の条件(公理系)下で定理を述べそれを証明すること、というのが数学という分野の中心的な研究の形態である。 数学の多くの分野には、各々「基本定理」という名で呼ばれる中心的な定理が存在している。なお定理という名称と証明という手続きは、数学のみならず、物理や工学においても使用される。.

新しい!!: 数学史と定理 · 続きを見る »

完全五度

完全五度(かんぜんごど)とは、音楽における音程のひとつである。P5 (Perfect 5th) と略記する。純正律においては、根音と完全五度の振動数の比が2:3になる。完全四度のである。.

新しい!!: 数学史と完全五度 · 続きを見る »

完全数

完全数(かんぜんすう,)とは、自分自身を除く正の約数の和に等しくなる自然数のことである。完全数の最初の3個は、、 である。「完全数」は「万物は数なり」と考えたピタゴラスが名付けた数の一つであることに由来する「高数・数学者列伝」吉永良正『高校への数学』vol.20、8月号が、彼がなぜ「完全」と考えたのかについては何も書き残されていないようである。中世の『聖書』の研究者は、「 は「神が世界を創造した(天地創造)6日間」、 は「月の公転周期」で、これら2つの数は地上と天界における神の完全性を象徴している」と考えたとされる。古代ギリシアの数学者は他にもあと2つの完全数 を知っていた。以来、完全数はどれだけあるのかの探求が2500年以上のちの現在まで続けられている。 完全数の定義は、正の約数の総和が自分自身の2倍に等しいことと同値である。すなわち、 が完全数であるとは、約数関数 に対して が成り立つことであると表現できる。また、正の約数の逆数和が であると表現することもできる。.

新しい!!: 数学史と完全数 · 続きを見る »

宋 (王朝)

宋(そう、拼音 Sòng、960年 - 1279年)は、中国の王朝の一つ。趙匡胤が五代最後の後周から禅譲を受けて建国した。国号は宋であるが、春秋時代の宋、南北朝時代の宋などと区別するため、帝室の姓から趙宋とも呼ばれる。国号の宋は趙匡胤が宋州(河南省商丘県)の帰徳軍節度使であったことによる。通常は、金に華北を奪われ南遷した1127年以前を北宋、以後を南宋と呼び分けている。北宋、南宋もともに、宋、宋朝である。首都は開封、南遷後の実質上の首都は臨安であった。 北宋と南宋とでは華北の失陥という大きな違いがあるが、それでも文化は継続性が強く、その間に明確な区分を設けることは難しい。そこで区分し易い歴史・制度・国際関係などは北宋・南宋の各記事で解説し、区別し難い分野を本記事で解説する。.

新しい!!: 数学史と宋 (王朝) · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: 数学史と対称性 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: 数学史と対数 · 続きを見る »

小数

小数(しょうすう,decimal)とは、位取り記数法と小数点を用いて実数を表現するための表記法である。.

新しい!!: 数学史と小数 · 続きを見る »

小数点

小数点(しょうすうてん、:en:Decimal separatorまたはdecimal marker)とは、実数を数字列で表記したときの整数部と小数部との境を表す記号であり、アラビア数字の場合、「ピリオド」(点:dot)または「コンマ」(comma)が用いられる。現代の日本では、ピリオドを用いることがほとんどであり、コンマを用いることはほぼ皆無である。.

新しい!!: 数学史と小数点 · 続きを見る »

巨石記念物

トーンヘンジ カルナックの列石群 モンゴルの立石 マルタの巨石神殿 Poulnabrone dolmen Argimusco, モンタルバーノ・エリコーナ, シチリア 巨石記念物(きょせききねんぶつ、megalithic monument(s))は、自然石で、あるいは面取り・化粧仕上げなどの一部の加工のみが加えられた石で、築かれた構築物。単一のものや後述するような列石など集合体の形態をとるもの、ストーンヘンジのような建造物に近い形態のものを指す。世界中に分布し、伝播説もある。 「巨石記念物」という名称は、有史以来の全ての石造建造物を指すのではなく、新石器時代から初期金属器時代までの、特に「巨石使用」を特徴とする構築物についてこのように呼称する。通常は、ピラミッドやジッグラトのようにある程度確立された工法による石組み構造の建築物は除外され、やや原始的な文化という意味合いを持たせて、古代の構造物が単に巨石で築かれていることを強調して使用される用語である。.

新しい!!: 数学史と巨石記念物 · 続きを見る »

中央アジア

東南アジア 中央アジアのいくつかの定義。狭い順に濃茶: ソ連の定義+茶: 現代的な定義+淡茶: UNESCOの定義 中央アジアの位置 中央アジア(ちゅうおうアジア)は、ユーラシア大陸またアジア中央部の内陸地域である。18世紀から19世紀にかけては一般にトルキスタンを指したが、現在でも使用される。トルキスタンとは「テュルクの土地」を意味し、テュルク(突厥他)系民族が居住しており、西トルキスタンと東トルキスタンの東西に分割している。 西トルキスタンには、旧ソ連諸国のうちカザフスタン、キルギス、タジキスタン、トルクメニスタン、ウズベキスタンの5か国が含まれる(以下、中央アジア5か国と記す)。 東トルキスタンは中華民国に併合されて以降、新疆省と成り、中華人民共和国に併合されて以降は新疆ウイグル自治区と成った。中国領トルキスタン、ウイグルスタンともいう。 広義には、「アジアの中央部」を意味し、東西トルキスタンのほか、カザフステップ、ジュンガル盆地、チベット、モンゴル高原、アフガニスタン北部、イラン東部、南ロシア草原を含む。UNESCOはトルキスタン以外にも、モンゴル地域、チベット地域、アフガニスタン、イラン北東部、パキスタン北部、インド北部、ロシアのシベリア南部などを中央アジア概念の中に含めている。.

新しい!!: 数学史と中央アジア · 続きを見る »

中世

中世(ちゅうせい、英語:middle ages)は、狭義には西洋史の時代区分の一つで、古代よりも後、近代または近世よりも前の時代を指す。17世紀初頭の西洋では中世の観念が早くも定着していたと見られ、文献上の初見は1610年代にまでさかのぼる。 また、広義には、西洋史における中世の類推から、他地域のある時代を「中世」と呼ぶ。 ただし、あくまでも類推であって、西洋史における中世と同じ年代を指すとは限らないし、「中世」という時代区分を用いない分野のことも多い。 また、西洋では「中世」という用語を専ら西洋史における時代区分として使用する。 例えば英語では日本史における「中世」を通常は「feudal Japan」(封建日本)や「medieval Japan」(中世日本)とする。.

新しい!!: 数学史と中世 · 続きを見る »

中国

中国(ちゅうごく)は、ユーラシア大陸の東部を占める地域、および、そこに成立した国家や社会。中華と同義。 、中国大陸を支配する中華人民共和国の略称として使用されている。ではその地域に成立した中華民国、中華人民共和国に対する略称としても用いられる。 本記事では、「中国」という用語の「意味」の変遷と「呼称」の変遷について記述する。中国に存在した歴史上の国家群については、当該記事および「中国の歴史」を参照。.

新しい!!: 数学史と中国 · 続きを見る »

中国の剰余定理

loc.

新しい!!: 数学史と中国の剰余定理 · 続きを見る »

中東

中東の地図 中東(ちゅうとう、Middle East)は、狭義の地域概念では、インド以西のアフガニスタンを除く西アジアとアフリカ北東部の総称。西ヨーロッパから見た文化の同一性や距離感によって、おおまかに定義される地政学あるいは国際政治学上の地理区分。.

新しい!!: 数学史と中東 · 続きを見る »

帰一算

帰一算(きいちざん)は文章題の一種。のべ算とも呼ばれる。.

新しい!!: 数学史と帰一算 · 続きを見る »

万有引力

万有引力(ばんゆういんりょく、universal gravitation)または万有引力の法則(ばんゆういんりょくのほうそく、law of universal gravitation)とは、「地上において質点(物体)が地球に引き寄せられるだけではなく、この宇宙においてはどこでも全ての質点(物体)は互いに gravitation(.

新しい!!: 数学史と万有引力 · 続きを見る »

三角形

200px 三角形(さんかくけい、さんかっけい、拉: triangulum, 独: Dreieck, 英, 仏: triangle, (古風) trigon) は、同一直線上にない3点と、それらを結ぶ3つの線分からなる多角形。その3点を三角形の頂点、3つの線分を三角形の辺という。.

新しい!!: 数学史と三角形 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: 数学史と三角関数 · 続きを見る »

三角法

三角法(さんかくほう)とは、三角形の角の大きさと辺の長さの間の関係の研究を基礎として、他の幾何学的図形の各要素の量的関係や、測量などへの応用を研究する数学の学問領域の一つである。様々な数学の分野の中でもきわめて古くから存在し、測量や天文学上の計算などの実用上の要求と密接に関連して生まれたものである(→歴史)。三角法と数表を用いることで、直接に測ることの難しい長さを良い精度で求めることができる(→応用分野)。三角法は平面三角法、球面三角法、その他の三角法に分けられる(→平面三角法、→球面三角法、→その他の三角法)。三角関数は歴史的には三角法から派生して生まれた関数である(→三角関数)。.

新しい!!: 数学史と三角法 · 続きを見る »

三次関数

x-軸と交わる点である。このグラフは二つの極値を持つ。 1.

新しい!!: 数学史と三次関数 · 続きを見る »

三次方程式

三次方程式(さんじほうていしき、cubic equation)とは、次数が 3 であるような代数方程式の事である。この項目では主に、実数を係数とする一変数の三次方程式を扱う。.

新しい!!: 数学史と三次方程式 · 続きを見る »

一行

一行(いちぎょう、いっこう、諡号:大慧禅師、683年‐727年)は、中国の唐代の僧であり、天文学者でもある。俗名は張遂則で、大衍暦を編纂した。 683年に魏州昌楽県(現在の河南省)、一説には巨鹿(現在の河北省)に生まれる。禅、律、天台教学、密教、天文学、暦学を学び、善無畏と共に『大毘盧遮那成仏神変加持経』7巻を翻訳し、内容を『大日経疏』20巻としてまとめた。善無畏・金剛智から密教を学んだ。真言八祖(伝持の八祖)の一人。 また、それまで使用されていた麟徳暦が日食予報に不備があるため、梁令瓚と共に黄道游儀や水運渾象(水力式天球儀)を作成して天体観測を行い、更に南宮説と共に北は鉄勒から南は交州に至る大規模な子午線測量を行って、緯度差1度に相当する子午線弧長が351里80歩(約123.7km)という結果を算出し、それらの観測結果に基づいて『開元大衍暦』52巻を作成した。.

新しい!!: 数学史と一行 · 続きを見る »

九章算術

九章算術の1頁。劉徽の註釈本。 宋代の本を復刻した本) 九章算術(きゅうしょうさんじゅつ)とは古代中国の数学書。 著者はわかっておらず、加筆修正を経て次第に現在に伝わる形に完成したとされている。研究によると前漢の張蒼や耿寿昌も加筆した。263年に劉徽が本書の註釈本を制作したことなどから、制作年代は紀元前1世紀から紀元後2世紀と考えられている。『算数書』(1983年12月に湖北省・荊州で発見された)に続いて、古い数学書である。.

新しい!!: 数学史と九章算術 · 続きを見る »

平均値の定理

''a'', ''b'' で連続かつ (''a'', ''b'') で微分可能な関数に対して、平均変化率に等しい傾きを持つ接線を与える点 ''c'' が (''a'', ''b'') 内に存在する。 微分積分学における平均値の定理(へいきんちのていり、mean-value theorem)または有限増分の定理 (Théorème des accroissements finis) は、実函数に対して有界な領域上の積分に関わる大域的な値を、微分によって定まる局所的な値として実現する点が領域内に存在することを主張する。平均値の定理にはいくつかバリエーションがあるが、単に 「平均値の定理」 と言った場合は、ラグランジュの平均値の定理と呼ばれる微分に関する平均値の定理のことを指す場合が多い。 平均値の定理は微積分学の他の定理の証明(例えば、テイラーの定理、微分積分学の基本定理)にしばしば利用される、大変有用なものである。平均値の定理の証明自体にはロルの定理を用いる。その一方で、平均値の定理はそのまま多変数の関数に適用することはできない。また、もっと弱い条件の元でも同じ定理が成り立つ。その他種々の理由から、平均値の定理を使うこと避ける数学者もいる。多変数関数にも使えて、平均値の定理の代わりになるような定理として、有限増分不等式がある。これは存在型ではない。あるいは、積分を持ち込んで微積分学の基本定理で代用することもある。.

新しい!!: 数学史と平均値の定理 · 続きを見る »

平行線公準

平行線公準(へいこうせんこうじゅん)とは、ユークリッド幾何学における特色のある公準である。平行線公理、ユークリッド原論における5番目の公準であったことから、ユークリッド(エウクレイデス)の第5公準(公理)とも呼ばれる。これは2次元幾何学において次のようなことを述べている。 1つの線分が2つの直線に交わり、同じ側の内角の和が2直角より小さいならば、この2つの直線は限りなく延長されると、2直角より小さい角のある側において交わる。 ユークリッド幾何学は平行線公準を含む全てのユークリッドの公準を満たすような幾何学を研究するものである。平行線公準が成立しない幾何学は非ユークリッド幾何学と呼ばれる。平行線公準から独立した幾何学(つまり、ユークリッド公準のうち、最初の4つの公準しか仮定しない幾何学)を(もしくは中立幾何学)と呼ぶ。.

新しい!!: 数学史と平行線公準 · 続きを見る »

平方剰余の相互法則

整数論』(1801年)で平方剰余の相互法則の最初の証明を公開した。 (へいほうじょうよ、quadratic residue)とは、ある自然数を法としたときの平方数のことであり、平方剰余の相互法則(へいほうじょうよのそうごほうそく、quadratic reciprocity)は、ある整数 が別の整数 の平方剰余であるか否かを判定する法則である。.

新しい!!: 数学史と平方剰余の相互法則 · 続きを見る »

平方根

平方根(へいほうこん、square root)とは、数に対して、平方すると元の値に等しくなる数のことである。与えられた数を面積とする正方形を考えるとき、その数の平方根の絶対値がその一辺の長さであり、一つの幾何学的意味付けができる。また、単位長さと任意の長さ x が与えられたとき、長さ x の平方根を定規とコンパスを用いて作図することができる。二乗根(にじょうこん)、自乗根(じじょうこん)とも言う。.

新しい!!: 数学史と平方根 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: 数学史と幾何学 · 続きを見る »

乗法

算術における乗法 (じょうほう、multiplication) は、算術の四則と呼ばれるものの一つで、整数では、一方の数 (被乗数、ひじょうすう、multiplicand) に対して他方の数 (乗数、じょうすう、multiplier) の回数だけ繰り返し和をとる(これを掛けるまたは乗じるという。)ことにより定義できる演算である。掛け算(かけざん)、乗算(じょうざん)とも呼ばれる。代数学においては、変数の前の乗数(例えば 3y の 3)は係数(けいすう、coefficient)と呼ばれる。 逆の演算として除法をもつ。乗法の結果を積 (せき、product) と呼ぶ。 乗法は、有理数、実数、複素数に対しても拡張定義される。また、抽象代数学においては、一般に可換とは限らない二項演算に対して、それを乗法、積などと呼称する(演算が可換である場合はしばしば加法、和などと呼ぶ)。.

新しい!!: 数学史と乗法 · 続きを見る »

京房

京 房(けい ぼう、紀元前77年-紀元前37年)は、前漢の人。字は君明。東郡頓丘の人。元の姓は李であったが、自ら京氏に改姓した。易経の大家。.

新しい!!: 数学史と京房 · 続きを見る »

二項定理

初等代数学における二項定理(にこうていり、binomial theorem)または二項展開 (binomial expansion) は二項式の冪の代数的な展開を記述するものである。定理によれば、冪 は の形の項の和に展開できる。ただし、冪指数 は を満たす非負整数で、各項の係数 は と に依存して決まる特定の正整数である。例えば の項の係数 は二項係数 \tbinom (.

新しい!!: 数学史と二項定理 · 続きを見る »

二重平方数

算術における四乗数(しじょうすう、biquadratic number; 複平方数別に biquadratic という形容は「複二次」ということを強調するものではない。そもそも接頭辞 quadr- は 4 を意味するので、quadratic は「4つの」「四次の」という意味のはずだが、四辺形の面積としての square (ex quadrem) が「平方」を意味し、それに伴って二次方程式や二次形式などで quadratic が「二次の」という意味で多用されるなかで、「四次の」を意味するために冗長ながら「二回」を意味する接頭辞 bi- を附した biquadratic を使うことになったという事情による 。したがって、和訳語としては単に「四乗」を対応させるのが自然であると思われる。)あるいは二重平方数とは、狭義には別の自然数の四乗(平方の平方)になっているような自然数のことである。 最小の二重平方数は 14.

新しい!!: 数学史と二重平方数 · 続きを見る »

二進法

二進法(にしんほう)とは、2 を底(てい、基(base)とも)とし、底の冪の和で数を表現する方法である。 英語でバイナリ (binary) という。binaryという語には「二進法」の他に「二個一組」「二個単位」といったような語義もある(例: バイナリ空間分割)。.

新しい!!: 数学史と二進法 · 続きを見る »

二次方程式

数学の特に代数学において二次方程式(にじほうていしき、quadratic equation)は、二次の多項式函数のを記述する。多変数の二次方程式については(特に実数係数のものについて)その零点集合に対する幾何学的考察が歴史的に行われ、よく知られている(二元二次方程式については円錐曲線を、一般の多変数二次方程式については二次曲面を参照するとよい)。 初等代数学における二次方程式は未知数 および既知数 を用いて ax^2+bx+c.

新しい!!: 数学史と二次方程式 · 続きを見る »

亀甲

亀甲(きっこう・かめのこう・かめのこ・かめこう・きこう)とは、カメの甲羅のこと。転じて、六角形状のものを表す。.

新しい!!: 数学史と亀甲 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 数学史と代数学 · 続きを見る »

代数学の基本定理

代数学の基本定理(だいすうがくのきほんていり、fundamental theorem of algebra)は「次数が 1 以上の任意の複素係数一変数多項式には複素根が存在する」 という定理である。.

新しい!!: 数学史と代数学の基本定理 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 数学史と代数幾何学 · 続きを見る »

張衡 (科学者)

張衡の切手(1955年発行) 張衡の地動儀(模型) 張 衡(ちょう こう、78年 - 139年)は、後漢代の政治家・天文学者・数学者・地理学者・発明家・製図家・文学者・詩人。字は平子。南陽郡西鄂県(現在の河南省南陽市臥竜区)の人。.

新しい!!: 数学史と張衡 (科学者) · 続きを見る »

位取り記数法

位取り記数法(くらいどりきすうほう)、もしくは「N 進法」とは数の表現方法の一種で、予め定められたN 種類の記号(数字)を列べることによって数を表す方法である。(位取りのことを桁ともいう。) 今日の日本において通常使われているのは、 N が十のケースである十進法であるが、コンピューターでは二進法、八進法、十六進法なども用いられる。また歴史的には、十進法が世界的に広まったのはフランス革命の革命政府がメートル法とともに十進法を定めて以来であり、それ以前は国や分野により、様々な N に対する N 進法が用いられていた。 本項ではN が自然数の場合を扱う。それ以外の場合については広義の記数法の記事を参照のこと。また 後述する''p''進数の概念とは(関連があるものの)別概念であるので注意が必要である。.

新しい!!: 数学史と位取り記数法 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: 数学史と位相幾何学 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: 数学史と微分積分学 · 続きを見る »

微分法

数学における微分法(びぶんほう、differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 微分は量を扱うほとんど全ての分野に応用を持つ。たとえば物理学において、動く物体の変位の時間に関する導函数はその物体の速度であり、速度の時間に関する導函数は加速度である。物体の運動量の導函数はその物体に及ぼされた力に等しい(この微分に関する言及を整理すればニュートンの第二法則に結び付けられる有名な方程式 が導かれる)。化学反応の反応速度も導函数である。オペレーションズ・リサーチにおいて導函数は物資転送や工場設計の最適な応報の決定に用いられる。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。.

新しい!!: 数学史と微分法 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 数学史と微分方程式 · 続きを見る »

地動説

地動説(ちどうせつ)とは、宇宙の中心は太陽であり、地球は他の惑星と共に太陽の周りを自転しながら公転している、という学説のこと。宇宙の中心は地球であるとする天動説(地球中心説)に対義する学説であり、ニコラウス・コペルニクスが唱えた。彼以前にも太陽を宇宙の中心とする説はあった。太陽中心説(Heliocentrism)ともいうが、地球が動いているかどうかと、太陽と地球どちらが宇宙の中心であるかは厳密には異なる概念であり、地動説は「Heliocentrism」の訳語として不適切だとの指摘もある。聖書の解釈と地球が動くかどうかという問題は関係していたが、地球中心説がカトリックの教義であったことはなかった。地動説(太陽中心説)確立の過程は、宗教家(キリスト教)に対する科学者の勇壮な闘争というモデルで語られることが多いが、これは19世紀以降に作られたストーリーであり、事実とは異なる。 地動説の図.

新しい!!: 数学史と地動説 · 続きを見る »

北アフリカ

北アフリカ(きたアフリカ)は、アフリカのうちサハラ砂漠より北の地域を指す。また、狭義には西端部のマグリブ地域のみを指す場合もある。エジプトやリビアを中心に中東の一部として定義されることも多い。サハラ砂漠をはじめとした砂漠地帯やステップが大部分を占めるが、地中海を挟んでEU諸国と対しており、モロッコやチュニジアのように経済が比較的発達している国が多い。住民にはアラブ系のコーカソイドが多いため、ホワイトアフリカともよばれる。.

新しい!!: 数学史と北アフリカ · 続きを見る »

北インド

北インド(英語:North India または Northern India、ヒンディー語:उत्तर भारत ラテン文字転写:Uttar Bhārat、شمالی ھندوستان ラテン文字転写:Shumālī Hindustān)は、インドの北半部を大まかに示す地理的概念である。ヒンドゥスターン(Hindustan)とも呼ばれる。文化圏として広く見る場合には現在のインドだけでなく、パキスタンやバングラデシュ、ネパールにもまたがる概念である(地図では黄緑色の部分)。いっぽう同じインド領内でも南インドのほか、北東インドもあまり含まれない。.

新しい!!: 数学史と北インド · 続きを見る »

ペルシア人

古代ペルシヤの貴族と兵士の服装 ペルシア人(ペルシアじん、、)は、中東のイランを中心に住み、ペルシア語を話す人々。イラン系民族の一。.

新しい!!: 数学史とペルシア人 · 続きを見る »

ペル方程式

ペル方程式(ペルほうていしき、Pell's equation)とは、 を平方数ではない自然数として、未知整数, について の形のディオファントス方程式である。 ペル方程式の一般的な解法は、1150年にインドのバースカラ2世が見つけている。彼はブラーマグプタのを改良した解法を使い、同じ技法を応用して不定二次方程式や二次ディオファントス方程式の一般解も見つけた。西洋におけるペル方程式の一般的な解法は、ウィリアム・ブランカーが発見した。しかし、オイラーはこの方程式を研究したのはジョン・ペルであると誤解し「ペル方程式」と命名したため、その名前が広く使われるようになった。.

新しい!!: 数学史とペル方程式 · 続きを見る »

ナイル川

ナイル川(ナイルがわ、النيل ()、the Nile、le Nil)は、アフリカ大陸東北部を流れ地中海に注ぐアフリカ最長級の河川である。長さは6,650km、流域面積は2,870,000km2にのぼる。.

新しい!!: 数学史とナイル川 · 続きを見る »

ナスィールッディーン・トゥースィー

ナスィールッディーン・トゥースィー(ペルシア語: محمد بن محمد بن حسن طوسی Muḥammad ibn Muḥammad ibn Ḥasan Ṭūsī アラビア語: ナスィールッディーン・アッ=トゥースィー Naṣīr al-Dīn Abū Ja‘far Muḥammad b. Muḥammad b. Ḥasan al-Ṭūsī、 نصير الدين ابو جعفر محمد بن محمد بن حسن الطوسي 1201年2月18日 –1274年6月25日)はシーア派を代表するペルシャ人 の神学者である。またイブン・スィーナーら系譜に連なる逍遥学派の中興の祖と目される哲学者であり、数学者、天文学者であり、13世紀のイスラーム世界を代表する偉大な学者である。トゥースィーはイランのホラーサーン地方のトゥース生まれの人物を示す呼称で多くの学者がトゥースィー(アラビア語でアル=トゥースィー at-Tûsî)と呼ばれている。また「学識者トゥースィー」 محقِّقِ طوسى muḥaqqiq-i Ṭūsī、ホージャ・ナスィール・トゥースィーخواجه نصير طوسى Khwāja Naṣīr Ṭūsī、「人類の師」 استادِ بشر Ustād-i Bashar などの尊称で呼ばれて来た。 Nasir al-Din Tusi.

新しい!!: 数学史とナスィールッディーン・トゥースィー · 続きを見る »

ミレニアム懸賞問題

ミレニアム懸賞問題(ミレニアムけんしょうもんだい、)とは、アメリカのクレイ数学研究所によって2000年に発表された100万ドルの懸賞金がかけられている7つの問題のことである。そのうち1つは解決済み、6つは2015年8月末の時点で未解決である。ミレニアム賞問題、ミレニアム問題とも呼ばれる。.

新しい!!: 数学史とミレニアム懸賞問題 · 続きを見る »

マラン・メルセンヌ

マラン・メルセンヌ マラン・メルセンヌ(Marin Mersenne, 1588年9月8日 - 1648年9月1日)は、フランスの神学者。数学、物理学に加え哲学、音楽理論の研究もしていた。メーヌ州(現在はサルト県)オアゼ出身。メルセンヌ数(メルセンヌ素数)の名の由来ともなる。また音響学の父とも呼ばれる。ヨーロッパの学者の間の交流の中心となって学問の発展に貢献したことで知られる。.

新しい!!: 数学史とマラン・メルセンヌ · 続きを見る »

マーダヴァ

ンガマグラーマのマーダヴァ(, マラヤーラム語: സംഗമഗ്രാമ മാധവൻ, संगमग्राम के माधव)は、インド(ヴィジャヤナガル王国)の数学者、天文学者(1340年もしくは1350年 – 1425年)。.

新しい!!: 数学史とマーダヴァ · 続きを見る »

マックチューター数学史アーカイブ

マックチューター数学史アーカイブ(MacTutor History of Mathematics archive)とはジョン・J・オコナーとエドマンド・F・ロバートソンが作成し、スコットランドにあるセント・アンドルーズ大学がホスティングしている有名な曲線に関する情報や数学史に関する様々な話題や多くの数学者の伝記を載せているウェブサイトである。 このウェブサイトは同作者による18メガバイトのHyperCardデータベースである「マスマティカル・マックチューター・システム(Mathematical MacTutor system)」という大規模プロジェクトの一環であり、マックチューターは広範囲の数学的な話題を扱っているがコンテンツは作者の興味と熱意に左右される形で偏っている。オコナーとロバートソンは自身が考えるコンピュータ、特にMacintoshのグラフィック機能の分野に注目しており他の方法では不可能な洞察力を与えてくれるとしている。従って、数学ソフトウェアにて見つけることが期待できる微分積分学の話題に加えてマックチューターは統計学、行列、複素解析上のスタックに加えて幾何学、代数学(特に群論)、グラフ理論、数論において特に強みを持つ。.

新しい!!: 数学史とマックチューター数学史アーカイブ · 続きを見る »

マテオ・リッチ

マテオ・リッチ(、 1552年10月6日 - 1610年5月11日)は、イタリア人イエズス会員・カトリック教会の司祭。中国名は利瑪竇()。フランシスコ・ザビエルの夢見た中国宣教に苦労のすえ成功し、明朝宮廷において活躍した。中国にヨーロッパの最新技術を伝えると共に、ヨーロッパに中国文化を紹介し、東西文化の架け橋となった。.

新しい!!: 数学史とマテオ・リッチ · 続きを見る »

マウリヤ朝

マウリヤ朝(マウリヤちょう、Maurya-sāmrājya、紀元前317年頃 - 紀元前180年頃)は、古代インドで栄えたマガダ国に興った王朝である。紀元前317年頃、チャンドラグプタによって建国された。アショーカ王の時に全盛期を迎え、南端部分を除くインド亜大陸全域を統一した。しかしアショーカ王の死後国家は分裂し、紀元前2世紀初頭、シュンガ朝の勃興により滅亡した。.

新しい!!: 数学史とマウリヤ朝 · 続きを見る »

チューリングマシン

チューリングマシン (Turing Machine) は計算模型のひとつで、計算機を数学的に議論するための単純化・理想化された仮想機械である。.

新しい!!: 数学史とチューリングマシン · 続きを見る »

チェスターのロバート

チェスターのロバート(Robert of Chester、)は12世紀において数学、天文学、錬金術、クルアーン(コーラン)等の文献をアラビア語からラテン語に翻訳し紹介した人物。イギリス人。 と同一視されることもあり、こちらはRobertus Retinennsis, Robertus Ketenensis, Robert de Ketene, Robert de Retines, Robertus Cataneusなどと表記される。 スペインのトレドに集まった翻訳家でかつナバラ王国のパンペルナ(Pampelune)の助祭長の一人。1136年、チボリのプラトとともにバルセロナで研究していたと推測される。1141年にスペインにいた証拠がある。イタリアとギリシアに旅したらしい。後、イギリスに戻る。1143年、クルアーンをラテン語に訳した最初の人物であった。.

新しい!!: 数学史とチェスターのロバート · 続きを見る »

ネイピア数

1.

新しい!!: 数学史とネイピア数 · 続きを見る »

バースのアデラード

バースのアデラード(羅: Adelardus Bathensis、英:Adelard of Bath、1080年頃 – 1152年頃)は12世紀イングランドの自然哲学者で、自身の著作の他に、占星術、天文学、哲学、数学などの古代ギリシア語で書かれアラビア語に訳された作品やもともとアラビア語で書かれた作品をラテン語へ翻訳したことで知られる。アデラードが翻訳した著作はそれまで西欧では知られていないものであった。彼はインドの数体系をはじめてヨーロッパに紹介したことでも知られる。彼は、フランスの伝統的な学派、南イタリアに残っていたギリシア文化、東方のアラブ人の学問という三つの知的伝統の交差点に立っていたといえる。.

新しい!!: 数学史とバースのアデラード · 続きを見る »

バースカラ2世

バースカラ(Bhāskara、カンナダ語: ಭಾಸ್ಕರಾಚಾರ್ಯ、1114年 - 1185年)は、インドの数学者で天文学者。7世紀の数学者バースカラ1世と区別するためバースカラ2世 (Bhaskara II) またはバースカラーチャーリヤ(Bhaskara Achārya、バースカラ先生の意)とも呼ばれる。南インドの現在のカルナータカ州ビジャープラ県にあたる Bijjada Bida でバラモン階級の家に生まれる。当時のインド数学の中心地であったウッジャインの天文台の天文台長を務めた。前任者には、ブラーマグプタ(598年 - 665年)やヴァラーハミヒラがいる。西ガーツ山脈地方に住んでいた。 代々、宮廷学者の地位を世襲しており、バースカラの息子やその子孫もその地位を継承していることが記録に残っている。父マヘーシュヴァラ(Mahesvara)は占星術師で、バースカラに数学を教え、バースカラはそれを息子 Loksamudra に継承させた。Loksamudra の息子は1207年に学校設立を助け、そこでバースカラの書いた文書の研究を行った。 バースカラは、12世紀の数学および天文学の発展に大きな業績を残した。主な著書として、『リーラーヴァティ』(主に算術を扱っている)、『ビージャガニタ』(代数学)、『シッダーンタ・シローマニ』(1150年)がある。『シッダーンタ・シローマニ』は Goladhyaya(球面)と Grahaganita(惑星の数学)の2部構成になっている。.

新しい!!: 数学史とバースカラ2世 · 続きを見る »

バビロニア数学

バビロニアの粘土板 YBC 7289 2の平方根の近似値は60進法で4桁、10進法では約6桁に相当する。1 + 24/60 + 51/602 + 10/603.

新しい!!: 数学史とバビロニア数学 · 続きを見る »

バクシャーリー写本

バクシャーリー写本は、今のパキスタンのバクシャーリー(Bakhshali)付近で発見された文献。西暦4世紀から5世紀頃に書かれたとされる。サンスクリット語のシャーラダー文字で書かれており、古代インドのヴェーダ時代と古典期をつなぐ数学の貴重な文献として知られている。.

新しい!!: 数学史とバクシャーリー写本 · 続きを見る »

バグダード

バグダード(/ラテン文字表記:Baghdad, Baġdād)は、イラクの首都で同国最大の都市。また、バグダード県の県都でもある。アッバース朝によって建設された古都であり、中東諸国ではイスタンブール、テヘランに次ぐ大都市である。2005年の人口はおよそ590.4万人。日本語では多くの場合バグダッドと表記されるが、アラビア語の綴りと発音(bæɣˈdæːd)に近づけるとバグダードという表記になる。 バグダードは、2003年3月のイラク戦争でアメリカ合衆国・イギリス両国を主力とする軍の攻撃を受け、同年4月に制圧されたのち、連合国暫定当局(CPA)本部が置かれた『日本大百科全書』(2004)原隆一執筆分。その後、2004年6月にはイラク暫定政権への主権移譲がなされ、イラク移行政府を経て2006年にはイラク正式政府が成立し、現在に至っている。.

新しい!!: 数学史とバグダード · 続きを見る »

ポール・コーエン (数学者)

ポール・コーエン (Paul Joseph Cohen, 1934年4月2日 - 2007年3月23日)はアメリカ合衆国の数学者。 スタンフォード大学教授。専門は集合論、調和解析、偏微分方程式。.

新しい!!: 数学史とポール・コーエン (数学者) · 続きを見る »

ポアンカレ予想

予想の提唱者アンリ・ポアンカレ (3次元)ポアンカレ予想(ポアンカレよそう、Poincaré conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。3次元球面の特徴づけを与えるものであり、定理の主張は というものである。2018年6月現在、7つのミレニアム懸賞問題のうち唯一解決されている問題である。.

新しい!!: 数学史とポアンカレ予想 · 続きを見る »

メソポタミア

メソポタミアに関連した地域の位置関係 メソポタミア(、ギリシャ語で「複数の河の間」)は、チグリス川とユーフラテス川の間の沖積平野である。現在のイラクの一部にあたる。 古代メソポタミア文明は、メソポタミアに生まれた複数の文明を総称する呼び名で、世界最古の文明であるとされてきた。文明初期の中心となったのは民族系統が不明のシュメール人である。 地域的に、北部がアッシリア、南部がバビロニアで、バビロニアのうち北部バビロニアがアッカド、下流地域の南部バビロニアがシュメールとさらに分けられる。南部の下流域であるシュメールから、上流の北部に向かって文明が広がっていった。土地が非常に肥沃で、数々の勢力の基盤となったが、森林伐採の過多などで、上流の塩気の強い土が流れてくるようになり、農地として使えない砂漠化が起きた。 古代メソポタミアは、多くの民族の興亡の歴史である。 例えば、シュメール、バビロニア(首都バビロン)、アッシリア、アッカド(ムロデ王国の四つの都市のひとつ)、ヒッタイト、ミタンニ、エラム、古代ペルシャ人の国々があった。古代メソポタミア文明は、紀元前4世紀、アレクサンドロス3世(大王)の遠征によってその終息をむかえヘレニズムの世界の一部となる。.

新しい!!: 数学史とメソポタミア · 続きを見る »

モジュラー形式

モジュラー形式は、モジュラー群という大きな群についての対称性をもつ上半平面上の複素解析的函数である。歴史的には数論で興味をもたれる対象であり、現代においても主要な研究対象である一方で、代数トポロジーや弦理論などの他分野にも現れる。 モジュラー函数(modular function): ここでいうモジュラー函数以外にも、「モジュラー函数」という術語はいくつか別の意味で用いられることがあるので注意が必要である。例えば、ハール測度の理論に現れる群の共軛作用から定まる函数 Δ(g) もモジュラー函数と呼ばれることがあるが、別な概念である。は重さ 0 、つまりモジュラー群の作用に関して不変であるモジュラー形式のことを言う。そしてそれゆえに、直線束の切断としてではなく、モジュラー領域上の函数として理解することができる。また、「モジュラー函数」はモジュラー群について不変なモジュラー形式であるが、無限遠点で f(z) が正則性を満たすという条件は必要ない。その代わり、モジュラー函数は無限遠点では有理型である。 モジュラー形式論は、もっと一般の場合である保型形式論の特別な場合であり、従って現在では、離散群の豊かな理論のもっとも具体的な部分であると見ることもできる。.

新しい!!: 数学史とモジュラー形式 · 続きを見る »

モスクワ数学パピルス

モスクワ数学パピルスの14番目の問題 モスクワ数学パピルス(モスクワすうがくパピルス、Moscow Mathematical Papyrus)は、古代エジプトの数学文書。エジプト学者ウラジーミル・セミョーノヴィチ・ゴレニシチェフ(Владимир Семёнович Голенищев, Vladimir Goleniščev)が1893年にエジプトからロシアに持ち帰った。もとはテーベ(現・ルクソール)付近のネクロポリス、ドゥラ・アブ・アル=ナーガ(Dra Abu el-Naga)にあった。ゴレニシチェフが当初所有していたことから ゴレニシチェフ数学パピルス(Golenischev Mathematical Papyrus)とも呼ばれる。その後1911年にモスクワのプーシキン美術館に他の古代エジプト文物とともに寄贈され、今もそこにある。4676番という所蔵番号からモスクワ4676パピルスとも呼ばれる。 ヒエラティックで書かれた古文書であり、エジプト第11王朝時代のものとされている。長さ約5m50cm、幅は4cmから7.5cmで、ソビエト連邦の東洋学者ヴァシーリー・ヴァシーリエヴィチ・シュトルーヴェ(Vasily Vasilievich Struve) が1930年、25の数学問題とその解法ごとに切断した。リンド数学パピルスと共に古代エジプトの数学文書として有名である。モスクワ数学パピルスの方が古いが、リンド数学パピルスの方が大きい。.

新しい!!: 数学史とモスクワ数学パピルス · 続きを見る »

ヤコブ・ベルヌーイ

ヤコブ・ベルヌーイ(Jakob Bernoulli、1654年12月27日 - 1705年8月16日)は、ヤコブ、ジャック、あるいはジェームス・ベルヌーイとしても知られるスイスの数学者・科学者。ベルヌーイ家の中でも最も卓越した数学者の一人であり、ヨハン・ベルヌーイの兄である。スイスのバーゼルの生まれ。 ヤコブ・ベルヌーイは、1676年に英国に旅した折にロバート・ボイルとロバート・フックに会い、その後、科学と数学の研究に一生を捧げることになった。1682年からはバーゼル大学で教鞭をとり、1687年には同大学の数学の教授に就任する。 彼は、ゴットフリート・ライプニッツと交流をもちライプニッツから微積分を学び、弟のヨハンとも共同研究を行う。 彼の初期の業績である超越曲線(1696)とisoperimetry (1700, 1701)はこの共同作業がもたらした成果である。対数螺旋の伸開線および縮閉線は自分自身に一致することを示した。 Ars Conjectandi, Opus Posthumum (推測法、1713)は、彼の確率論の偉大な貢献である。ベルヌーイ試行とベルヌーイ数はこの著作から、彼の功績を記念して名づけられた。.

新しい!!: 数学史とヤコブ・ベルヌーイ · 続きを見る »

ユークリッド原論

ュリュンコスで発見された『ユークリッド原論』のパピルスの写本断片。紀元100年ごろの作。図は『原論』第2巻の命題5に添えられたもの。 ユークリッド原論(ユークリッドげんろん)は、紀元前3世紀ごろにエジプトのアレクサンドリアの数学者ユークリッドによって編纂されたと言われる数学書『原論』(げんろん、Στοιχεία, ストイケイア、Elements)のことである。著者のユークリッドに関する資料は乏しく実在性を疑う説もあり、原論執筆の地がアレクサンドリアであることに対する明確な根拠も無い。プラトンの学園アカデメイアで知られていた数学の成果を集めて体系化した本と考えられており、論証的学問としての数学の地位を確立した古代ギリシア数学を代表する名著である。古代の書物でありながらその影響は古代に留まらず、後世の人々によって図や注釈が加えられたり翻訳された多種多様な版が作られ続け、20世紀初頭に至るまで標準的な数学の教科書の一つとして使われていたため、西洋の書物では聖書に次いで世界中で読まれてきた本とも評される。英語の数学「Mathematics」の語源といわれているラテン語またはギリシア語の「マテーマタ」(Μαθήματα)は「レッスン(学ばれるべきことども)」という意味であり、このマテーマタを集大成したものが『原論』である。.

新しい!!: 数学史とユークリッド原論 · 続きを見る »

ユークリッド幾何学

ユークリッド幾何学(ユークリッドきかがく、Euclidean geometry)は、幾何学体系の一つであり、古代エジプトのギリシア系・哲学者であるエウクレイデスの著書『ユークリッド原論』に由来する。詳しい説明は『ユークリッド原論』の記事にある。.

新しい!!: 数学史とユークリッド幾何学 · 続きを見る »

ヨハネス・ケプラー

ヨハネス・ケプラー(Johannes Kepler、1571年12月27日 - 1630年11月15日)はドイツの天文学者。天体の運行法則に関する「ケプラーの法則」を唱えたことでよく知られている。理論的に天体の運動を解明したという点において、天体物理学者の先駆的存在だといえる。一方で数学者、自然哲学者、占星術師という顔ももつ。欧州補給機(ATV)2号機、アメリカ航空宇宙局の宇宙望遠鏡の名前に彼の名が採用されている。.

新しい!!: 数学史とヨハネス・ケプラー · 続きを見る »

ラテン語

ラテン語(ラテンご、lingua latina リングア・ラティーナ)は、インド・ヨーロッパ語族のイタリック語派の言語の一つ。ラテン・ファリスク語群。漢字表記は拉丁語・羅甸語で、拉語・羅語と略される。.

新しい!!: 数学史とラテン語 · 続きを見る »

リンド数学パピルス

リンド数学パピルス リンド数学パピルス(リンドすうがくパピルス)とは、古代エジプトの数学文書であり、紀元前1650年前後のものである。名前の由来はスコットランドの弁護士・古物研究家であるアレクサンダー・ヘンリー・リンド(Alexander Henry Rhind)からである『素晴らしい三角法の世界』 ISBN 4-7917-5738-6 p18。アーメスという書記官が筆写したことから、「アーメス・パピルス」とも呼ばれる。このパピルスは、モスクワ数学パピルスと共に古代エジプト数学パピルスの好例として知られる。.

新しい!!: 数学史とリンド数学パピルス · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: 数学史とリー代数 · 続きを見る »

リーマン幾何学

リーマン幾何学(リーマンきかがく、Riemannian geometry)とは、リーマン計量や擬リーマン計量と呼ばれる距離の概念を一般化した構造を持つ図形を研究する微分幾何学の分野である。このような図形はリーマン多様体、擬リーマン多様体とよばれる。ドイツの数学者ベルンハルト・リーマンに因んでこの名前がついている。1850年代に確立された。 楕円・放物・双曲の各幾何学は、リーマン幾何学では、曲率がそれぞれ正、0、負の一定値をとる空間(それぞれ球面、ユークリッド空間、双曲空間)上の幾何学と考えられる。なお、楕円幾何学のことをリーマン幾何と呼ぶことがあるが、本稿で述べるリーマン幾何学はそれとは異なるものである。 アルベルト・アインシュタインは、重力、即ち、一様ではなく湾曲した時空を記述するのに擬リーマン多様体の枠組みが有効であることを見いだし、リーマン幾何学を数学的核心とした一般相対性理論を構築した。 3.

新しい!!: 数学史とリーマン幾何学 · 続きを見る »

ルネ・デカルト

ルネ・デカルト(René Descartes、1596年3月31日 - 1650年2月11日)は、フランス生まれの哲学者、数学者。合理主義哲学の祖であり、近世哲学の祖として知られる。.

新しい!!: 数学史とルネ・デカルト · 続きを見る »

ルネサンス

レオナルド・ダ・ヴィンチによるウィトルウィウス的人体図、科学と芸術の統合 ルネサンス(Renaissance ルネサーンスイギリス英語発音: リネイスンス、アメリカ英語発音: レナサーンス)は「再生」「復活」を意味するフランス語であり、一義的には、古典古代(ギリシア、ローマ)の文化を復興しようとする文化運動であり、14世紀にイタリアで始まり、やがて西欧各国に広まった(文化運動としてのルネサンス)。また、これらの時代(14世紀 - 16世紀)を指すこともある(時代区分としてのルネサンス)。 日本では長らく文芸復興と訳されており、ルネサンスの時代を「復興期」と呼ぶこともあったが、文芸のみでなく広義に使われるため現在では余り使われない。ルネッサンスとも表記されるが、現在の歴史学、美術史等ではルネサンスという表記が一般的である。.

新しい!!: 数学史とルネサンス · 続きを見る »

ルドヴィコ・フェラーリ

ルドヴィコ・フェラーリ(Ludovico Ferrari, 1522年2月2日-1565年10月5日)は、イタリアの数学者である。ロドヴィコ、フェルラーリ、フェルラリ、フェラリとも。 14歳の時に数学者ジェロラモ・カルダーノの家で召使いとして働き始めたが、その才能を認められカルダーノから数学の教えを受け、研究の手伝いをするようになった。26歳のフェラーリについて、日本の数学者である森毅は「やさしい声ときよらな面、しかし神の才と悪魔の心をもった青年」と評している。 「解法を公表しない」との誓いの元でニコロ・フォンタナ・タルタリアから解法を得たカルダーノは、弟子のフェラーリと共に一般的な三次方程式の解法等の研究に取り組んだ。この研究の過程で、フェラーリは四次方程式の解法を発見した。後にカルダーノは「アルス・マグナ」という数学書を出版し、この本の中でフェラーリの四次方程式の解法についても記している。「解法を公表しない」との誓いを破られたタルタリアは激怒し、カルダーノのことを非難するようになる。ここでカルダーノの弟子であるフェラーリは「自分もその場にいたがそのような誓いは立てていない」と主張しているが、真相は定かでない。タルターリアはカルダーノとの論争を望んだが、カルダーノはタルタリアの誘いには乗らず、以降タルタリアとフェラーリの論争が続いていくことになる。1548年、タルタリアとフェラーリが数学の公開討論を行うことになり、互いに31問ずつの問題を出し合った。この討論試合の詳細は明らかになっていない。フェラーリの勝利に終わったという説が有力である。この討論試合の後フェラーリの名声は高まり、各方面から仕事の依頼が来るようになった。皇帝の息子の家庭教師の依頼もあった。 1565年、ボローニャ大学教授につくが、同年に姉によりヒ素で毒殺されたとされている。.

新しい!!: 数学史とルドヴィコ・フェラーリ · 続きを見る »

ルイジアナ州立大学

ルイジアナ州立大学 (Louisiana State University, LSU) は、アメリカ合衆国ルイジアナ州バトンルージュにある、1860年に創立された州立の総合大学。正式名称はLouisiana State University and Agricultural and Mechanical College. 州内のルイジアナ大学ラフィエット校やルイジアナ大学モンロー校とは別の大学である。 ランドグラント大学とシーグラント大学(en)の両方に指定された全米でも数少ない大学の一つである。創立当時はバトンルージュ市のダウンタウンに位置していたが、1926年、ミシシッピ川に近い現在の場所に移転した。2013年秋の時点で学生総数は29,865人(うち学部生24,931人、留学生1,593人)、教員総数は1,232人である。図書館の蔵書数は南部屈指で380万冊を越える。プログラムは全部で8つのカレッジ、5つのスクールから構成され、石油産業が盛んな土地柄、石油工学学部や農学部、体育学部などが有名である。.

新しい!!: 数学史とルイジアナ州立大学 · 続きを見る »

レオナルド・フィボナッチ

レオナルド=フィボナッチ(Leonardo Fibonacci、Leonardo Pisano 1170年頃 - 1250年頃)は、中世で最も才能があったと評価されるイタリアの数学者である。 本名はレオナルド・ダ・ピサ(ピサのレオナルド)という。フィボナッチは「ボナッチの息子」を意味する愛称だが、19世紀の数学史家リブリが誤って作った名前でもある。 フィボナッチは、近代では主に次のような業績で知られている。.

新しい!!: 数学史とレオナルド・フィボナッチ · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: 数学史とレオンハルト・オイラー · 続きを見る »

レギオモンタヌス

レギオモンタヌス(Regiomontanus、ドイツ名:ヨハネス・ミュラー・フォン・ケーニヒスベルク、Johannes Müller von Königsberg、1436年6月6日 – 1476年7月6日)は15世紀のドイツの天文学者。.

新しい!!: 数学史とレギオモンタヌス · 続きを見る »

ロルの定理

微分可能であり、さらに区間の端点で ''ƒ''(''a'').

新しい!!: 数学史とロルの定理 · 続きを見る »

ロンドン数学会

ンドン数学会(ロンドンすうがくかい、The London Mathematical Society、略称:LMS)はイングランドにある有数の数学学会である。.

新しい!!: 数学史とロンドン数学会 · 続きを見る »

ローマ数字

ーマ数字(ローマすうじ)は、数を表す記号の一種である。ラテン文字の一部を用い、例えばアラビア数字における 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 をそれぞれ Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ,Ⅷ,Ⅸ,Ⅹのように並べて表現する。I, V, X, L, C, D, M はそれぞれ 1, 5, 10, 50, 100, 500, 1000 を表す。i, v, x などと小文字で書くこともある。現代の一般的な表記法では、1 以上 4000 未満の数を表すことができる。 ローマ数字のことをギリシャ数字と呼ぶ例が見られるが、これは誤りである。.

新しい!!: 数学史とローマ数字 · 続きを見る »

ヴェーダ

ヴェーダ(वेद、Veda)とは、紀元前1000年頃から紀元前500年頃にかけてインドで編纂された一連の宗教文書の総称。「ヴェーダ」は「知識」の意である。 バラモン教の聖典で、バラモン教を起源として後世成立したいわゆるヴェーダの宗教群にも多大な影響を与えている。長い時間をかけて口述や議論を受けて来たものが後世になって書き留められ、記録されたものである。 「ヴェーダ詠唱の伝統」は、ユネスコ無形文化遺産保護条約の発効以前の2003年に「傑作の宣言」がなされ、「人類の無形文化遺産の代表的な一覧表」に掲載され、無形文化遺産に登録されることが事実上確定していたが、2009年9月の第1回登録で正式に登録された。.

新しい!!: 数学史とヴェーダ · 続きを見る »

ヴォルフガング・ハーケン

ヴォルフガング(ウルフガング)・ハーケン(Wolfgang Haken、1928年6月21日 - )はドイツ出身の数学者。専門分野はトポロジー(位相幾何学)。数学上の難問として知られる四色定理(四色問題)を証明したことで有名。 1928年、ベルリンに生まれる。キール大学において哲学、物理学、そして数学を学び、1953年に博士号を取得。その後ミュンヘンにある大企業シーメンス社に就職しマイクロ波工学の研究員となる。シーメンスでの仕事の傍ら、トポロジーの研究を続けていた。その後、国内で発表した論文をきっかけに数学会において注目されるようになり、アメリカ合衆国のイリノイ大学アーバナ・シャンペーン校に客員教授として招かれる。1965年には常任教授となった。プリンストン高等研究所への赴任経験も持つ。 ハーケンは大学生時代に知ったポアンカレ予想を証明することを目指していたが、叶えることはできず、俗に「ポアンカレ病」と呼ばれる精神疲労状態に陥ってしまう。そんなとき数学者のハインリヒ・ヘーシュから四色問題のことを聞かされ、研究対象をポアンカレ予想から四色問題へと変更した。 1976年に4歳年下の同僚ケネス・アッペルと共に四色定理を電子計算機(現在のコンピュータの原型)を用いて証明した。1979年ファルカーソン賞受賞。 1990年代後半にイリノイ大学を定年退官し、その後はシカゴにある自宅での研究を続けている。 多くの子供や孫に恵まれており、息子のリッポルド・ハーケン(Lippold Haken)はイリノイ大学の電気・コンピュータ工学教授となった。.

新しい!!: 数学史とヴォルフガング・ハーケン · 続きを見る »

ボナヴェントゥーラ・カヴァリエーリ

フランチェスコ・ボナヴェントゥーラ・カヴァリエーリ(Francesco Bonaventura Cavalieri、1598年 - 1647年11月30日)はイタリアの数学者。微分積分分野の権威として理論形成に多大な影響を残し、カヴァリエリの原理の提唱者として知られる。.

新しい!!: 数学史とボナヴェントゥーラ・カヴァリエーリ · 続きを見る »

ボーヤイ・ヤーノシュ

ボーヤイ・ヤーノシュ(Bolyai János, 1802年12月15日 - 1860年1月27日)はハンガリー領トランシルヴァニア(現ルーマニア領)出身のセーケイ人(ハンガリー人)数学者。 平行線公準を研究し、1835年、「ユークリッド第11公準を証明または反駁することの不可能の証明」において非ユークリッド幾何学の可能性を切り開き双曲幾何学を提唱した。現在、ニコライ・ロバチェフスキーと並んで、非ユークリッド幾何学の提唱者のひとりとして位置づけられている。.

新しい!!: 数学史とボーヤイ・ヤーノシュ · 続きを見る »

ボエティウス

ボエティウス アニキウス・マンリウス・トルクアトゥス・セウェリヌス・ボエティウス(Anicius Manlius Torquatus Severinus Boethius、480年 - 524年か525年)は、イタリアの哲学者、政治家。.

新しい!!: 数学史とボエティウス · 続きを見る »

トーマス・ベイズ

トーマス・ベイズ(Thomas Bayes、1702年 - 1761年4月17日)はイギリスの長老派の牧師・数学者である。ベイズの定理の特殊な場合についての証明が死後発表されたことで知られる。.

新しい!!: 数学史とトーマス・ベイズ · 続きを見る »

ヘレニズム

ヘレニズム(Hellenism)とは、ギリシア人(ヘレネス)の祖、ヘレーンに由来する語。その用法は様々であり、アレクサンドロスの東方遠征によって生じた古代オリエントとギリシアの文化が融合した「ギリシア風」の文化を指すこともあれば、時代区分としてアレクサンドロス3世(大王)(在位前336年 - 前323年)の治世からプトレマイオス朝エジプトが滅亡するまでの約300年間を指すこともある。また、ヨーロッパ文明の源流となる2つの要素として、ヘブライズムと対置してヘレニズムが示される場合もある。この場合のヘレニズムは古典古代の文化(ギリシア・ローマの文化)におけるギリシア的要素を指す。.

新しい!!: 数学史とヘレニズム · 続きを見る »

ブラーマ・スプタ・シッダーンタ

ブラーマ・スプタ・シッダーンタ (Brahmasphutasiddhanta) は、7世紀のインドの数学者・天文学者であるブラーマグプタの628年の著作である。表題は宇宙の始まりという意味。.

新しい!!: 数学史とブラーマ・スプタ・シッダーンタ · 続きを見る »

ブラーマグプタの定理

BD と AC、EF と BC がそれぞれ直交するならば、AF.

新しい!!: 数学史とブラーマグプタの定理 · 続きを見る »

ブラーマグプタの二平方恒等式

ブラーマグプタの二平方恒等式(ブラーマグプタのにへいほうこうとうしき)とは、二つの平方数の和で表される二つの数の積が、二つの平方数の和で表せることを示す恒等式である。言い換えれば、二つの平方数の和は乗算に関して閉じているということである。この恒等式はにおける特別な場合である。 正確には、次のように表される。 \left(a^2 + b^2\right)\left(c^2 + d^2\right) &.

新しい!!: 数学史とブラーマグプタの二平方恒等式 · 続きを見る »

ブラーマグプタの公式

ブラーマグプタの公式(ブラーマグプタのこうしき、Brahmagupta's formula)とは、円に内接する四角形の四辺の長さからその四角形の面積を求める公式である。.

新しい!!: 数学史とブラーマグプタの公式 · 続きを見る »

ブラーフミー文字

ブラーフミー文字(ブラーフミーもじ、Brāhmī script)は、初期のブラーフミー系文字の一種である。ブラーフミー文字で書かれた最も有名な碑文としては、紀元前3世紀頃の石に刻まれたアショーカ王法勅がある。これは長い間、ブラーフミー文字の最初期の使用例であると考えられてきた。しかし、最近の南インドとスリランカにおける考古学的知見は、ブラーフミー文字が最も初期に使われたのは紀元前6世紀前後であると示唆している。年代は放射性炭素法と熱ルミネッセンス法で測定された。 ブラーフミー文字は南アジア、東南アジア、チベット、モンゴルのほとんどの文字体系の祖である。さらにパスパ文字を通じて朝鮮のハングルにも影響を与えている可能性が高い。ブラーフミー数字は、現在世界中で使われているアラビア数字の元になっている。.

新しい!!: 数学史とブラーフミー文字 · 続きを見る »

ブラーフミー数字

ブラーフミー数字とは古代インドで用いられた数字で、紀元前3世紀以前のものであり、現代のインド数字、アラビア数字の直接の祖先である。ただし、概念的には後世の記数法とははっきりと区別される。何故ならゼロを用いた位取り記法ではなく、10の倍数(10、20、30など)ごとに別々の数字があったからである。100や1000を表す記号もあり、連結(合字)されて200,300,200,3000などを表す記号となる。.

新しい!!: 数学史とブラーフミー数字 · 続きを見る »

ブラーフマナ

ブラーフマナ(ब्राह्मण )は、ヴェーダのシュルティ(天啓文書)のうちの一つ。サンスクリットの古語であるヴェーダ語で書かれ、ブラーフマナ時代(およそ紀元前900年 - 紀元前500年の間)にそれぞれ成立したとみられる文書群である。祭儀書、梵書とも表現される。 ブラーフマナ とは、ブラフマンの派生形容詞、転じて名詞で「ブラフマンに属する(もの)」を意味する。.

新しい!!: 数学史とブラーフマナ · 続きを見る »

ブラフマグプタ

ブラフマグプタ(、598年 – 665年以降没)はインドの数学者・天文学者。ブラーマグプタとも呼ばれる。数理天文書『ブラーマ・スプタ・シッダーンタ』(628年)と『カンダ・カーディヤカ』(665年)を作った。彼の生涯についてはよく分かっていないが、現在のインド中央部に位置する、ウッジャインという町で暮らし、そこにあった天文台の天文台長であったことが知られている。彼の父親は有名な占星術師だった。その著作は、イスラーム世界やヨーロッパにインド数学や天文学を伝える役割を果たした。.

新しい!!: 数学史とブラフマグプタ · 続きを見る »

ブレーズ・パスカル

ブレーズ・パスカル(Blaise Pascal、1623年6月19日 - 1662年8月19日)は、フランスの哲学者、自然哲学者、物理学者、思想家、数学者、キリスト教神学者である。 早熟の天才で、その才能は多分野に及んだ。ただし、短命であり、三十代で逝去している。死後『パンセ』として出版されることになる遺稿を自身の目標としていた書物にまとめることもかなわなかった。 「人間は考える葦である」などの多数の名文句やパスカルの賭けなどの多数の有名な思弁がある遺稿集『パンセ』は有名である。その他、パスカルの三角形、パスカルの原理、パスカルの定理などの発見で知られる。ポール・ロワヤル学派に属し、ジャンセニスムを代表する著作家の一人でもある。 かつてフランスで発行されていた500フラン紙幣に肖像が使用されていた。.

新しい!!: 数学史とブレーズ・パスカル · 続きを見る »

ブール論理

ブール論理(ブールろんり、Boolean logic)は、古典論理のひとつで、その名称はブール代数ないしその形式化を示したジョージ・ブールに由来する。 リレーなどによる「スイッチング回路の理論」として1930年代に再発見され(論理回路#歴史を参照)、間もなくコンピュータに不可欠な理論として広まり、こんにちでは一般的に使われている。 本項目では、集合代数を用いて、集合、ブール演算、ベン図、真理値表などの基本的解説とブール論理の応用について解説する。ブール代数の記事ではブール論理の公理を満足する代数的構造の型を説明している。ブール論理はブール代数で形式化され2値の意味論を与えられた命題論理とみることができる。.

新しい!!: 数学史とブール論理 · 続きを見る »

プラトン

プラトン(プラトーン、、Plato、紀元前427年 - 紀元前347年)は、古代ギリシアの哲学者である。ソクラテスの弟子にして、アリストテレスの師に当たる。 プラトンの思想は西洋哲学の主要な源流であり、哲学者ホワイトヘッドは「西洋哲学の歴史とはプラトンへの膨大な注釈である」という趣旨のことを述べた“ヨーロッパの哲学の伝統のもつ一般的性格を最も無難に説明するならば、プラトンに対する一連の脚註から構成されているもの、ということになる”(『過程と実在』)。ちなみに、ホワイトヘッドによるこのプラトン評は「あらゆる西洋哲学はプラトンのイデア論の変奏にすぎない」という文脈で誤って引用されることが多いが、実際には、「プラトンの対話篇にはイデア論を反駁する人物さえ登場していることに見られるように、プラトンの哲学的着想は哲学のあらゆるアイデアをそこに見出しうるほど豊かであった」という意味で評したのである。。『ソクラテスの弁明』や『国家』等の著作で知られる。現存する著作の大半は対話篇という形式を取っており、一部の例外を除けば、プラトンの師であるソクラテスを主要な語り手とする。 青年期はアテナイを代表するレスラーとしても活躍し、イストミア大祭に出場した他、プラトンという名前そのものがレスリングの師から付けられた仇名であると言われているディオゲネス・ラエルティオス『ギリシア哲学者列伝』3巻4節。(中野好夫訳、1984年、pp.

新しい!!: 数学史とプラトン · 続きを見る »

プリンプトン322

プリンプトン322 (Plimpton 322) とはバビロニア数学について記された粘土板の最も有名なものの1つである。呼び名の由来はコロンビア大学にあるG・A・プリンプトンの収集の粘土板の、第322番目のものであることからである。およそ50万ものバビロニアの粘土板が19世紀初めから発掘されてきたが、その内の数千のものが数学の性質についてのものだった。この粘土板は紀元前1800年頃に書かれたものとされ、4列15行の表にその時代の楔形文字で数字が記されている。 この粘土板は以前は主にピタゴラス数の表として解釈されてきたが、アメリカ数学協会 (MAA) (en:Mathematical Association of America) はこの解釈に異を唱え、新しい解釈を打ち立てた。この粘土板についての一般的な考察は、エレノア・ロブソン (2002)、ジョン・コンウェイとリチャード・ガイ (1996) を参照。ロブソン (2001) はこの粘土板の解釈について広く書誌学の観点からより詳細かつ専門的な議論をした。.

新しい!!: 数学史とプリンプトン322 · 続きを見る »

パリ

ランドサット パリの行政区 パリ(Paris、巴里)は、フランス北部、イル=ド=フランス地域圏にある都市。フランスの首都であり、イル=ド=フランス地域圏の首府である。 フランス最大の都市であり、同国の政治、経済、文化などの中心である。ロンドン、ニューヨーク、香港、東京などと並ぶ世界トップクラスの世界都市でもある。行政上では、1コミューン単独で県を構成する特別市であり、ルーヴル美術館を含む1区を中心に、時計回りに20の行政区が並ぶ(エスカルゴと形容される)。.

新しい!!: 数学史とパリ · 続きを見る »

パリ大学

パリ大学(仏:Université de Paris)は、フランス共和国のパリ、クレテイユおよびヴェルサイユの3大学区にある13の大学の総称である。多くのノーベル賞受賞者を送り出している他、法学、政治学、科学、物理学、神学などの分野で優秀な学者を輩出している。また芸術の教育機関としても名高い。.

新しい!!: 数学史とパリ大学 · 続きを見る »

パーニニ

パーニニ(IAST: Pāṇini, デーヴァナーガリー: पाणिनि; "パーニの子孫"の意)は、紀元前4世紀頃のインドの文法学者である。ガンダーラ(現在のパキスタン)出身。 パーニニはサンスクリット文法学者であり、ヴェーダの補助学(ヴェーダーンガ)のひとつとして生まれた文法学(ヴィヤーカラナ)の体系を確立した。パーニニはアシュターディヤーイー(अष्टाध्यायी、「八つの章」の意。『パーニニ文典』とも呼ぶ)として知られる文法体系の中でサンスクリットの形態論を3959個の規則にまとめたことで名高い。 アシュターディヤーイーは母音子音の文字表から語根からの語幹の派生法や複合語の分類及び品詞の活用などについて略記号を用いて古典サンスクリット語文法について詳解している。アシュターディヤーイーはサンスクリット文法についての最古のもののひとつとされているが、パーニニ自身はさらに古い3つの書(ウナーディスートラ、ダートゥパータ、ガナパータ)について言及している。アシュターディヤーイーは共時的言語学、生成言語学としての最古の研究として知られ、またそれとほぼ同じころの、ニルクタ(語源学)、ニガントゥ(類語辞典のようなもの)、シクシャー(音声学、音韻論)とともにの始まりに位置する。 パーニニによる、広範囲かつ科学的な文法理論は、伝統的に続いて来たヴェーダ語の終わりを記しづけ、同時に今日までに至るサンスクリットの始まりを告げるものである。 2004年8月30日月曜日、インドの郵政省はパーニニをたたえる5ルピーの切手を発行した。.

新しい!!: 数学史とパーニニ · 続きを見る »

パオロ・ルフィニ

パオロ・ルフィニ(Paolo Ruffini、1765年9月22日-1822年5月10日)はイタリアの数学者、哲学者、医者。.

新しい!!: 数学史とパオロ・ルフィニ · 続きを見る »

パキスタン

パキスタン・イスラム共和国(パキスタン・イスラムきょうわこく、اسلامی جمہوریہ پاکِستان)、通称パキスタンは、南アジアの国家で、イギリス連邦加盟国である。首都はイスラマバード。最大の都市はカラチ。面積は80万kmで日本 (38万km) の約2倍程。東はインド、北東は中華人民共和国、北西はアフガニスタン、西はイランと国境を接し、南はインド洋に面する。国土の中心部を流れるインダス川の流域に国民の75%以上が住み、人口の増加が著しい国の一つである。.

新しい!!: 数学史とパキスタン · 続きを見る »

パスカルの三角形

パスカルの三角形(パスカルのさんかくけい、英語:Pascal's triangle)は、二項展開における係数を三角形状に並べたものである。ブレーズ・パスカル(1623年 - 1662年)の名前がついているが、実際にはパスカルより何世紀も前の数学者たちも研究していた。 この三角形の作り方は単純なルールに基づいている。まず最上段に1を配置する。それより下の行はその位置の右上の数と左上の数の和を配置する。例えば、5段目の左から2番目には、左上の1と右上の3の合計である4が入る。このようにして数を並べると、上から n 段目、左から k 番目の数は、二項係数 に等しい(n-1Ck-1 と表すこともある)。これは、パスカルによって示された以下の式に基づいている。 負でない整数 n ≥ k に対して が成り立つ。 パスカルの三角形は三次元以上に拡張が可能である。3次の物は「パスカルのピラミッド」「パスカルの四面体」と呼ばれる。4次以上のものは一般に「パスカルの単体」と呼ばれる。.

新しい!!: 数学史とパスカルの三角形 · 続きを見る »

ヒルベルトの23の問題

ヒルベルトの23の問題(ヒルベルトの23のもんだい、)は、ドイツ人の数学者であるダフィット・ヒルベルトによりまとめられた、当時未解決だった23の数学問題である。ヒルベルト問題 とも呼ばれる。 1900年8月8日に、パリで開催されていた第2回国際数学者会議 (ICM) のヒルベルトの公演で、23題の内10題(問題1, 2, 6, 7, 8, 13, 16, 19, 21, 22)が公表され、残りは後に出版されたヒルベルトの著作で発表された。.

新しい!!: 数学史とヒルベルトの23の問題 · 続きを見る »

ピエール・ド・フェルマー

ピエール・ド・フェルマー ピエール・ド・フェルマー(Pierre de Fermat、1607年末または1608年初頭 - 1665年1月12日)はフランスの数学者。「数論の父」とも呼ばれる。ただし、職業は弁護士であり、数学は余暇に行ったものである。.

新しい!!: 数学史とピエール・ド・フェルマー · 続きを見る »

ピエール=シモン・ラプラス

ピエール=シモン・ラプラス(Pierre-Simon Laplace, 1749年3月23日 - 1827年3月5日)は、フランスの数学者、物理学者、天文学者。「天体力学概論」(traité intitulé Mécanique Céleste)と「確率論の解析理論」という名著を残した。 1789年にロンドン王立協会フェローに選出された。.

新しい!!: 数学史とピエール=シモン・ラプラス · 続きを見る »

ピタゴラス

ピタゴラス(、Pythagoras、Pythagoras、紀元前582年 - 紀元前496年)は、古代ギリシアの数学者、哲学者。「サモスの賢人」と呼ばれた。ピュタゴラスとも表記される。.

新しい!!: 数学史とピタゴラス · 続きを見る »

ピタゴラスの定理

90 度回転し、緑色の部分は裏返して橙色に重ねる。 視覚的証明 初等幾何学におけるピタゴラスの定理(ピタゴラスのていり、Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す。斜辺の長さを, 他の2辺の長さを とすると、定理は が成り立つという等式の形で述べられる。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 ピタゴラスの定理によって、直角三角形をなす3辺の内、2辺の長さを知ることができれば、残りの1辺の長さを知ることができる。例えば、直交座標系において原点と任意の点を結ぶ線分の長さは、ピタゴラスの定理に従って、その点の座標成分を2乗したものの総和の平方根として表すことができる2次元の座標系を例に取ると、ある点 の 軸成分を, 軸成分を とすると、原点から までの距離は と表すことができる。ここで は平方根を表す。。このことは2次元の座標系に限らず、3次元の系やより大きな次元の系についても成り立つ。この事実から、ピタゴラスの定理を用いて任意の2点の間の距離を測ることができる。このようにして導入される距離はユークリッド距離と呼ばれる。 「ピタゴラスが直角二等辺三角形のタイルが敷き詰められた床を見ていて、この定理を思いついた」など幾つかの逸話が知られているものの、この定理はピタゴラスが発見したかどうかは分からない。バビロニア数学のプリンプトン322や古代エジプトなどでもピタゴラス数については知られていたが、彼らが定理を発見していたかどうかは定かではない。 中国古代の数学書『九章算術』や『周髀算経』でもこの定理が取り上げられている。中国ではこの定理を勾股定理、商高定理等と呼び、日本の和算でも中国での名称を用いて鉤股弦の法(こうこげんのほう)等と呼んだ。三平方の定理という名称は、敵性語が禁じられていた第二次世界大戦中に文部省の図書監修官であった塩野直道の依頼を受けて、数学者末綱恕一が命名したものである。.

新しい!!: 数学史とピタゴラスの定理 · 続きを見る »

ピタゴラスコンマ

ピタゴラスコンマ(Pythagorean comma)、あるいはダイトニックコンマは、ピタゴラス音律における異名同音の差である小さな音程(あるいはコンマ)であり、例えば C と B、あるいは D と Cなどの差である。これは531441:524288の周波数比に等しく、約23.46セントであり、おおむね半音の1/4である(75:74 と 74:73の間)。 ピタゴラスコンマは、ピタゴラス音律のアポトメ(apotome)とリンマ(limma)の差(すなわちピタゴラス音律によって定義される半音階的半音と全音階的半音の差)、あるいは12の純正な完全五度と7オクターヴとの差、また3つのピタゴラス音律のダイトーン(ditone)と1オクターヴとの差としても定義できる(これがダイトニックコンマと呼ばれる理由である)。 ピタゴラス音律における減二度はリンマとアポトメの差と定義される。これはピタゴラスコンマの逆に一致し、下向きのピタゴラスコンマと見なすことができ(例:C から D)、約−23.46コンマである。.

新しい!!: 数学史とピタゴラスコンマ · 続きを見る »

ピタゴラス教団

日の出を祝うピタゴラス(:en:Fyodor Bronnikov画) ピタゴラス教団(ピタゴラスきょうだん、Pythagorean Order)は、古代ギリシアにおいて哲学者のピタゴラスによって創設されたとされる一種の宗教結社。ピュタゴラス教団とも。.

新しい!!: 数学史とピタゴラス教団 · 続きを見る »

ティマイオス

『ティマイオス』(Τίμαιος、Timaeus)は、古代ギリシアの哲学者プラトンの後期対話篇の1つであり、また、そこに登場する人物の名称。副題は「自然について」。 アトランティス伝説、世界の創造、リゾーマタ(古典的元素)、医学などについて記されている。自然を論じた書としてはプラトン唯一のもので、神話的な説話を多く含む。後世へ大きな影響を与えた書である。プラトンは、『ティマイオス』と未完の『クリティアス』、未筆の『ヘルモクラテス』を三部作として構想していたという。 ピタゴラス学派の音楽観、宇宙観、数学観に沿って世界の仕組みをプラトンなりに解説した作品だが、世界霊や宇宙の調和など形而上の事物を抽象的な数学によって解明しようと試みたために、非常に難解な内容となっている。例えば、本書をラテン語に翻訳したキケロは「あの奇怪な対話篇はまったく理解できなかった」と述べている。.

新しい!!: 数学史とティマイオス · 続きを見る »

ティコ・ブラーエ

ティコの考案した太陽系 Mauerquadrant (Tycho Brahe 1598) ティコ・ブラーエ(Tycho Brahe 、1546年12月14日 - 1601年10月24日)は、デンマークの天文学者、占星術師。膨大な天体観測記録を残し、ケプラーの法則を生む基礎を作った。.

新しい!!: 数学史とティコ・ブラーエ · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 数学史とテイラー展開 · 続きを見る »

フランス

フランス共和国(フランスきょうわこく、République française)、通称フランス(France)は、西ヨーロッパの領土並びに複数の海外地域および領土から成る単一主権国家である。フランス・メトロポリテーヌ(本土)は地中海からイギリス海峡および北海へ、ライン川から大西洋へと広がる。 2、人口は6,6600000人である。-->.

新しい!!: 数学史とフランス · 続きを見る »

フランス数学会

フランス数学会(フランス語:Société Mathématique de France、略称:SMF)はフランス人数学者による学会。 1872年に Émile Lemoine によって設立され、最も歴史ある数学会の一つである。.

新しい!!: 数学史とフランス数学会 · 続きを見る »

フランソワ・ビエト

フランソワ・ビエト(François Viète、1540年 - 1603年2月13日)は16世紀のフランスの法律家、数学者。.

新しい!!: 数学史とフランソワ・ビエト · 続きを見る »

フラクタル

フラクタル(, fractal)は、フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念である。ラテン語 fractus から。 図形の部分と全体が自己相似になっているものなどをいう。.

新しい!!: 数学史とフラクタル · 続きを見る »

フラクタルアート

マンデルブロ集合を描画したもの。典型的なフラクタルアートの一種 フラクタルアート(英: Fractal art)とは、フラクタルなオブジェクトを計算し、計算結果を静止画像、アニメーション、音楽などで表した芸術作品である。フラクタルアートは通常、コンピュータの支援によって作成される。 フラクタルアートは、アーティストがその構築にどう関与するか、生み出される作品をどの程度制御できるかで以下の4つに分類される。;エスケープタイム・フラクタル;L-systemなどの置換規則に基づいた構築;反復関数系(IFS)を利用したフラクタル(フラクタルフレームなど);フラクタル地形(フラクタルノイズの確率論的合成) これらのフラクタルがデジタルアートやアニメーションに使われてきた。マンデルブロ集合のような2次元のフラクタルから始まり、テクスチャ生成、植物の成長シミュレーション、地形生成などの芸術的な応用が生まれた。 フラクタルと人間の補助を伴う進化的アルゴリズムを組み合わせて、見た目の芸術性を重視して種を選び、作品を進化させていく手法もある。Electric Sheepプロジェクトは、分散コンピューティングのプロジェクトであり、参加者のパーソナルコンピュータのスクリーンセーバー上でフラクタルフレーム描画ソフトを動作させ、各人がその結果を「評価」することで、よりよいフラクタルアートを集積しようとしている。.

新しい!!: 数学史とフラクタルアート · 続きを見る »

フロリアン・カジョリ

フロリアン・カジョリ(Florian Cajori、1859年2月28日 - 1930年8月14日)は、アメリカの数学者、数学史家。.

新しい!!: 数学史とフロリアン・カジョリ · 続きを見る »

フワーリズミー

フワーリズミー 1983年のソビエト連邦の記念切手 アル=フワーリズミー(الخوارزمي al-Khuwārizmī)ことアブー・アブドゥッラー・ムハンマド・イブン・ムーサー・アル=フワーリズミー(أبو عبد الله محمد ابن موسى الخوارزمي)は、9世紀前半にアッバース朝時代のバグダードで活躍したイスラム科学の学者である。アッバース朝第7代カリフ、マアムーンに仕え、特に数学と天文学の分野で偉大な足跡を残した。.

新しい!!: 数学史とフワーリズミー · 続きを見る »

フィボナッチ数

フィボナッチ数列の各項を一辺とする正方形 メインページ(2007年〜2012年)で使われていたイメージ画像もフィボナッチ数列を利用している フィボナッチ数(フィボナッチすう、Fibonacci number)は、イタリアの数学者レオナルド・フィボナッチ(ピサのレオナルド)にちなんで名付けられた数である。.

新しい!!: 数学史とフィボナッチ数 · 続きを見る »

フェルマーの最終定理

算術』。 フェルマーの最終定理(フェルマーのさいしゅうていり、Fermat's Last Theorem)とは、 以上の自然数 について、 となる自然数の組 は存在しない、という定理のことである。フェルマーの大定理とも呼ばれる。フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、360年後にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。.

新しい!!: 数学史とフェルマーの最終定理 · 続きを見る »

ニュルンベルク

ニュルンベルク(標準ドイツ語:Nürnberg 、バイエルン語:Niamberg、上部フランケン語(東フランケン語):Nämberch)は、ドイツ連邦共和国バイエルン州のミッテルフランケン行政管区に属する郡独立市。 人口50万人を超えるバイエルン州第2の都市(ドイツ全体では14番目)である。隣接するフュルト、エアランゲン、シュヴァーバッハと共にフランケン地方の経済的・文化的中心をなしている。中世からの伝統ある都市であり、ドイツ統一を主導したホーエンツォレルン家がニュルンベルク城伯を世襲した都市である。また、ナチス政権が最初の大会を開催した都市であり、それゆえナチス政権要人を裁く「ニュルンベルク裁判」が行われたことでも知られる。リヒャルト・ワーグナーの楽劇『ニュルンベルクのマイスタージンガー』の舞台としても知られる。現在も旧市街は中世の城壁で囲まれている。.

新しい!!: 数学史とニュルンベルク · 続きを見る »

ニールス・アーベル

ニールス・ヘンリック・アーベル(Niels Henrik Abel、1802年8月5日 - 1829年4月6日)はノルウェーの数学者である。.

新しい!!: 数学史とニールス・アーベル · 続きを見る »

ニコマコス

ニコマコス(Nicomachus、Νικόμαχος、60年頃-120年頃)は、古代世界において重要な数学者で、ギリシア語の著作Introduction to Arithmetic(算術入門)やManual of Harmonicsで知られる。シリア属州のゲラサ(現在ヨルダンのジャラシュ)で生まれ、アリストテレスの影響を強く受けた。新ピタゴラス派であり、数字の神秘的な性質について著した。.

新しい!!: 数学史とニコマコス · 続きを見る »

ニコラ・ブルバキ

ニコラ・ブルバキ(Nicolas Bourbaki, ブールバキとも)は架空の数学者であり、主にフランスの若手の数学者集団のペンネームである。当初この数学者集団は秘密結社として活動し、ブルバキを一個人として活動させ続けた。日本で出版された38冊に及ぶ数学原論や、定期的に開催されるで有名。.

新しい!!: 数学史とニコラ・ブルバキ · 続きを見る »

ニコライ・ロバチェフスキー

N・I・ロバチェフスキー ニコライ・イワノビッチ・ロバチェフスキー(Никола́й Ива́нович Лобаче́вский, Nikolai Ivanovich Lobachevsky, 1792年12月1日 - 1856年2月24日(グレゴリオ暦)/1792年11月20日 - 1856年2月12日(ユリウス暦))はロシアの数学者である。 カザン大学に学び、21歳で同大学教授となり、1827年から1846年には学長も兼ねていた。1826年に幾何学の基礎に関する論文をカザン大学の物理・数学科に提出したが、刊行されずに失われた。1829年に大学学報にその学説を発表しさらに『幾何学の新原理並びに平行線の完全な理論』 (Новые начала геометрии с полною теорией параллельных) の中で詳しく展開した。ついで Geometrische Untersuchungen zur Theorie der Parallellinien (1840年) をベルリンで刊行した。これらによってロバチェフスキーはヤノーシュ・ボヤイとは独立に非ユークリッド幾何学の創始者となり、この新幾何学の自然的根拠についても深い省察を与えた。卓越した教育者であり、20年以上学長を務めたカザン大学で後進の指導を手がけ、レーニンの父であるイリヤ・ニコラエヴィチ・ウリヤノフはロバチェフスキーの推薦でドヴォリャンスキー学院の物理と数学の上席教師となった。.

新しい!!: 数学史とニコライ・ロバチェフスキー · 続きを見る »

ニコラス・メルカトル

ニコラス・メルカトル(Nicholas (Nikolaus) Mercator、1620年頃 - 1687年)は17世紀の数学者。 北ドイツのオイティンに生まれた。1642年から1648年までオランダで暮らし、1648年から1654年までコペンハーゲン大学で教え、その後パリで暮らし、1657年にサセックスで第10代ノーサンバランド伯の息子のジョスリン・パーシーの数学の家庭教師を務め、1658年から1682年までロンドンで数学を教えた。1666年に王立協会の会員になり、チャールズ2世のために航海用時計を設計し、ヴェルサイユ宮殿の噴水の設計と製作をおこなった。 もっとも知られているのは1668年の対数に関する著書『対数術』(Logarithmo-technica)でGregory Saint-Vincentと独立に式: を導き、自然対数という用語を導いた。 音楽理論の分野でも53平均律の理論で知られる。.

新しい!!: 数学史とニコラス・メルカトル · 続きを見る »

ニコル・オレーム

レームを描いた細密画(フランス国立図書館) ニコル・オレーム(Nicole Oresme または Nicolas d'Oresme 、1323年頃 - 1382年7月11日)は、14世紀フランスの最も優れた哲学者のひとりであり、その活動範囲は広くあらゆる分野に及んだ。貨幣に関する著書、数学、天文学に関する多くの著書がある。アリストテレスの著書をフランス語に訳したことでも知られる。天文学の分野では『天体・地体論』の中で、アリストテレスらの、地動説へのさまざまな反論に対して反証をあげて、地動説を否定することができないことを示した。それにもかかわらず地動説も天動説も明証的ではないので、自らは天動説を信じるという立場をとった。 ノルマンディー地方のアルマーニュ(現フルーリィ=スュル=オルヌ Fleury-sur-Orne)村に生まれた。パリ大学のナヴァール学寮で学んだ。スコラ学派のジャン・ビュリダンやザクセンのアルベルト(アルベルトゥス・デ・サクソニア)らと学んだ。パリで神学を学び、学識が高いという評判は、フランス王家の注目を得て、後のフランス王シャルル5世の知遇を得た。シャルル5世の側近として仕え、その貨幣改革に理論的裏付けを与えた。1361年にルーアンの司教代理となり、1377年にノルマンディーのリジューの司教になった。.

新しい!!: 数学史とニコル・オレーム · 続きを見る »

ホーナー法

ホーナー法(Horner's method)は、n次の多項式 のx.

新しい!!: 数学史とホーナー法 · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: 数学史とダフィット・ヒルベルト · 続きを見る »

ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

新しい!!: 数学史とベルンハルト・リーマン · 続きを見る »

列 (数学)

数学において列(れつ、sequence)とは、粗く言えば、対象あるいは事象からなる集まりを「順序だてて並べる」ことで、例えば「A,B,C」は3つのものからなる列である。狭義にはこの例のように一列に並べるものを列と呼ぶが、広義にはそうでない場合(すなわち半順序に並べる場合)も列という場合がある(例:有向点列)。集合との違いは順番が決まっている事で、順番を変更したものは別の列であるとみなされる。たとえば列「A,B,C」と列「B,C,A」は異なる列である。 数を並べた列を数列、(何らかの空間上の)点を並べた列を点列、文字を並べた列を文字列(あるいは語)という。このように同種の性質○○を満たすもののみを並べた場合にはその列を「○○列」という言い方をするが、異なる種類のものを並べた列も許容されている。 列の構成要素は、列の要素あるいは項(こう、term)と呼ばれ、例えば「A,B,C」には3つの項がある。項の個数をその列の項数あるいは長さ (length, size) という。項数が有限である列を有限列(ゆうげんれつ、finite sequence)と、そうでないものを無限列(むげんれつ、infinite sequence)と呼ぶ。(例えば正の偶数全体の成す列 (2, 4, 6,...) )。.

新しい!!: 数学史と列 (数学) · 続きを見る »

周(しゅう、、紀元前1046年頃 - 紀元前256年)は、中国古代の王朝。殷を倒して王朝を開いた。紀元前771年の洛邑遷都を境に、それ以前を西周、以後を東周と、2つの時期に区分される。国姓は姫(き)。周代において中国文明が成立したとみられる。.

新しい!!: 数学史と周 · 続きを見る »

和算

和算(わさん)は、日本独自に発達した数学である。狭義には大いに発展した江戸時代の関孝和以降のそれを指すが、西洋数学導入以前の数学全体を指すこともある。.

新しい!!: 数学史と和算 · 続きを見る »

アメリカ数学会

アメリカ数学会(アメリカすうがくかい、英語:American Mathematical Society、略称:AMS)は、アメリカ合衆国の数学の学会である。現会員数は、32000人。 イギリス滞在中にロンドン数学会の影響を受けたトーマス・フィスクによって1888年に設立された。1894年7月に、現在の名前で再編成された。 AMS は組版処理ソフトウェア TeX の主唱者であり、AmS-TeX や AmS-LaTeX の開発を支援した。また、との合弁事業で MathJax オープンソースプロジェクトを管理している。.

新しい!!: 数学史とアメリカ数学会 · 続きを見る »

アラブ人

アラブ人(アラブじん、العرب،عربي)は、おもにアラビア半島や西アジア、北アフリカなどのアラブ諸国に居住し、アラビア語を話し、アラブ文化を受容している人々。 7世紀にムハンマド(マホメット)によってイスラム教が開かれ、中東・北アフリカを中心に勢力を拡大した。 もともとアラビア人をアラブと呼ぶが、日本では誤訳から始まった呼び方で定着した。.

新しい!!: 数学史とアラブ人 · 続きを見る »

アラビア語

アラビア語(アラビアご、اللغة العربية, UNGEGN式:al-lughatu l-ʻarabīyah, アッ.

新しい!!: 数学史とアラビア語 · 続きを見る »

アラビア数学

アラビア数学(アラビアすうがく、Arabic mathematics)とは、8世紀から15世紀のイスラム世界において、主にアラビア語を用いて行われた数学全般のことである。近年ではイスラム数学 (Islamic mathematics) と称される場合もある。名称は慣例によるものであって、必ずしも明確に対象を表しておらず、アラブ地域外でも行われ、担い手にはアラブ人でない者もイスラム教徒でない者もいた。.

新しい!!: 数学史とアラビア数学 · 続きを見る »

アラビア数字

アラビア数字(アラビアすうじ、Arabic numerals)あるいはインド・アラビア数字は、インド数字に起源を持つ十進記数法の数字である。 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 の10種類がある。.

新しい!!: 数学史とアラビア数字 · 続きを見る »

アリストテレス

アリストテレス(アリストテレース、Ἀριστοτέλης - 、Aristotelēs、前384年 - 前322年3月7日)は、古代ギリシアの哲学者である。 プラトンの弟子であり、ソクラテス、プラトンとともに、しばしば「西洋」最大の哲学者の一人とされ、その多岐にわたる自然研究の業績から「万学の祖」とも呼ばれる。特に動物に関する体系的な研究は古代世界では東西に類を見ない。イスラーム哲学や中世スコラ学、さらには近代哲学・論理学に多大な影響を与えた。また、マケドニア王アレクサンドロス3世(通称アレクサンドロス大王)の家庭教師であったことでも知られる。 アリストテレスは、人間の本性が「知を愛する」ことにあると考えた。ギリシャ語ではこれをフィロソフィア()と呼ぶ。フィロは「愛する」、ソフィアは「知」を意味する。この言葉がヨーロッパの各国の言語で「哲学」を意味する言葉の語源となった。著作集は日本語版で17巻に及ぶが、内訳は形而上学、倫理学、論理学といった哲学関係のほか、政治学、宇宙論、天体学、自然学(物理学)、気象学、博物誌学的なものから分析的なもの、その他、生物学、詩学、演劇学、および現在でいう心理学なども含まれており多岐にわたる。アリストテレスはこれらをすべてフィロソフィアと呼んでいた。アリストテレスのいう「哲学」とは知的欲求を満たす知的行為そのものと、その行為の結果全体であり、現在の学問のほとんどが彼の「哲学」の範疇に含まれている立花隆『脳を究める』(2001年3月1日 朝日文庫)。 名前の由来はギリシア語の aristos (最高の)と telos (目的)から 。.

新しい!!: 数学史とアリストテレス · 続きを見る »

アルキメデス

アルキメデス(Archimedes、Ἀρχιμήδης、紀元前287年? - 紀元前212年)は、古代ギリシアの数学者、物理学者、技術者、発明家、天文学者。古典古代における第一級の科学者という評価を得ている。.

新しい!!: 数学史とアルキメデス · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: 数学史とアルゴリズム · 続きを見る »

アル=カーシー

アル=カーシー(ジャムシード・ギヤースッディーン・アル・カーシー Ghiyāth al-Dīn Jamshīd Masʿūd al-Kāshī (or al-Kāshānī) غیاث‌الدین جمشید کاشانی )は、ペルシアの天文学者、数学者(1380年 – 1429年)。サマルカンドを中心に活動した。.

新しい!!: 数学史とアル=カーシー · 続きを見る »

アレクサンドリアのディオファントス

バシェによるラテン語版『算術』。 アレクサンドリアのディオファントス(ギリシア語:、英語:Diophantus of Alexandria、生没年不詳、推定生年 200年 - 214年、推定没年 284年 - 298年)はローマ帝国時代のエジプトの数学者。ディオファントス方程式やディオファントス近似は彼の名にちなむ。「代数学の父」と呼ばれることもある。.

新しい!!: 数学史とアレクサンドリアのディオファントス · 続きを見る »

アンドリュー・ワイルズ

アンドリュー・ワイルズ(Andrew John Wiles, 1953年4月11日 - )は、イギリスの数学者。オックスフォード大学教授(整数論)。「フェルマーの最終定理」を証明したことで知られる。.

新しい!!: 数学史とアンドリュー・ワイルズ · 続きを見る »

アーリヤバタ

アーリヤバタ(IAST: 、476年3月21日 - ?)は、古典期インドの天文学者、数学者。著作に『』(499年)と『アーリヤシッダーンタ』がある。各種の天文常数や円周率などの定数の精密化、を取り入れたインド数学の発展、インドの数理天文学の開拓といった業績がある。.

新しい!!: 数学史とアーリヤバタ · 続きを見る »

アブラーム・ド・モアブル

アブラーム・ド・モアブル(Abraham de Moivre, 1667年5月26日 - 1754年11月27日)はフランスの数学者である。 シャンパーニュ地方に生まれたがカルヴァン派の新教徒(ユグノー)であったため、1685年にナントの勅令が破棄されるとイングランドへと亡命した。したがって彼の業績はイングランドにおけるものであり、また生涯を通じて困窮していた。 主な業績としてド・モアブルの定理を証明したことが知られている。また負の二項分布、(二項分布の極限としての)正規分布、今日スターリングの公式として知られる近似式なども彼の研究成果である。 次の世代のラプラスが、ド・モアブルの再帰級数の手続きが、ラグランジュがその後線形差分方程式の積分に用いたものと同じであると記述している。.

新しい!!: 数学史とアブラーム・ド・モアブル · 続きを見る »

アブル・ワファー

アブル・ワファー・ブーズジャーニー アブル・ワファー・ブーズジャーニー(ペルシア語Abū al-Wafā Būzjānī ابوالوفا بوزجانى、 全名(アラビア語) ابوالوفا محمد بن محمد بن يحيى بن اسماعيل بن العباس البوزجاني Abū al-Wafāʾ Muḥammad ibn Muḥammad ibn Yaḥyā ibn Ismāʿīl ibn al-ʿAbbās al-Būzjānī 、940年 – 997年または998年没)は、ブワイフ朝時代のイラクで活躍したペルシアの数学者、天文学者である。日本語ではアブル・ウワファ・ブーズジャーニと表記されている場合もある。.

新しい!!: 数学史とアブル・ワファー · 続きを見る »

アブー・サフル・アル=クーヒー

アブー・サフル・アル=クーヒー(Abū Sahl Wayjan ibn Rustam al-Qūhī)は、ペルシアの数学者、物理学者、天文学者である。クーヒーはTabaristanのKuhに生まれ、10世紀にバグダードで活躍した。彼は、ムスリムの最も偉大な幾何学者の一人だと考えられている。 彼は数学や天文学に関する多くの著作を残した。彼は、ブワイフ朝ので988年にできた天文台でリーダーを務めた。彼は、アルキメデスやアポロニウスの残した問題に取り組み、二次以上の方程式についての研究を主導した。彼はそのうちのいくつかを解き、解法可能な条件について論じた。 物理学の分野では、クーヒーは、物体の重さは地球の中心からの距離によって変わることを発見した。.

新しい!!: 数学史とアブー・サフル・アル=クーヒー · 続きを見る »

アフリカ

衛星画像 NASA) 南部アフリカ アフリカ(ラテン語:Āfrica、英語:Africa)は、広義にはアフリカ大陸およびその周辺のマダガスカル島などの島嶼・海域を含む地域の総称で、六大州の一つ。阿州。漢字表記は阿弗利加。.

新しい!!: 数学史とアフリカ · 続きを見る »

アイザック・ニュートン

ウールスソープの生家 サー・アイザック・ニュートン(Sir Isaac Newton、ユリウス暦:1642年12月25日 - 1727年3月20日、グレゴリオ暦:1643年1月4日 - 1727年3月31日ニュートンの生きていた時代のヨーロッパでは主に、グレゴリオ暦が使われ始めていたが、当時のイングランドおよびヨーロッパの北部、東部ではユリウス暦が使われていた。イングランドでの誕生日は1642年のクリスマスになるが、同じ日がグレゴリオ暦では1643年1月4日となる。二つの暦での日付の差は、ニュートンが死んだときには11日にも及んでいた。さらに1752年にイギリスがグレゴリオ暦に移行した際には、3月25日を新年開始の日とした。)は、イングランドの自然哲学者、数学者、物理学者、天文学者。 主な業績としてニュートン力学の確立や微積分法の発見がある。1717年に造幣局長としてニュートン比価および兌換率を定めた。ナポレオン戦争による兌換停止を経て、1821年5月イングランド銀行はニュートン兌換率により兌換を再開した。.

新しい!!: 数学史とアイザック・ニュートン · 続きを見る »

アカデメイア

アカデメイア()は、古代ギリシアのアテナイ北西部郊外にあった、英雄アカデモスの聖林(森)に因む神域であり、リュケイオン、キュノサルゲス等と並ぶ、代表的なギュムナシオン(体育場)の所在地でもあった。 青年たちの教育に熱心だったソクラテスは、足繁くこのアカデメイアやリュケイオンのギュムナシオン(体育場)の青年たちを見て回っていたことが、プラトンの対話篇『リュシス』などにも描かれている。.

新しい!!: 数学史とアカデメイア · 続きを見る »

イラク

イラク共和国(イラクきょうわこく、、)、通称イラクは、中東・西アジアの連邦共和制国家である。首都はバグダードで、サウジアラビア、クウェート、シリア、トルコ、イラン、ヨルダンと隣接する。古代メソポタミア文明を受け継ぐ土地にあり、世界で3番目の原油埋蔵国である。.

新しい!!: 数学史とイラク · 続きを見る »

インドの歴史

モエンジョ・ダーロ遺跡 インドの歴史(インドのれきし、History of India)では、インダス文明以来のインドの歴史について略述する。.

新しい!!: 数学史とインドの歴史 · 続きを見る »

インドの数学

インドの数学(インドのすうがく、Indian mathematics)とは、紀元前1200年頃から19世紀頃までのインド亜大陸において行われた数学全般を指す。.

新しい!!: 数学史とインドの数学 · 続きを見る »

インダス文字

インダス文字(インダスもじ)またはインダス印章文字とは、インダス文明のMature Harappan期(紀元前2600年-紀元前1900年)にハラッパーやモヘンジョダロなどの文明の中心都市で使われた象形文字である。を書記したものであるとされる。インダス文字は現在約400文字が発見されているが、テキストが印章のような短文がほとんどで、ロゼッタ・ストーンのような2言語以上の併記もなく、解読が難航している。 1930年代から60年代初頭にかけての研究は、ラールという研究者が右から読むことを証明したほかは、目立った成果がなかった。1960年代にマヤ文字の解読を著しく前進させたことでも知られるユーリ・クノロゾフを中心とするソ連の研究者グループと、を中心とするフィンランドの研究者グループが、解読にコンピューターを導入してから、足がかりが築かれ始めた。クノロゾフらによって、.

新しい!!: 数学史とインダス文字 · 続きを見る »

インダス文明

モヘンジョダロ 儀式で使用された陶器紀元前2600–2450年 インダス文明(インダスぶんめい、Indus Valley civilization)は、インド・パキスタン・アフガニスタンのインダス川および並行して流れていたとされるガッガル・ハークラー川周辺に栄えた文明である。これら各国の先史文明でもある(インドの歴史、アフガニスタンの歴史も参照)。崩壊の原因となったという説のあった川の名前にちなんでインダス文明、最初に発見された遺跡にちなんでハラッパー文明とも呼ばれる。 狭義のインダス文明は、紀元前2600年から紀元前1800年の間を指す。インダス文明の遺跡は、東西1500km、南北1800kmに分布し、遺跡の数は約2600におよぶ。そのうち発掘調査が行われた遺跡は、2010年時点でインド96、パキスタン47、アフガニスタン4の合計147となっている。.

新しい!!: 数学史とインダス文明 · 続きを見る »

イングランド

イングランド(England)は、グレートブリテン及び北アイルランド連合王国(イギリス)を構成する4つの「国」(country)の一つである。人口は連合王国の83%以上、面積はグレートブリテン島の南部の約3分の2を占める。北方はスコットランドと、西方はウェールズと接する。北海、アイリッシュ海、大西洋、イギリス海峡に面している。 イングランドの名称は、ドイツ北部アンゲルン半島出身のゲルマン人の一種であるアングル人の土地を意味する「Engla-land」に由来する。イングランドは、ウェールズとともにかつてのイングランド王国を構成していた。.

新しい!!: 数学史とイングランド · 続きを見る »

イブン・ハイサム

イブン・アル=ハイサム(Ibn al-Haitham、本名アブー・アリー・アル=ハサン・イブン・アル=ハサン・イブン・アル=ハイサム Abū ‘Alī al-Haṣan ibn al-Haṣan ibn al-Haytham、أبو علي الحسن بن الحسن بن الهيثم. )は、イスラム圏の数学者、天文学者、物理学者、医学者、哲学者、音楽学者(965年 - 1040年)。イラクの都市バスラ出身であったことからアル=バスリー(al-Basri)とも呼ばれていた。西洋ではアルハゼン、アルハーゼン(Alhacen 、Alhazen)の名で知られていた。 イブン・ハイサムは光学の諸原理の発見と科学実験手法の発展に対し、近代科学へ重要な貢献をした人物である。また彼が残した光学に関する書物、レンズや鏡を使った屈折や反射の実験などから「光学の父」ともみなされている。月にあるクレーター「アルハゼン・クレーター」 (Alhazen crater) は彼の栄誉を称えて名づけられている。.

新しい!!: 数学史とイブン・ハイサム · 続きを見る »

イベリア半島

イベリア半島(スペイン語・ポルトガル語・ガリシア語:Península Ibérica、カタルーニャ語:Península Ibèrica、バスク語:Iberiar penintsula)は、ヨーロッパの南西に位置する半島である。.

新しい!!: 数学史とイベリア半島 · 続きを見る »

イエズス会

イエズス会(イエズスかい、)は、キリスト教、カトリック教会の男子修道会。1534年にイグナチオ・デ・ロヨラやフランシスコ・ザビエルらによって創設され、1540年にパウルス3世により承認された。世界各地への宣教に務め、日本に初めてカトリックをもたらした。なおイエズスは、中世ラテン語による (イエス・キリスト)の古くからのカトリックの日本語表記。.

新しい!!: 数学史とイエズス会 · 続きを見る »

イシャンゴの骨

イシャンゴの骨(イシャンゴのほね、Ishango bone)は、1960年にアフリカ・コンゴで発見された後期旧石器時代の骨角器。骨の年代はおよそ2万年前で、大きさの異なる刻み目が3列に亘って骨につけられている。この刻み目の数が、ある列は素数だけであったり、別の列では掛け算などを示唆するような内容であったため、発見以来数学的に意義のある考古学的証拠とされてきたが、一方でこの数に数学的な意味はないとする指摘もあるラドマン (2008),p.68。 イシャンゴの骨は2011年現在ブリュッセルにあるベルギー王立自然史博物館で常設展示されている。.

新しい!!: 数学史とイシャンゴの骨 · 続きを見る »

イスラム帝国

イスラム帝国(イスラムていこく、خلافة, caliphate)は、イスラム教(イスラーム)の教えに従って生まれたイスラム共同体(ウンマ)の主流派政権が形成した帝国のこと。.

新しい!!: 数学史とイスラム帝国 · 続きを見る »

イスラム教

イスラム教(イスラムきょう、イスラーム教、イスラーム、和名・漢字圏名:回教)は、唯一絶対の神(アラビア語でアッラー)を信仰し、神が最後の預言者を通じて人々に下した(啓示した)とされるクルアーンの教えを信じ、従う一神教である。 ユダヤ教やチゲリスト教の影響を受けた唯一神教で、偶像崇拝猶、いわゆる『偶像崇拝』が神像を用いた礼拝と同義であるのかを巡っては、宗教や個人により大きな開きがあるを徹底的に排除し、神への奉仕を重んじ、信徒同士の相互扶助関係や一体感を重んじる点に大きな特色があるとされる。アッラーを崇拝するが、アッラーとは、もともとアラビアの多神教の神々の中の一人であったが、ムハンマドがメッカを占領すると、他の多神教の神々の像は全て破壊され、そして作ることや描くことも禁止され、その神だけを崇拝するようになった。.

新しい!!: 数学史とイスラム教 · 続きを見る »

ウマル・ハイヤーム

ウマル・ハイヤーム (、1048年5月18日? - 1131年12月4日?)は、セルジューク朝期ペルシアの学者・詩人。ニーシャープール(現イラン・ラザヴィー・ホラーサーン州ネイシャーブール)出身。イラン・イスラーム文化の代表者。ウマルの名を現代ペルシア語風に読んでオマル・ハイヤームともいう。全名アブー・ハフス・ウマル・イブン・イブラーヒーム・ハイヤーミー・ニーシャーブーリー。「ハイヤーム」は「天幕造り」の意味であり、ハイヤームの父親の職業が天幕造りであったことから、このように呼ばれている。 数学・天文学に通じた学者としてセルジューク朝のスルターンであるマリク・シャーに招聘され、メルヴの天文台で暦法改正にたずさわり、現在のイラン暦の元となるジャラーリー暦を作成した。33年に8回の閏年を置くもので、グレゴリウス暦よりも正確なものであった。 また、無常観が言葉の端々に表れるペルシア語によるルバーイイ(四行詩)を多数うたい、詩人としても高い評価を得ていた。彼のルバーイイを集めた作品集は『ルバイヤート』として、故地イランのみならず、各国で翻訳され出版されている。.

新しい!!: 数学史とウマル・ハイヤーム · 続きを見る »

ウィリアム・ローワン・ハミルトン

ウィリアム・ローワン・ハミルトン(William Rowan Hamilton、1805年8月4日 - 1865年9月2日)は、アイルランド・ダブリン生まれのイギリスの数学者、物理学者。四元数と呼ばれる高次複素数を発見したことで知られる。また、イングランドの数学者アーサー・ケイリーに与えた影響は大きい。.

新しい!!: 数学史とウィリアム・ローワン・ハミルトン · 続きを見る »

エラトステネス

ラトステネス エラトステネス(, Eratosthenes, 紀元前275年 - 紀元前194年)は、ヘレニズム時代のエジプトで活躍したギリシャ人の学者であり、アレクサンドリア図書館を含む研究機関であるムセイオンの館長を務めた。業績は文献学、地理学を始めヘレニズム時代の学問の多岐に渡るが、特に数学と天文学の分野で後世に残る大きな業績を残した。 地球の大きさを初めて測定した人物として、また素数の判定法であるエラトステネスの篩(ふるい)を発明したことで知られる。その業績から「第2のプラトン」とも呼ばれた。また「β」(ベータ)ともあだ名されている。その由来は、「世界で2番目に物事をよく知っている人」という意味である。ここでは1番の人は「α」(アルファ)と呼ばれることになる。.

新しい!!: 数学史とエラトステネス · 続きを見る »

エラトステネスの篩

ラトステネスの篩 (エラトステネスのふるい、Sieve of Eratosthenes) は、指定された整数以下の全ての素数を発見するための単純なアルゴリズムである。古代ギリシアの科学者、エラトステネスが考案したとされるため、この名がある。.

新しい!!: 数学史とエラトステネスの篩 · 続きを見る »

エヴァリスト・ガロア

ヴァリスト・ガロア(Évariste Galois, 1811年10月25日 - 1832年5月31日)は、フランスの数学者および革命家である。フランス語の原音()に忠実に「ガロワ」と表記されることもある。.

新しい!!: 数学史とエヴァリスト・ガロア · 続きを見る »

エディンバラ数学会

ディンバラ数学会(エディンバラすうがっかい、)とはスコットランドの数学の学会。1883年にエディンバラの教員と研究者のグループによって設立された。初代会長はEdinburgh Academy の校長であったJ.S. Mackay。 同学会はスコットランドにおける会合や研究行事を計画し、資金を提供している。 European Mathematical Societyのメンバー。.

新しい!!: 数学史とエディンバラ数学会 · 続きを見る »

エウドクソス

エウドクソス(Eudoxos)は、紀元前4世紀の古代ギリシアの数学者、天文学者。エジプトで長く暮らし、後にアテネに移住した。 彼は紀元前4世紀ごろに天動説を唱えた。円錐の体積は、同じ半径、同じ高さの円柱の体積の3分の1になることを証明した。これらの成果は、ユークリッドの著書に記載された。 天文学者としては、地球が中心にあり、他の天体がその周りを回る天動説を唱えたとされるが、著書は残っていない。ただし、この考え方は後にアリストテレスやプトレマイオスによって体系化された。 Category:紀元前4世紀の哲学者 Category:古代ギリシアの哲学者 Category:古代ギリシアの数学者 Category:ギリシャの天文学者 4100000 Category:アカデメイア派 Category:数学に関する記事 Category:天文学に関する記事.

新しい!!: 数学史とエウドクソス · 続きを見る »

エウクレイデス

ラファエロの壁画「アテナイの学堂」に画かれたエウクレイデス アレクサンドリアのエウクレイデス(、、(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。 プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。線の定義について、「線は幅のない長さである」、「線の端は点である」など述べられている。基本的にその中で今日ユークリッド幾何学と呼ばれている体系が少数の公理系から構築されている。エウクレイデスは他に光学、透視図法、円錐曲線論、球面天文学、誤謬推理論、図形分割論、天秤などについても著述を残したとされている。 なお、エウクレイデスという名はギリシア語で「よき栄光」を意味する。その実在を疑う説もあり、その説によると『原論』は複数人の共著であり、エウクレイデスは共同筆名とされる。 確実に言えることは、彼が古代の卓越した数学者で、アレクサンドリアで数学を教えていたこと、またそこで数学の一派をなしたことである。ユークリッド幾何学の祖で、原論では平面・立体幾何学、整数論、無理数論などの当時の数学が公理的方法によって組み立てられているが、これは古代ギリシア数学の一つの成果として受け止められている。.

新しい!!: 数学史とエウクレイデス · 続きを見る »

エコール・ポリテクニーク

ール・ポリテクニーク(École polytechnique、通称X)は、パリ市近郊パレゾーに位置するフランスの公立高等教育・研究機関。グランゼコールのひとつであり、4年の課程でIngénieur Polytechnicien の理工系学位を付与する。学生やディプロム授与者はポリテクニシャン(polytechnicien)と呼ばれる。学生の多くは、予備大学で2年間の数学と物理を学んだ後、または理学士(Bachelor of Science)を取得したのちに、本校を受験することとなる。 1794年のフランス革命中に、数学者ラザール・カルノーとガスパール・モンジュによって創設され、1804年にナポレオン・ボナパルトによって軍学校とされる。今日ではフランス国防省の配下にある。 ParisTechの設立メンバーとしてパリ近郊の各高等工科系の学校とグループを結んでいる。 "ポリテクニック"の語源となった学校であり、世界中にエコール・ポリテクニークをモデルとした学校・大学が存在する。理工系エリート(テクノクラート)養成の機関であり、同校からは3名のノーベル賞受賞者、1名のフィールズ賞受賞者、3名のフランス大統領、複数の企業CEOを輩出している。2015年Timesの世界大学ランキングによって、フランス国内において第一位と認定された。.

新しい!!: 数学史とエコール・ポリテクニーク · 続きを見る »

エジプト

プト・アラブ共和国(エジプト・アラブきょうわこく、جمهورية مصر العربية)、通称エジプトは、中東・アフリカの共和国。首都はカイロ。 西にリビア、南にスーダン、北東にイスラエルと隣接し、北は地中海、東は紅海に面している。南北に流れるナイル川の河谷とデルタ地帯(ナイル・デルタ)のほかは、国土の大部分が砂漠である。ナイル河口の東に地中海と紅海を結ぶスエズ運河がある。.

新しい!!: 数学史とエジプト · 続きを見る »

エジプト中王国

プト中王国(エジプトちゅうおうこく 紀元前2040年頃-紀元前18世紀頃)は、古代エジプト史の時代区分。第11王朝の王メンチュヘテプ2世(前2060年 - 前2010年)によるエジプト統一から、第12王朝の終了、または第13王朝終了(またはその治世の途中)までとする説がある。しかし、第13王朝についての情報が不完全であるため、明確な時代境界線を引くことは難しい。本記事では第11王朝によるエジプト統一から第13王朝の終了までを取り扱うが、この範囲について統一された見解が無い事に注意して頂きたい。.

新しい!!: 数学史とエジプト中王国 · 続きを見る »

エジプト語

プト語(エジプトご)とは、古代エジプト時代からイスラームの征服によってエジプトがアラブ化されるまでの間エジプトで用いられていた言語。アフロ・アジア語族に属する。ヒエログリフやそれを崩した文字、コプト語時代はコプト文字で書かれた。現在はコプト語が主として典礼言語として用いられており、数家庭のみこれを母語として伝承している Daily News Egypt。 最も古いエジプト語で記された記録は、紀元前3200年頃のもので、これは書かれた人間の言語の記録としても最古のものに属する。コプト語は17世紀頃まで日常言語として使用する話者が存在していたが、それ以降はエジプトにおける日常語はアラビア語エジプト方言に完全に取って代わられた。しかし、上エジプトの隔絶地に19世紀頃まで話者が存在していたという研究者もいる。.

新しい!!: 数学史とエジプト語 · 続きを見る »

エジプト数学

プト数学(エジプトすうがく、Egyptian mathematics)とは、紀元前3000年から紀元前300年頃の古代エジプトにおいて、主にエジプト語を用いて行われた数学全般を指す。.

新しい!!: 数学史とエジプト数学 · 続きを見る »

オーギュスタン=ルイ・コーシー

ーギュスタン=ルイ・コーシー(Augustin Louis Cauchy, 1789年8月21日 - 1857年5月23日)はフランスの数学者。解析学の分野に対する多大な貢献から「フランスのガウス」と呼ばれることもある。これは両者がともに数学の厳密主義の開始者であった事にも関係する。他に天文学、光学、流体力学などへの貢献も多い。.

新しい!!: 数学史とオーギュスタン=ルイ・コーシー · 続きを見る »

オックスフォード大学

ックスフォード大学 (University of Oxford) は、イギリスの大学都市、オックスフォードに所在する総合大学である。11世紀の末に大学の礎が築かれていることから、現存する大学としては世界で3番目に古く、英語圏では最古の大学である。また、ハーバード大学、ケンブリッジ大学、シカゴ大学等と並び、各種の世界大学ランキングで常にトップレベルの優秀な大学として評価される世界有数の名門大学である。2016年、2017年THE世界大学ランキングで世界1位の大学に2年連続で選ばれた。 イギリス伝統のカレッジ制を特徴とする大学である。貴族の大学としても有名である。 世界中の指導的政治家を輩出しており、テリーザ・メイ現首相、デーヴィッド・キャメロン前首相、トニー・ブレア元首相、マーガレット・サッチャー元首相など27人のイギリス首相、30人以上の各国元首らがオックスフォード大学出身である。さらに、50人以上のノーベル賞受賞者、6人のイギリス国王、150人以上のオリンピックメダリストなどを輩出している。また、皇太子徳仁親王、皇太子妃雅子、秋篠宮文仁親王ら、日本の皇族の留学先としても知られている。 ちなみに「オックスブリッジ」として並び称されるケンブリッジ大学の形成は、この大学に所属していた多くの教師と学生が1209年にケンブリッジに移住したことに端を発する。.

新しい!!: 数学史とオックスフォード大学 · 続きを見る »

オクターヴ

ターヴは、西洋音楽における8度音程であり、周波数比2:1の音程である。 「オクターブ」とも表記される。.

新しい!!: 数学史とオクターヴ · 続きを見る »

オスマン帝国

マン帝国(オスマンていこく、)は、テュルク系(後のトルコ人)のオスマン家出身の君主(皇帝)を戴く多民族帝国。英語圏ではオットマン帝国 (Ottoman Empire) と表記される。15世紀には東ローマ帝国を滅ぼしてその首都であったコンスタンティノポリスを征服、この都市を自らの首都とした(オスマン帝国の首都となったこの都市は、やがてイスタンブールと通称されるようになる)。17世紀の最大版図は、東西はアゼルバイジャンからモロッコに至り、南北はイエメンからウクライナ、ハンガリー、チェコスロバキアに至る広大な領域に及んだ。.

新しい!!: 数学史とオスマン帝国 · 続きを見る »

カヴァリエリの原理

ヴァリエリの原理(カヴァリエリのげんり、Cavalieri's principle)は、面積や体積に関する一般的な法則のひとつである。カヴァリエリの定理、不可分の方法 (method of indivisibles) ともいう。例えば体積についてのカヴァリエリの原理とは、大まかには「切り口の面積が常に等しい2つの立体の体積は等しい」という主張である。カヴァリエリは17世紀のイタリアの数学者。.

新しい!!: 数学史とカヴァリエリの原理 · 続きを見る »

カール・ワイエルシュトラス

ール・ワイエルシュトラス カール・テオドル・ヴィルヘルム・ワイエルシュトラス(Karl Theodor Wilhelm Weierstraß, 1815年10月31日 – 1897年2月19日)はドイツの数学者である。姓のワイ (Wei) の部分はヴァイと表記するほうが正確である。また、"er" に当たる部分はエル/ヤ/ア、"st" はシュト/スト、"raß" はラス/ラースとそれぞれ表記されることがある。.

新しい!!: 数学史とカール・ワイエルシュトラス · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 数学史とカール・フリードリヒ・ガウス · 続きを見る »

カオス理論

論(カオスりろん、、、)は、力学系の一部に見られる、数的誤差により予測できないとされている複雑な様子を示す現象を扱う理論である。カオス力学ともいう。 ここで言う予測できないとは、決してランダムということではない。その振る舞いは決定論的法則に従うものの、積分法による解が得られないため、その未来(および過去)の振る舞いを知るには数値解析を用いざるを得ない。しかし、初期値鋭敏性ゆえに、ある時点における無限の精度の情報が必要であるうえ、(コンピューターでは無限桁を扱えないため必然的に発生する)数値解析の過程での誤差によっても、得られる値と真の値とのずれが増幅される。そのため予測が事実上不可能という意味である。.

新しい!!: 数学史とカオス理論 · 続きを見る »

ガリレオ・ガリレイ

リレオ・ガリレイ(Galileo Galilei、ユリウス暦1564年2月15日 - グレゴリオ暦1642年1月8日)は、イタリアの物理学者、天文学者、哲学者。 パドヴァ大学教授。その業績から天文学の父と称され、ロジャー・ベーコンとともに科学的手法の開拓者の一人としても知られている。1973年から1983年まで発行されていた2000イタリア・リレ(リラの複数形)紙幣にガリレオの肖像が採用されていた。.

新しい!!: 数学史とガリレオ・ガリレイ · 続きを見る »

ガンマ関数

1.

新しい!!: 数学史とガンマ関数 · 続きを見る »

ガウスの消去法

ウスの消去法(ガウスのしょうきょほう、Gaussian elimination)あるいは掃き出し法(はきだしほう、row reduction)とは、連立一次方程式を解くための多項式時間アルゴリズムであり、通常は問題となる連立一次方程式の係数からなる拡大係数行列に対して行われる一連の変形操作を意味する。 同様のアルゴリズムは歴史的には前漢に九章算術で初めて記述された。連立一次方程式の解法以外にも.

新しい!!: 数学史とガウスの消去法 · 続きを見る »

キンディー

ンディー アブー・ユースフ・ヤアクーブ・イブン・イスハーク・アル=キンディー(アラビア語: أبو يوسف يعقوب ابن إسحاق الكندي; Abū-Yūsuf Yaʿqūb ibn Isḥāq al-Kindī, 801年 - 873年?)は中世イスラームの哲学者、科学者、数学者、音楽家。広範な分野の著作のアラビア語訳を行い、諸分野、特にイスラーム哲学の基礎を作った人物である。ヨーロッパ語圏では、ラテン語化されたアルキンドゥス(Alkindus)の名でも知られている。 また、彼はアラブ系の部族にルーツを持つ偉大な哲学者の1人であったので、「アラブの哲学者」という敬称も持つ。.

新しい!!: 数学史とキンディー · 続きを見る »

ギリシア語

リシア語(ギリシアご、現代ギリシア語: Ελληνικά, または Ελληνική γλώσσα )はインド・ヨーロッパ語族ヘレニック語派(ギリシア語派)に属する言語。単独でヘレニック語派(ギリシア語派)を形成する。ギリシア共和国やキプロス共和国、イスタンブールのギリシア人居住区などで使用されており、話者は約1200万人。また、ラテン語とともに学名や専門用語にも使用されている。省略形は希語。.

新しい!!: 数学史とギリシア語 · 続きを見る »

クルト・ゲーデル

ルト・ゲーデル(Kurt Gödel, 1906年4月28日 - 1978年1月14日)は、オーストリア・ハンガリー二重帝国(現チェコ)のブルノ生まれの数学者・論理学者である。業績には、完全性定理及び不完全性定理、連続体仮説に関する研究が知られる。.

新しい!!: 数学史とクルト・ゲーデル · 続きを見る »

クレモナのジェラルド

レモナのジェラルドの著書''Recueil des traites de medecine''(1250-1260)に描かれたイラン人医師アル・ラーズィー クレモナのジェラルド(ゲラルド Gerard of Cremona, Gherardo Cremonese, ラテン語名:ゲラルドゥス・クレモネンシス (Gerardus Cremonensis), 1114年頃 - 1187年)はイタリアの学者。 12世紀に多くのアラビア語の学術書をラテン語に翻訳し、「12世紀ルネサンス」を代表する。 「クレモナのジェラルド」と呼ばれる人物はもう一人いて、こちらは13世紀に薬学の著書を訳した。.

新しい!!: 数学史とクレモナのジェラルド · 続きを見る »

クレレ誌

レレ誌もしくは、単にクレレとは数学誌Journal für die reine und angewandte Mathematik (純粋・応用数学雑誌の意)の通称。.

新しい!!: 数学史とクレレ誌 · 続きを見る »

グリゴリー・ペレルマン

リゴリー・ヤコヴレヴィチ・ペレルマンまたはペレリマン(Григорий Яковлевич Перельман, Grigory Yakovlevich Perelman, 1966年6月13日 – )は、ロシア出身の数学者。.

新しい!!: 数学史とグリゴリー・ペレルマン · 続きを見る »

ケーララ学派

ーララ学派(英語:Kerala school of astronomy and mathematics)は、インドのケーララ地方で活動した数学と天文学の学派。サンガマグラーマのマーダヴァが始祖とされ、主に14世紀から17世紀にかけて活動した。マーダヴァ学派とも呼ばれる。.

新しい!!: 数学史とケーララ学派 · 続きを見る »

ケプラーの法則

プラーの法則(ケプラーのほうそく)は、1619年にヨハネス・ケプラーによって発見された惑星の運動に関する法則である。.

新しい!!: 数学史とケプラーの法則 · 続きを見る »

ゲーム理論

2007a。 ゲーム理論(ゲームりろん、)とは、社会や自然界における複数主体が関わる意思決定の問題や行動の相互依存的状況を数学的なモデルを用いて研究する学問である。数学者ジョン・フォン・ノイマンと経済学者オスカー・モルゲンシュテルンの共著書『ゲームの理論と経済行動』(1944年) によって誕生した 。元来は主流派経済学(新古典派経済学)への批判を目的として生まれた理論であったが、1980年代の「ゲーム理論による経済学の静かな革命」を経て、現代では経済学の中心的役割を担うようになった。 ゲーム理論の対象はあらゆる戦略的状況 (strategic situations)である。「戦略的状況」とは自分の利得が自分の行動の他、他者の行動にも依存する状況を意味し、経済学で扱う状況の中でも完全競争市場や独占市場を除くほとんどすべてはこれに該当する。さらにこの戦略的状況は経済学だけでなく経営学、政治学、法学、社会学、人類学、心理学、生物学、工学、コンピュータ科学などのさまざまな学問分野にも見られるため、ゲーム理論はこれらにも応用されている。 ゲーム理論の研究者やエンジニアはゲーム理論家(game theorist)と呼ばれる。.

新しい!!: 数学史とゲーム理論 · 続きを見る »

ゲーデルの不完全性定理

ーデルの不完全性定理(ゲーデルのふかんぜんせいていり、)又は単に不完全性定理とは、数学基礎論における重要な定理で、クルト・ゲーデルが1930年に証明したものである。;第1不完全性定理: 自然数論を含む帰納的公理化可能な理論が、ω無矛盾であれば、証明も反証もできない命題が存在する。;第2不完全性定理: 自然数論を含む帰納的公理化可能な理論が、無矛盾であれば、自身の無矛盾性を証明できない。.

新しい!!: 数学史とゲーデルの不完全性定理 · 続きを見る »

ゲオルク・プールバッハ

ルク・プールバッハ(Georg Purbach、1423年5月30日 - 1461年4月8日)は15世紀のオーストリアの天文学者。西洋における観測天文学の父とも呼ばれ、科学機器を発明し、プトレオマイオスの天動説理論『アルマゲスト』を踏まえた『惑星の新理論』を発表している。『アルマゲスト』の翻訳を改訂・修正したレギオモンタヌス(ヨハン・ミューラー)の師である。ポイエルバッハ(Georg von Peuerbach)、プルバキウス(Purbachius)などとも表記される。 オーストリアのリンツに近いポイエルバッハ(Peuerbach)に生まれた。1440年頃ウィーン大学で学位を得た。数学の師はグムンデンのヨハネスとされている。フェラーラの天文学教師ジョヴァンニ・ビアンキーニ(Giovanni Bianchini)やニコラウス・クザーヌスに認められフェラーラで天文学を教えた。1450年にボローニャやパドヴァ大学の教授職、ハンガリー王ラディスラウスの宮廷天文官の席を断ってウィーン大学に戻り、教授となった。最も有名な弟子は後にレギオモンタヌスと称したヨハン・ミューラーである。ウィーンで没した。プールバッハの著書の多くは彼の没後、レギオモンタヌスによって出版された。 基準にする恒星に対する月や惑星の角度を測るための「ヤコブの杖」と呼ばれる器具などの発明者とされる。またユードクソスの同心球宇宙のモデルとプトレマイオスの離心円の宇宙論を統一しようとしたことで知られる。.

新しい!!: 数学史とゲオルク・プールバッハ · 続きを見る »

ゲオルク・カントール

ルク・カントール ゲオルク・フェルディナント・ルートヴィッヒ・フィリップ・カントール(Georg Ferdinand Ludwig Philipp Cantor, 1845年3月3日 - 1918年1月6日)は、ドイツで活躍した数学者。.

新しい!!: 数学史とゲオルク・カントール · 続きを見る »

コンピュータネットワーク

ンピュータネットワーク(computer network)は、複数のコンピュータを接続する技術。または、接続されたシステム全体。コンピュータシステムにおける「通信インフラ」自体、あるいは通信インフラによって実現される接続や通信の総体が(コンピュータ)ネットワークである、とも言える。.

新しい!!: 数学史とコンピュータネットワーク · 続きを見る »

コンゴ民主共和国

衛星写真 コンゴ民主共和国(コンゴみんしゅきょうわこく)は、中部アフリカに位置する共和制国家。北西にコンゴ共和国、南西にアンゴラ、南にザンビア、東にタンザニア、ブルンジ、ルワンダ、北東にウガンダ、南スーダン、北に中央アフリカ共和国と国境を接し、西は大西洋に面する。首都はキンシャサである。 アフリカ大陸中央部のコンゴ川流域に広がり、アルジェリアに続いてアフリカ大陸で第2位の面積を擁し、世界全体でも第11位の面積を擁する広大な国家である。1997年に現在の国名に改められたが、それまでの国名のザイールとしてもよく知られる。熱帯性気候。.

新しい!!: 数学史とコンゴ民主共和国 · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: 数学史とゴットフリート・ライプニッツ · 続きを見る »

シモン・ステヴィン

モン・ステヴィン ステヴィンが考案した小数 16世紀にステヴィンが製作した船 シモン・ステヴィン(、1548年 - 1620年)は、フランドル(現:ベルギー)ブルッヘ出身の数学者、物理学者、会計学者、オランダ軍主計将校ステヴィンはオランダ人である。。 イタリアの天文学者、哲学者、物理学者であるガリレオ・ガリレイよりも早く落下の法則を発見し、また、ヨーロッパで初めて小数を提唱したとして名高い。また、力の平行四辺形の法則の発見者としても名高い。.

新しい!!: 数学史とシモン・ステヴィン · 続きを見る »

シュメール

ュメール(アッカド語: Šumeru; シュメール語: シュメール語の楔形文字の表示にはUnicodeフォント(Akkadianなど)が必要です。 - en-ĝir15)は、メソポタミア(現在のイラク・クウェート)南部を占めるバビロニアの南半分の地域、またはそこに興った最古の都市文明である。初期のメソポタミア文明とされ、チグリス川とユーフラテス川の間に栄えた。.

新しい!!: 数学史とシュメール · 続きを見る »

シュリニヴァーサ・ラマヌジャン

ュリニヴァーサ・アイヤンガー・ラマヌジャン(Srinivasa Aiyangar Ramanujan、1887年12月22日 - 1920年4月26日)はインドの数学者。極めて直感的、天才的な閃きにより「インドの魔術師」の異名を取った。.

新しい!!: 数学史とシュリニヴァーサ・ラマヌジャン · 続きを見る »

シュルバ・スートラ

ュルバ・スートラは、インドの宗教文書ヴェーダーンガにおいて、祭壇や祭火壇の作り方をのべた文献。紀元前6世紀から2世紀頃にかけて編纂された。シュルバとは、サンスクリット語で「犠牲の儀式」意味する語で、のちに祭壇の寸法をはかる縄を意味するようになった。スートラとは、知識や祭儀を簡潔に伝えた経典を指す。.

新しい!!: 数学史とシュルバ・スートラ · 続きを見る »

シラクサ

ラクサ(Siracusa)は、イタリア共和国のシチリア島南東部に位置する都市で、その周辺地域を含む人口約12万人の基礎自治体(コムーネ)。シラクサ県の県都である。標準イタリア語の発音に近い表記は「シラクーザ」。 古代ギリシャの植民都市シュラクサイに起源を持つ都市で、歴史的な遺跡など、多くの観光スポットがある。2005年には市内および周辺の歴史的建造物や遺跡が「シラクサとパンターリカの岩壁墓地遺跡」の名で世界遺産に登録もされている。.

新しい!!: 数学史とシラクサ · 続きを見る »

シピオーネ・デル・フェッロ

ピオーネ・デル・フェッロ(Scipione del Ferro、1465年2月6日-1526年11月5日)はイタリアの数学者で、三次方程式の解法を考案したことで知られる。.

新しい!!: 数学史とシピオーネ・デル・フェッロ · 続きを見る »

ジャイナ教

ャイナ教(ジャイナきょう、जैन、Jainism)は、マハーヴィーラ(ヴァルダマーナ、前6世紀-前5世紀)を祖師と仰ぎ、特にアヒンサー(不害)の禁戒を厳守するなど徹底した苦行・禁欲主義をもって知られるインドの宗教。「ジナ教」とも呼ばれる。仏教と異なりインド以外の地にはほとんど伝わらなかったが、その国内に深く根を下ろして、およそ2500年の長い期間にわたりインド文化の諸方面に影響を与え続け、今日もなおわずかだが無視できない信徒数を保っている。 日本には、兵庫県神戸市中央区に寺院がある。.

新しい!!: 数学史とジャイナ教 · 続きを見る »

ジョン・ネイピア

ョン・ネイピア(John Napier, 1550年 - 1617年4月4日)はスコットランドのバロン。数学者、物理学者、天文学者、占星術師としても知られる。.

新しい!!: 数学史とジョン・ネイピア · 続きを見る »

ジョージ・ブール

ョージ・ブール(George Boole, 1815年11月2日 - 1864年12月8日)は、イギリスの数学者・哲学者。多くの仕事があるが、こんにちのコンピュータ科学の分野の基礎的な理論のひとつであるブール代数(ブール論理)が現代では広く知られている。.

新しい!!: 数学史とジョージ・ブール · 続きを見る »

ジョージ・G・ジョーゼフ

ョージ・G・ジョーゼフ(George Gheverghese Joseph、1928年 - )は、インド出身の数学者。南インドのケーララ州に生まれ、マドゥライで幼少期をすごす。ケニアのモンバサで中等教育を受け、レスター大学で学位を取得。現在はマンチェスター大学勤務。 世界規模で見た数学の特質を研究テーマとし、自らの方法論についてジョゼフ・ニーダムやエドワード・サイードらの名を参考に挙げている。.

新しい!!: 数学史とジョージ・G・ジョーゼフ · 続きを見る »

ジェロラモ・カルダーノ

ェロラモ・カルダーノ(Gerolamo Cardano、1501年9月24日 - 1576年9月21日)は、16世紀のイタリアの人物。ジローラモ・カルダーノ(Girolamo Cardano)との表記もある。 ミラノで生まれ、ローマで没した。一般に数学者として知られている。本業は医者、占星術師、賭博師、哲学者でもあった。.

新しい!!: 数学史とジェロラモ・カルダーノ · 続きを見る »

スコットランド

ットランド()は、北西ヨーロッパに位置するグレートブリテン及び北アイルランド連合王国(イギリス)を構成するカントリーの一つ。1707年の合同法によってグレートブリテン王国が成立するまでは独立した王国(スコットランド王国)であった。 スコットランドはグレートブリテン島の北部3分の1を占め、本島と別に790以上の島嶼部から構成される。 首都のエディンバラは第2の都市であり、ヨーロッパ最大の金融センターの一つである。最大の都市であるグラスゴーは、人口の40%が集中する。 スコットランドの法制度、教育制度および裁判制度はイングランドおよびウェールズならびに北アイルランドとは独立したものとなっており、そのために、国際私法上の1法域を構成する。スコットランド法、教育制度およびスコットランド教会は、連合王国成立後のスコットランドの文化および独自性の3つの基礎であった。しかしスコットランドは独立国家ではなく、国際連合および欧州連合の直接の構成国ではない。.

新しい!!: 数学史とスコットランド · 続きを見る »

セント・アンドルーズ大学 (スコットランド)

ント・アンドルーズ大学(University of St Andrews)はイギリス・スコットランドの東海岸セント・アンドルーズ市に所在する大学。1413年創立。スコットランド最初の大学であり、英語圏全体でも3番目に設立年代が古い。その長い歴史からアンシャン・ユニヴァシティーの一校に数えられる。イギリスの研究型小規模大学が所属する1994グループ加盟校。2014年度のサンデー・タイムズ、ガーディアン紙による全英大学ランキングでは第4位となっている。 セント・アンドルーズがスコットランドにおけるキリスト教の巡礼地であったことから、中世にはジョン・ノックスをはじめとして多くの宗教指導者がセント・アンドルーズ大学で学んだ。この伝統は自然神学講座ギフォード講義に引き継がれ、1888年以来、エドワード・ケアードなどの哲学者やヴェルナー・ハイゼンベルクなどの科学者による講演が行われている。 セント・アンドルーズ大学は卒業生・関係者・教員からノーベル賞受賞者5名を輩出している。.

新しい!!: 数学史とセント・アンドルーズ大学 (スコットランド) · 続きを見る »

タレス

タレス(タレース、、、紀元前624年頃 - 紀元前546年頃)は、古代ギリシアの哲学者。.

新しい!!: 数学史とタレス · 続きを見る »

タプル

タプルまたはチュープル(tuple)とは、複数の構成要素からなる組を総称する一般概念。 数学や計算機科学などでは通常、順序付けられた対象の並びを表すために用いられる。個別的には、n 個でできた組を英語で「n-tuple」と書き、日本語に訳す場合は通常「n 組」としている。タプルの概念そのものも組と呼ばれる場合がある。なお、 n-tuple は数学のタプルを意味するほか、同様に double、triple などの拡張として倍数詞の表現にも利用される(詳細は「倍#西洋数学における n 倍を表す表現」を参照)。.

新しい!!: 数学史とタプル · 続きを見る »

サンスクリット

Bhujimolという書体を使って書かれており、椰子の葉からできている (貝葉)。 サンスクリット(संस्कृत、saṃskṛta、Sanskrit)は、古代インド・アーリア語に属する言語。インドなど南アジアおよび東南アジアにおいて用いられた古代語。文学、哲学、学術、宗教などの分野で広く用いられた。ヒンドゥー教、仏教、シーク教、ジャイナ教の礼拝用言語でもあり、現在もその権威は大きく、母語話者は少ないが、現代インドの22の公用語の1つである。 サンスクリットは「完成された・洗練された(言語、雅語)」を意味する。言語であることを示すべく日本ではサンスクリット語とも呼ばれる。 漢字表記の梵語(ぼんご)は、中国や日本でのサンスクリットの異称。日本では近代以前から、般若心経など、サンスクリットの原文を漢字で翻訳したものなどを通して、梵語という言葉は使われてきた。梵語は、サンスクリットの起源を造物神ブラフマン(梵天)とするインドの伝承を基にした言葉である。.

新しい!!: 数学史とサンスクリット · 続きを見る »

サービト・イブン・クッラ

ービト・イブン・クッラ(Thābit ibn Qurra、826年–901年2月18日)はアッバース朝時代のバグダードで活躍した天文学者、数学者。正しい名はアブル=ハサン・サービト・イブン・クッラ・イブン・マルワーン・アッ=サービー・アル=ハッラーニー()であり、ラテン語名は Thebit(テービト)である。.

新しい!!: 数学史とサービト・イブン・クッラ · 続きを見る »

唐(とう、、618年 - 907年)は、中国の王朝である。李淵が隋を滅ぼして建国した。7世紀の最盛期には、中央アジアの砂漠地帯も支配する大帝国で、中央アジアや、東南アジア、北東アジア諸国、例えば朝鮮半島や渤海、日本などに、政制・文化などの面で多大な影響を与えた世界帝国である。日本の場合は遣唐使などを送り、894年(寛平6年)に菅原道真の意見でその回の遣唐使を中止し、結果としてそれ以降遣唐使は送られず、それまでは積極的な交流をしていた。首都は長安に置かれた。 690年に唐王朝は廃されて武周王朝が建てられたが、705年に武則天が失脚して唐が復活したことにより、この時代も唐の歴史に含めて叙述することが通例である。 日本では唐の滅亡後も唐、唐土の語はそれ以降の王朝、さらには外国全般を漠然と指す語として用いられた。しかし、天竺同様昔の呼称のため、正確に対応するわけではない。詳しくは中国を参照のこと。.

新しい!!: 数学史と唐 · 続きを見る »

再帰

再帰(さいき)は、あるものについて記述する際に、記述しているものそれ自身への参照が、その記述中にあらわれることをいう。定義において、再帰があらわれているものを再帰的定義という。 主に英語のrecursionとその派生語の訳にあてられる。他にrecurrenceの訳(回帰#物理学及び再帰性を参照のこと)や、reflexiveの訳として「再帰」が使われることがある。数学的帰納法との原理的な共通性から、recursionの訳として数学では「帰納」を使うことがある。.

新しい!!: 数学史と再帰 · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: 数学史と冪乗 · 続きを見る »

冪級数

数学において、(一変数の)冪級数(べききゅうすう、power series)あるいは整級数(せいきゅうすう、série entière)とは の形の無限級数である。ここで は 番目の項の係数を表し、 は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において (級数の中心 (center))は である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形 \sum_^\infty a_n x^n.

新しい!!: 数学史と冪級数 · 続きを見る »

円周率

円周率(えんしゅうりつ)は、円の周長の直径に対する比率として定義される数学定数である。通常、ギリシア文字 (パイ、ピー、ラテン文字表記: )で表される。数学をはじめ、物理学、工学といった様々な科学分野に出現し、最も重要な数学定数とも言われる。 円周率は無理数であり、その小数展開は循環しない。円周率は、無理数であるのみならず、超越数でもある。 円周率の計算において功績のあったルドルフ・ファン・コーレンに因み、ルドルフ数とも呼ばれる。ルドルフは、小数点以下35桁までを計算した。小数点以下35桁までの値は次の通りである。.

新しい!!: 数学史と円周率 · 続きを見る »

円周率の歴史

本記事は、数学定数である円周率の歴史(えんしゅうりつのれきし)について詳述する。 円周率 は無理数なので、小数部分は循環せず無限に続く。また、円周率 は超越数なので、その連分数表示は循環しない。その近似値は何千年にも亘り、世界中で計算されてきた。.

新しい!!: 数学史と円周率の歴史 · 続きを見る »

円積問題

円積問題(えんせきもんだい)とは古代の幾何学者たちによって定式化された「与えられた長さの半径を持つ円に対し、定規とコンパスによる有限回の操作でそれと面積の等しい正方形を作図することができるか」という問題である。海外では円の正方形化 (squaring the circle) とも呼ばれる。 この問題は有理数体から出発して、体のある元の平方根を追加して新しい体を得るという操作の有限回の繰り返しで円周率を含むような体が得られるか、と言い換えることができる。1882年に、円周率が超越数であることが示されたことにより、円積問題は実現不可能だと証明された。 一方、コンパスや定規以外の道具を用いて円を正方形化することや、コンパスと定規のみを用いて近似的な解を作図する方法が多く知られている。.

新しい!!: 数学史と円積問題 · 続きを見る »

円錐曲線

円錐曲線(えんすいきょくせん、conic curve, conic section; 円錐断面)とは、円錐面を任意の平面で切断したときの断面としてえられる曲線群の総称である。.

新しい!!: 数学史と円錐曲線 · 続きを見る »

公理的集合論

公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。.

新しい!!: 数学史と公理的集合論 · 続きを見る »

六十四卦

六十四卦(ろくじゅうしけ、ろくじゅうしか)は、占いのひとつで儒教の基本経典でもある易で用いられる基本図象。 より基本的な図象である八卦を二つ重ねたもので、それぞれの組み合わせには、一つ一つ占いの文句が付せられ、それが卦辞として書かれている。さらに各卦の6爻、一つ一つにも占いの文句が爻辞としてつけられており、『易経』には全部で64の卦辞、384の爻辞が設けられている。.

新しい!!: 数学史と六十四卦 · 続きを見る »

六十進法

六十進法(ろくじっしんほう)とは、60 を底(てい)とし、底およびその冪を基準にして数を表す方法である。.

新しい!!: 数学史と六十進法 · 続きを見る »

先史時代

先史時代(せんしじだい、Prehistory、præ.

新しい!!: 数学史と先史時代 · 続きを見る »

国際数学者会議

国際数学者会議(こくさいすうがくしゃかいぎ、International Congress of Mathematicians、ICM)は数学界最大の会合であり、4年に一度、国際数学連合の主催により行われる。 第1回会議は1897年にスイスのチューリッヒで行われた。1900年の会議では、ヒルベルトが興味のある問題として23の未解決問題を発表したことが20世紀の数学界に影響を与えた。今日では、それらの問題はヒルベルトの23の問題と呼ばれる。 開会式では、フィールズ賞、ネヴァンリンナ賞、ガウス賞、陳省身賞 (Chern Medal) が授与される。会議ごとに、招待講演に基づく学術的な論文を含む議事録(プロシーディングス)が刊行される。 1998年の会議には3,346人が参加した。会議中には、会議の主催者により選ばれた著名な数学者による21の1時間の全体講演と、169の45分間の招待講演が行われた。さらに、参加者による各15分間の発表が行われた。アメリカ数学会は、2006年の会議の参加者は4,500人を超えたと発表した。2014年の会議は韓国のソウルで開かれた。.

新しい!!: 数学史と国際数学者会議 · 続きを見る »

四色定理

四色定理(よんしょくていり/ししょくていり、)とは、厳密ではないが日常的な直感で説明すると「平面上のいかなる地図も、隣接する領域が異なる色になるように塗り分けるには4色あれば十分だ」という定理である。.

新しい!!: 数学史と四色定理 · 続きを見る »

四次方程式

四次方程式(よじほうていしき、quartic equation)とは、次数が 4 であるような代数方程式の事である。この項目では主に一変数の四次方程式を扱う。.

新しい!!: 数学史と四次方程式 · 続きを見る »

王立協会

イヤル・ソサイエティ(Royal Society)は、現存する最も古い科学学会。1660年に国王チャールズ2世の勅許を得て設立された。正式名称は"The President, Council, and Fellows of the Royal Society of London for Improving Natural Knowledge"(自然知識を促進するためのロンドン王立協会)。日本語訳ではロンドン王立協会(-おうりつきょうかい)、王立学会(おうりつがっかい)など。 この会は任意団体ではあるが、イギリスの事実上の学士院(アカデミー)としてイギリスにおける科学者の団体の頂点にあたる。また、科学審議会(Science Council)の一翼をになうことによって、イギリスの科学の運営および行政にも大いに影響をもっている。1782年創立の王立アイルランドアカデミーと密接な関係があり、1783年創立のエジンバラ王立協会とは関係が薄い。.

新しい!!: 数学史と王立協会 · 続きを見る »

球面三角法

球面三角法(きゅうめんさんかくほう、spherical trigonometry)とは、いくつかの大円で囲まれた球面上の図形(球面多角形、とくに球面三角形)の辺や角の三角関数間の関係を扱う球面幾何学の一分野である。 平面上の三角法との最大の違いは、辺の大きさが長さではなく球の中心角によって表されることにある。 平面三角法では6つの要素のうち3つの要素が決定されれば、残りの3つの要素を求めることができる。球面三角法でも同様に、3つの要素が分かれば残りの3つの要素を求めることができる。 球面三角法は、主に天文学や航海術で利用されてきた。現在では電子計算機の発達により、より簡潔に式を表すことができる行列を使用した座標変換に計算方法が移行している。.

新しい!!: 数学史と球面三角法 · 続きを見る »

理論

論(りろん、theory, théorie, Theorie)とは対象となる事象の原因と結果の関係を説明する一般的な論述である。自然科学、人文科学、社会科学などの科学または学問において用いられている。.

新しい!!: 数学史と理論 · 続きを見る »

砂岩

岩(さがん・しゃがん、)は、主に砂が続成作用により固結してできた岩石。堆積岩でもっとも一般的なものの一つ。 砂岩の構成鉱物は石英と長石が主で、これらに既存の堆積岩や変成岩などに由来する岩片(これは鉱物の集合体である)が加わる。炭酸塩粒子を主体とするものは炭酸塩岩に分類され、砂岩には含めない。.

新しい!!: 数学史と砂岩 · 続きを見る »

確率論

率論(かくりつろん、,, )とは、偶然現象に対して数学的な模型(モデル)を与え、解析する数学の一分野である。 もともとサイコロ賭博といった賭博の研究として始まった。現在でも保険や投資などの分野で基礎論として使われる。 なお、確率の計算を問題とする分野を指して「確率論」と呼ぶ用例もあるが、本稿では取り扱わない。.

新しい!!: 数学史と確率論 · 続きを見る »

祖沖之

沖之(そ ちゅうし、429年 - 500年)は、中国、南北朝時代、南朝の天文学者、数学者、発明家。祖 冲之とも。字は文遠。范陽郡遒県(現河北省淶水県)の人。祖父は戦乱を避けるために河北から江南へ移っており、祖沖之は建康(現在の南京市)で生まれ、若いころから数学の天才として知られた。円周率の計算や大明暦の編纂で知られる。.

新しい!!: 数学史と祖沖之 · 続きを見る »

秦九韶

九韶(しん きゅうしょう、1202年-1261年)は南宋時代の数学者。字は道古。ただし、生年に関しては異説がある。また、先祖に従って本貫(籍)は魯郡としているが、実際には四川で生まれている(魯郡は当時、金の支配下にあった)。 若い頃は南宋の官僚であった父に従って各地を転々とし、父が首都臨安に赴任した際に太史局に通って数学や暦学、天文学を学んだ。後に、父に従って一旦は四川に戻り、彼も地元の県尉に任じられる。以後、順調に昇進して1244年に建康府通判に任じられるが、母の服喪を理由に一旦官を辞し、1247年に『数書九章』を著す。1254年に沿江制置司参議に任じられるが、政争に巻き込まれて、1260年に広東・梅州の知州に左遷されて間もなく病死した。  『数書九章』では、一次合同式をユークリッドの互除法と同等の方法で解くことで中国の剰余定理と同等の結果を得ていた。これはヨーロッパでは19世紀にガウスが発表した方法と同等のものである。.

新しい!!: 数学史と秦九韶 · 続きを見る »

科挙

科挙の合格者発表(放榜) 貢院の号舎 科挙(かきょ、)とは、中国で598年~1905年、即ち隋から清の時代まで、約1300年間にわたって行われた官僚登用試験である。.

新しい!!: 数学史と科挙 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 数学史と積分法 · 続きを見る »

立方根

立方根(りっぽうこん、cubic root、root of third power)とは、ある数が与えられた時、三乗して与えられた数となるような新たな数を指す。三乗根(さんじょうこん)ともいう。.

新しい!!: 数学史と立方根 · 続きを見る »

立方数

立方数(りっぽうすう、cubic number)とは、ある数 n の三乗(立方)となる数である。例えば 125 は 53 であるので立方数である。自然数の最小の立方数は 1 であり、小さい順に列記すると 個数が立方数である点を縦、横、高さの三方向に等間隔に並べることで正六面体(立方体)の形を作れることから、「六面数」と呼ばれることもある。例えば216個の点は縦、横、高さの一辺にそれぞれ6個ずつ並べることで正六面体の形を作ることができる。.

新しい!!: 数学史と立方数 · 続きを見る »

等差数列

数学における等差数列(とうさすうれつ、arithmetic progression, arithmetic sequence; 算術数列)とは、「隣接する項が共通の差(公差)を持つ数列」() を言う。例えば、 はの等差数列である。 算術数列の初項を とし、その公差を とすれば、-番目の項 は a_n.

新しい!!: 数学史と等差数列 · 続きを見る »

等比数列

等比数列(とうひすうれつ、または幾何数列(きかすうれつ)、geometric progression, geometric sequence)は、数列で、隣り合う二項の比が項番号によらず一定であるようなものである。その比のことを公比(こうひ、common ratio)という。例えば 4,12,36,108,… という数列 (an) は初項が 4 であり公比が 3 の等比数列である。公比 r は r.

新しい!!: 数学史と等比数列 · 続きを見る »

算盤

算盤(さんばん)とは中国数学や和算において、籌算すなわち算木(算筹)を用いた計算の際に使用される盤のことである。木製の板もしくは紙でつくられることが多い。.

新しい!!: 数学史と算盤 · 続きを見る »

算盤の書

算盤の書(そろばんのしょ、Liber Abaci)は、1202年にフィボナッチによって書かれた算術に関する歴史的な本である。計算の書(けいさんのしょ)とも。この作品においてフィボナッチはアラビア数学をヨーロッパに紹介した。これらの知識はフィボナッチが父親のグリエルモ・ボナッチオと共に北アフリカに住んでいた時、アラブ人と学んだものである。 「算術の書」とはアラビア数学について述べられた西洋初の本の1つである。商人や学者に説くことにより、新しい数学がこれまでの数学より優れたものであるということを人々に確信させた。 第2版の算盤の書はマイケル・スコットにより1227年に献呈された。 今日1202年版のオリジナル原稿は存在しない。.

新しい!!: 数学史と算盤の書 · 続きを見る »

算道

算道(さんどう)とは、日本律令制の大学寮において、算術を研究する学科。.

新しい!!: 数学史と算道 · 続きを見る »

算術

算術 (さんじゅつ、arithmetic) は、数の概念や数の演算を扱い、その性質や計算規則、あるいは計算法などの論理的手続きを明らかにしようとする学問分野である。.

新しい!!: 数学史と算術 · 続きを見る »

算木

楊輝の三角形 算木(さんぎ)または算筹(さんちゅう)とは中国数学や和算で用いられた計算用具である。縦または横に置くことで数を表した。算木に基づく算木数字も使われた。算木を用いた計算法を籌算という。.

新しい!!: 数学史と算木 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: 数学史と級数 · 続きを見る »

素描

素描(そびょう、すがき)、デッサン()、ドローイング()とは、物体の形体、明暗などを平面に描画する美術の制作技法、過程、あるいは作品のこと。これに準ずるものを指す場合もある。これについては後述する。.

新しい!!: 数学史と素描 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 数学史と素数 · 続きを見る »

素数定理

素数定理(そすうていり、、)とは自然数の中に素数がどのくらいの「割合」で含まれているかを述べる定理である。整数論において素数が自然数の中にどのように分布しているのかという問題は基本的な関心事である。しかし、分布を数学的に証明することは極めて難しく、解明されていない部分が多い。この定理はその問題について重要な情報を与える。.

新しい!!: 数学史と素数定理 · 続きを見る »

純粋数学

純粋数学(じゅんすいすうがく、pure mathematics)とは、しばしば応用数学と対になる概念として、応用をあまり意識しない数学の分野に対して用いられる総称である。 数学のどの分野が純粋数学でありどの分野が応用数学であるかという社会的に広く受け入れられた厳密な合意があるわけではなく、区別は便宜的なものとして用いられることが多い。また数学がより広範な範囲で利用されるに従い、分野としての純粋と応用との区別はあいまいで困難なものとなってきている。ただし、純粋数学という用語を用いる場合の志向としては、議論される数学の厳密性、抽象性を基とした数学単体での美しさを重視する傾向がある。.

新しい!!: 数学史と純粋数学 · 続きを見る »

約数

数学において、整数 の約数(やくすう、divisor)とは、 を割り切る整数またはそれらの集合のことである。割り切るかどうかということにおいて、符号は本質的な問題ではないため、 を正の整数(自然数)に、約数は正の数に限定して考えることも多い。自然数や整数の範囲でなく文字式や抽象代数学における整域などで「約数」と同様の意味を用いる場合は、「因数」(いんすう)、「因子」(いんし、factor)が使われることが多い。 整数 が整数 の約数であることを、記号 | を用いて と表す。 約数の定義を式で表すと、「整数 が の約数であるとは、ある整数 をとると が成立することである」であるが、条件「」を外すこともある(その場合、 のとき も約数になる)。 自然数(正の整数)で考えている文章では、ことわりがなくても「約数」を前提にしていることは多い。.

新しい!!: 数学史と約数 · 続きを見る »

線型方程式

線型方程式(せんけいほうていしき、linear equation)とは、線型性を持つ写像(関数・作用素)の等式で表される方程式のことである。線形等の用字・表記の揺れについては線型性を参照。 線型方程式においては、その線型性から解の重ね合わせが成り立つなどいくつものよい性質が成り立つ。線型方程式(特に多変数の一次代数方程式)の研究から行列などの手法が整備され、線型代数学という一分野が形成された。 線型代数学の整備により、多くの場合に線型方程式の係数を実数や複素数に限らず、四則演算が自由にできる(つまり体と呼ばれる代数的構造をもつ)集合からとったとして広く適用できる結果が知られている。 以下、特に断らない場合は係数をとる集合 K を(可換な)体とする。多くの場合 K は、実数全体の成す集合 R または複素数全体の成す集合 C のことと思って差し支えない。.

新しい!!: 数学史と線型方程式 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 数学史と群 (数学) · 続きを見る »

組合せ数学

組合せ数学(くみあわせすうがく、combinatorics)や組合せ論(くみあわせろん)とは、特定の条件を満たす(普通は有限の)対象からなる集まりを研究する数学の分野。特に問題とされることとして、集合に入っている対象を数えたり(数え上げ的組合せ論)、いつ条件が満たされるのかを判定し、その条件を満たしている対象を構成したり解析したり(組合せデザインやマトロイド理論)、「最大」「最小」「最適」な対象をみつけたり(極値組合せ論や組合せ最適化)、それらの対象が持ちうる代数的構造をみつけたり(代数的組合せ論)することが挙げられる。.

新しい!!: 数学史と組合せ数学 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 数学史と環 (数学) · 続きを見る »

焚書

ピノチェト率いる軍事政権下のチリにおける焚書(1973年) 焚書(ふんしょ、book burning)は、書物を焼却する行為。通常は、支配者や政府などによる組織的で大規模なものを指す。言論統制、検閲、禁書などの一種でもあり、特定の思想、学問、宗教等を排斥する場合、逆に特定の思想等以外を全て排斥する場合がある。現代では書物の他、レコード、写真、磁気テープ、ディスクメディアなどの情報格納メディアも対象に含まれる場合がある。 有名な例には秦の焚書坑儒やナチス・ドイツの焚書などがある。.

新しい!!: 数学史と焚書 · 続きを見る »

無理数

無理数(むりすう、 irrational number)とは、有理数ではない実数、つまり分子・分母ともに整数である分数(比.

新しい!!: 数学史と無理数 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: 数学史と無限 · 続きを見る »

無限小

数学における無限小(むげんしょう、infinitesimal)は、測ることができないほど極めて小さい「もの」である。無限小に関して実証的に観察されることは、それらが定量的にいくら小さかろうと、角度や傾きといったある種の性質はそのまま有効であることである。 術語 "infinitesimal" は、17世紀の造語 infinitesimus(もともとは列の「無限番目」の項を意味する言葉)に由来し、これを導入したのは恐らく1670年ごろ、メルカトルかライプニッツである。無限小はライプニッツがやなどをもとに展開した無限小解析における基本的な材料である。よくある言い方では、無限小対象とは「可能な如何なる測度よりも小さいが零でない対象である」とか「如何なる適当な意味においても零と区別することができないほど極めて小さい」などと説明される。故に形容(動)詞的に「無限小」を用いるときには、それは「極めて小さい」という意味である。このような量が意味を持たせるために、通常は同じ文脈における他の無限小対象と比較をすること(例えば微分商)が求められる。無限個の無限小を足し合わせることで積分が与えられる。 シラクサのアルキメデスは、自身の (機械的定理証明法)においてと呼ばれる手法を応分に用いて領域の面積や立体の体積を求めた。正式に出版された論文では、アルキメデスは同じ問題を取り尽くし法を用いて証明している。15世紀にはニコラウス・クザーヌスの業績として(17世紀にはケプラーがより詳しく調べているが)、特に円を無限個の辺を持つ多角形と見做して円の面積を計算する方法が見受けられる。16世紀における、任意の実数の十進表示に関するシモン・ステヴィンの業績によって、実連続体を考える下地はすでにでき上がっていた。カヴァリエリの不可分の方法は、過去の数学者たちの結果を拡張することに繋がった。この不可分の方法は幾何学的な図形を 1 の量に分解することと関係がある。ジョン・ウォリスの無限小は不可分とは異なり、図形をもとの図形と同じ次元の無限に細い構成要素に分解するものとして、積分法の一般手法の下地を作り上げた。面積の計算においてウォリスは無限小を 1/∞ と書いている。 ライプニッツによる無限小の利用は、「有限な数に対して成り立つものは無限な数に対しても成り立ち、逆もまた然り」有限/無限というのは個数に関して言うのではない(有限個/無限個ではない)ことに注意せよ。ここでいう「有限」とは無限大でも無限小でもないという意味である。や(割り当て不能な量を含む式に対して、それを割り当て可能な量のみからなる式で置き換える具体的な指針)というような、経験則的な原理に基づくものであった。18世紀にはレオンハルト・オイラーやジョゼフ=ルイ・ラグランジュらの数学者たちによって無限小は日常的に使用されていた。オーギュスタン=ルイ・コーシーは自身の著書 (解析学教程)で、無限小を「連続量」(continuity) ともディラックのデルタ函数の前身的なものとも定義した。カントールとデデキントがスティーヴンの連続体をより抽象的な対象として定義したのと同様に、は函数の増大率に基づく「無限小で豊饒化された連続体」(infinitesimal-enriched continuum) に関する一連の論文を著した。デュ・ボア=レーモンの業績は、エミール・ボレルとトアルフ・スコーレムの両者に示唆を与えた。ボレルは無限小の増大率に関するコーシーの仕事とデュ・ボア=レーモンの仕事を明示的に結び付けた。スコーレムは、1934年に最初の算術の超準モデルを発明した。連続の法則および無限小の数学的に厳密な定式化は、1961年にアブラハム・ロビンソンによって達成された(ロビンソンは1948年にが、および1955年にが成した先駆的研究に基づき超準解析を展開した)。ロビンソンの超実数 (hyperreals) は無限小で豊饒化された連続体の厳密な定式化であり、がライプニッツの連続の法則の厳密な定式化である。また、はフェルマーの (adequality, pseudo-equality) の定式化である。 ウラジーミル・アーノルドは1990年に以下のように書いている.

新しい!!: 数学史と無限小 · 続きを見る »

直交座標系

数学における直交座標系(ちょっこうざひょうけい、, )とは、互いに直交している座標軸を指定することによって定まる座標系のことである。平面上の直交座標系ではそれぞれの点に対して一意に定まる二つの実数の組によって点の位置が指定される。同様にして空間上の直交座標系では三つの実数の組によって座標が与えられる。 1637年に発表された『方法序説』において平面上の座標の概念を確立したルネ・デカルトの名を採ってデカルト座標系 (Cartesian coordinate system) とも呼ぶ。.

新しい!!: 数学史と直交座標系 · 続きを見る »

直角三角形

角三角形(ちょっかくさんかくけい、right triangle)は、三角形の一種である。三角形の3つの内角のうち、他のどの内角よりも小さくない角に注目したとき、その角が直角 (90°.

新しい!!: 数学史と直角三角形 · 続きを見る »

発散級数

数学において発散級数(はっさんきゅうすう、divergent series)とは、収束しない級数である、つまり、部分和の成す無限列が有限な極限を持たない級数である。 級数が収束するならば、級数の各項の成す数列は必ず 0 に収束する。したがって、0 に収束しないような数列を項に持つ級数はいずれも発散する。しかし、級数の収束性はそれよりも強い条件で、級数の項が 0 に収束するからといって必ずしもその級数自身は収束しない。最も簡単な反例として、調和級数 が挙げられる。調和級数の発散性は、中世の数学者ニコル・オレームによって示された。 数学の特別な文脈では、部分和の列が発散するようなある種の列について、その和として意味のある値を割り当てることができる。総和法 (summability method, summation method) とは、級数の部分和の列全体の成す集合から「和の値」の集合への部分写像である。例えば、チェザロ総和法ではグランディの発散級数 に 1/2 を値として割り当てる。チェザロ総和法は平均化法 (averaging method) の一種で、部分和の列の算術平均をとることに基づいている。他の方法としては、関連する級数の解析接続として和を定める方法などがある。物理学では、非常に多種多様な総和法が用いられる(詳細はの項を参照)。.

新しい!!: 数学史と発散級数 · 続きを見る »

E8 (数学)

E8 E8とは、248次元, 階数8の例外型単純リー群である。は、2007年 "An Exceptionally Simple Theory of Everything" において、E8の幾何構造に基づく万物の理論を発表している。.

新しい!!: 数学史とE8 (数学) · 続きを見る »

音楽理論

音楽理論(おんがくりろん、英語:music theory)とは、音楽学の一分野で、音楽の構造や手法を理論立てて説明するもの、またその論。 古代から中世にかけてのヨーロッパでは、音楽は自由七科の一科目として取り上げられ、文法学・修辞学・論理学などと同じように数学的・哲学的に理論立てられ説かれてきた。 歴史的に知られた音楽理論家には、音の協和を説いたピタゴラス学派や逍遙学派アリストクセノス、古代音楽理論を編纂し中世ヨーロッパにもたらしたボエティウス、旋法を説いたやグラレアヌス、譜表による記譜法を編み出したグイード・ダレッツォ、対位法を説いたジョゼッフォ・ツァルリーノやヨハン・ヨーゼフ・フックス、平均律を数学的に示したマラン・メルセンヌがいる。近代には機能和声を説いたジャン=フィリップ・ラモー、管弦楽法を説いたエクトル・ベルリオーズがいる。.

新しい!!: 数学史と音楽理論 · 続きを見る »

韻律 (言語学)

言語学における韻律(いんりつ)あるいはプロソディー(Prosody)とは、発話において現れる音声学的性質で、その言語の一般的な書記記録からは予測されないものすべてをいう。具体的には抑揚あるいは音調、強勢、音長、リズムなどを含むが、これらのうちで文脈によって異なりうるものを指すのであって、その言語で決まっているアクセント(高低アクセントあるいは強勢アクセント)、声調言語の声調、音長を弁別する言語における長母音・短母音の区別といった性質は含めない。 韻文における韻律は、基本的にはそれを構成する単語の形(アクセントパターン、声調、音節・モーラ数など)に基づいて定められたものであり、無関係ではないが別の概念である。.

新しい!!: 数学史と韻律 (言語学) · 続きを見る »

遺物

八幡山城出土香炉 筒井城の出土毬杖毬 伏見城の金箔瓦 勝瑞城の出土かわらけ 遺物(いぶつ)とは、過去の人類が残した土器や石器などの動産的なもの(動かすことのできるもの)の総称である。遺物には人工遺物と自然的遺物がある。さまざまな道具や装飾品のうち、過去より伝わり、現在は使われなくなったもの。.

新しい!!: 数学史と遺物 · 続きを見る »

非ユークリッド幾何学

非ユークリッド幾何学(ひユークリッドきかがく、non-Euclidean geometry)は、ユークリッド幾何学の平行線公準が成り立たないとして成立する幾何学の総称。非ユークリッドな幾何学の公理系を満たすモデルは様々に構成されるが、計量をもつ幾何学モデルの曲率を一つの目安としたときの両極端の場合として、至る所で負の曲率をもつ双曲幾何学と至る所で正の曲率を持つ楕円幾何学(殊に球面幾何学)が知られている。 ユークリッドの幾何学は、至る所曲率0の世界の幾何であることから、双曲・楕円に対して放物幾何学と呼ぶことがある。大雑把に言えば「平面上の幾何学」であるユークリッド幾何学に対して、「曲面上の幾何学」が非ユークリッド幾何学である。.

新しい!!: 数学史と非ユークリッド幾何学 · 続きを見る »

頻度分析 (暗号)

暗号技術において、頻度分析(Frequency analysis、ひんどぶんせき)とは、平文と暗号文に使用される文字や文字列の出現頻度を手掛りとして利用する暗号解読法のことである。平文の言語の統計的特徴を前提とし、暗号文のみを使用して解読を行うため、暗号文単独攻撃に分類される。.

新しい!!: 数学史と頻度分析 (暗号) · 続きを見る »

順列

初等組合せ論における順列(じゅんれつ、sequence without repetition、arrangement)は、区別可能な特定の元から有限個を選んで作られる重複の無い有限列をいう。 初等組合せ論における「」はともに n-元集合から -個の元を取り出す方法として可能なものを数え上げる問題に関するものである。取り出す順番を勘案するのが -順列、順番を無視するのが -組合せである。.

新しい!!: 数学史と順列 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 数学史と行列 · 続きを見る »

衛星

主要な衛星の大きさ比較 衛星(えいせい、natural satellite)は、惑星や準惑星・小惑星の周りを公転する天然の天体。ただし、惑星の環などを構成する氷や岩石などの小天体は、普通は衛星とは呼ばれない。.

新しい!!: 数学史と衛星 · 続きを見る »

複素解析

数学の分科である複素解析(ふくそかいせき、complex analysis)は、複素数の関数に関わる微分法、積分法、変分法、微分方程式論、積分方程式論、複素函数論などの総称である。初等教育で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することが多い。複素解析の手法は、応用数学を含む数学、理論物理学、工学などの多くの分野で用いられている。.

新しい!!: 数学史と複素解析 · 続きを見る »

西洋

西洋(せいよう、)は、キリスト教文明に根ざしたヨーロッパ諸国、及び北アメリカを指すが、その指し示す範囲は多様である。歴史的にはオクシデント(Occident)とも呼ばれ、その対立概念は東洋(the East, Orient、オリエント)である。.

新しい!!: 数学史と西洋 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: 数学史と解析学 · 続きを見る »

解析幾何学

初等幾何学における解析幾何学(かいせききかがく、analytic geometry)あるいは座標幾何学(ざひょうきかがく、coordinate geometry)、デカルト幾何学(デカルトきかがく、Cartesian geometry)は、座標を用いて代数的解析幾何学という名称における接頭辞「解析」は、微積分学を含む現代的な解析学という意味の「解析」ではなく、発見的な代数的手法によるものであることを示唆するものである。(解析幾何学 - コトバンク)に図形を調べる幾何学をいう。座標を用いるという点において、(より古典的な、ユークリッドの原論にもあるような)点や直線などがどのような公理に従うかということのみによって図形を調べる とは対照的である。座標を利用することにより、図形のもつ性質を座標のあいだにあらわれる関係式として特徴づけたり、数や式として図形を取り扱ったりすることができる。 ふつうは(二次元)平面上の点、直線などを扱う(平面解析幾何)か(三次元)空間内のそれらを扱う(立体解析幾何)。.

新しい!!: 数学史と解析幾何学 · 続きを見る »

証明

証明(しょうめい)とは、ある事柄が真理もしくは事実であることを明らかにすること。また、その内容。.

新しい!!: 数学史と証明 · 続きを見る »

計算機科学

計算機科学(けいさんきかがく、computer science、コンピュータ科学)とは、情報と計算の理論的基礎、及びそのコンピュータ上への実装と応用に関する研究分野である。計算機科学には様々な下位領域がある。コンピュータグラフィックスのように特定の処理に集中する領域もあれば、計算理論のように数学的な理論に関する領域もある。またある領域は計算の実装を試みることに集中している。例えば、プログラミング言語理論は計算を記述する手法に関する学問領域であり、プログラミングは特定のプログラミング言語を使って問題を解決する領域である。.

新しい!!: 数学史と計算機科学 · 続きを見る »

計量学

計量学(けいりょうがく、metrology)とは、計量・測定・計測・度量衡を研究対象とする学問分野。『国際計量用語集』(JCGM 200:2008) によると、「計量学は測定対象の分野や測定の不確かさを問わず、測定という行為のあらゆる理論的および実践的観点を含む」とされる。日本語では測定学(そくていがく)、計測学(けいそくがく)、度量衡学(どりょうこうがく)とも呼ばれる。用語については後述。 本項では、学問の一分野として、また測定に係る営みとしての計量学について解説する。行為としての測定そのものに関する詳細な解説は「測定」の項目を参照のこと。.

新しい!!: 数学史と計量学 · 続きを見る »

記数法

記数法(きすうほう)は、適当な文字や記号と一定の規則を用いて数を表現する方法のこと。.

新しい!!: 数学史と記数法 · 続きを見る »

高度合成数

度合成数(こうどごうせいすう、英: highly composite number)とは、自然数で、それ未満のどの自然数よりも約数の個数が多いものをいう。 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680…() 例えば 24 は約数を 1, 2, 3, 4, 6, 8, 12, 24 と 8 個持ち、24 未満で約数を 8 個以上持つ自然数は存在しないので、高度合成数である。なお 1 と 2 は合成数ではないが、高度合成数に含める。 約数の個数は素因数分解で求まる。例えば 10080.

新しい!!: 数学史と高度合成数 · 続きを見る »

論理学

論理学(ろんりがく、)とは、「論理」を成り立たせる論証の構成やその体系を研究する学問である。.

新しい!!: 数学史と論理学 · 続きを見る »

魔方陣

方陣(まほうじん、英:Magic square)とは、 個の正方形の方陣に数字を配置し、縦・横・対角線のいずれの列についても、その列の数字の合計が同じになるもののことである。特に1から方陣のマスの総数 までの数字を1つずつ過不足なく使ったものを言う。 このときの一列の和は、 と計算できる。.

新しい!!: 数学史と魔方陣 · 続きを見る »

超幾何級数

数学において、超幾何級数(ちょうきかきゅうすう、hypergeometric series)は、一般に の形式で表される級数である。但し、 (x)_0 &.

新しい!!: 数学史と超幾何級数 · 続きを見る »

超越数

超越数(ちょうえつすう、transcendental number)とは、代数的数でない数、すなわちどんな有理係数の代数方程式 のにもならないような複素数のことである。有理数は一次方程式の解であるから、超越的な実数はすべて無理数になるが、無理数 2 は の解であるから、逆は成り立たない。超越数論は、超越数について研究する数学の分野で、与えられた数の超越性の判定などが主な問題である。 よく知られた超越数にネイピア数(自然対数の底)や円周率がある。ただし超越性が示されている実数のクラスはほんの僅かであり、与えられた数が超越数であるかどうかを調べるのは難しい問題だとされている。例えば、ネイピア数と円周率はともに超越数であるにもかかわらず、それをただ足しただけの すら超越数かどうか分かっていない。 代数学の標準的な記号 \mathbb で有理数係数多項式全体を表し、代数的数全体の集合を、代数的数 algebraic number の頭文字を使って と書けば、超越数全体の集合は となる。 なお、本稿では を自然対数とする。.

新しい!!: 数学史と超越数 · 続きを見る »

自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

新しい!!: 数学史と自然対数 · 続きを見る »

自然数の分割

数学の各分野、特に数論および組合せ論 において、正の整数 n の分割(ぶんかつ、partition)あるいは整分割 (integer partition) とは、与えられた正整数 n を正整数の和として表す方法をいう。ただし、和の因子(summand; 被加数)の順番のみが異なる分割は同じ分割とみなされる(順序をも考慮する場合は、順序つき分割または、分割ではなく合成あるいは結合 (composition) と呼ばれる概念となる)。 例えば 4 の異なる分割は次の五通りである。 このとき、順序を考慮した合成 1 + 3 は分割としては 3 + 1 と同じであり、同様に合成としては異なる 1 + 2 + 1 および 1 + 1 + 2 は分割としては 2 + 1 + 1 と同じである。 分割の各因子は部分または成分 (part) などとも呼ばれる。また、各正整数 n に対して n の分割の総数を与える函数を p(n) であらわし、n の分割数 (partition function) と呼ぶ。これによれば上記は p(4).

新しい!!: 数学史と自然数の分割 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 数学史と英語 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 数学史と集合 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

新しい!!: 数学史と集合論 · 続きを見る »

連分数

連分数(れんぶんすう、)とは、分母に更に分数が含まれているような分数のことを指す。分子が全て 1 である場合には特に単純連分数または正則連分数()ということがある。単に連分数といった場合、正則連分数を指す場合が多い。具体的には次のような形である。 ここで a は整数、それ以外の a は正の整数である。正則連分数は、最大公約数を求めるユークリッドの互除法から自然に生じるものであり、古来からペル方程式の解法にも利用された。 連分数を式で表す際には次のような書き方もある。 または また、極限の概念により、分数を無限に連ねたものも考えられる。 二次無理数(整数係数二次方程式の根である無理数)の正則連分数展開は必ず循環することが知られている。逆に、正則連分数展開が循環する数は二次無理数である。.

新しい!!: 数学史と連分数 · 続きを見る »

連立方程式

連立方程式(れんりつほうていしき).

新しい!!: 数学史と連立方程式 · 続きを見る »

連続体仮説

連続体仮説(れんぞくたいかせつ、Continuum Hypothesis, CH)とは、可算濃度と連続体濃度の間には他の濃度が存在しないとする仮説。19世紀にゲオルク・カントールによって提唱された。現在の数学で用いられる標準的な枠組みのもとでは「連続体仮説は証明も反証もできない命題である」ということが明確に証明されている。.

新しい!!: 数学史と連続体仮説 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: 数学史と抽象代数学 · 続きを見る »

暗号理論

暗号理論(あんごうりろん)の記事では暗号、特に暗号学に関係する理論について扱う。:Category:暗号技術も参照。.

新しい!!: 数学史と暗号理論 · 続きを見る »

暗号解読

暗号解読(あんごうかいどく、Cryptanalysis)とは、暗号を解読すること、あるいは解読法に関する研究を指す。 暗号の解読とは、暗号文を作成するのに用いた秘密情報(秘密の表記法や秘密の鍵など)にアクセスすることなく、暗号文を平文に戻すことである。これに対して、秘密情報を用いて暗号文を平文に戻すことは復号といい、解読と復号は区別することが多い。但し英語の"decryption"は両者の意味を持ち区別されない(以下、秘密情報のことを"鍵"と記す)。 他人に知られたくない情報を秘匿する手段として暗号が生まれるのと同時に、秘密を暴くための暗号解読も生まれたと考えられる。 研究としての暗号解読には、暗号 (Cipher) の解読だけではなく、デジタル署名の偽造、ハッシュ関数のコリジョン探索、あるいは暗号プロトコルの解読なども含まれる。.

新しい!!: 数学史と暗号解読 · 続きを見る »

恒星年

恒星年(こうせいねん、sidereal year)とは太陽が天球上のある恒星に対する位置から再び同じ位置に戻るまでの時間である。すなわち、太陽が天球を360°一周するのに要する時間であり地球の公転周期(地球が太陽の周りを1周する時間)のことである。 恒星年の長さは 365日06時間09分09.765.

新しい!!: 数学史と恒星年 · 続きを見る »

李冶

李 冶(り や、1192年-1279年)は、金末から元初にかけての数学者。字は仁卿、号は敬斎。真定・欒城の出身。 金の1230年に進士となり、河南・鈞州の知事となるが、1232年にモンゴル軍の侵入で鈞州が攻められると、脱出してそのまま隠退した。後、太原などに移り住むが、1251年に河北・元氏の封龍山に住みかを定め、以後は研究生活を送る。天元術を発展させて、幾何などの他の数学分野に応用した。1248年に『測円海鏡』12巻、1259年に『益古演段』3巻を著した他、元好問ら同じ隠遁文人らとの交流も多く、漢詩の作品も現存している。世祖(フビライ・ハーン)はたびたび彼を召して一度は翰林学士に任じたが、すぐにこれを辞退して遂に仕官には応じなかった。88歳で死去。.

新しい!!: 数学史と李冶 · 続きを見る »

楊輝

パスカルの三角形(1303年の朱世傑「四元玉鑑」より) 楊 輝(よう き、Yang Hui)は、中国・南宋の数学者。銭塘(現・杭州)の人物で、号は謙光「」 5.4 和算と外国数学の関係 p.322 (朝倉書店、2009年)。 南宋末期(13世紀)は中国の歴史上、数学が最も発達を遂げた時代ともいわれ、秦九韶、李冶、朱世傑と共に、彼の名前が挙げられることがある - 国立故宮博物院歡迎頁。.

新しい!!: 数学史と楊輝 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 数学史と極限 · 続きを見る »

楔形文字

楔形文字(くさびがたもじ、せっけいもじ)とは、世界四大文明の一つであるメソポタミア文明で使用されていた古代文字である。 筆記には水で練った粘土板に、葦を削ったペンが使われた。最古の出土品は紀元前3400年にまで遡ることができる。文字としては人類史上最も古いものの一つであり、古さでは紀元前3200年前後から使われていた古代エジプトの象形文字に匹敵する。.

新しい!!: 数学史と楔形文字 · 続きを見る »

楕円幾何学

楕円幾何学(だえんきかがく、英語:elliptic geometry)は、まっすぐな空間(ユークリッド空間、放物幾何的空間)ではなく、ある特徴(至る所で正の曲率)を持つ曲がった空間の中における幾何学を論じた数学の一分野。リーマンが球面モデルを考えたため、楕円幾何学の事を指してリーマン幾何学と呼ぶこともあるが、一般にはリーマン幾何学とは別のものである。.

新しい!!: 数学史と楕円幾何学 · 続きを見る »

正の数と負の数

正の数(せいのすう、positive number)とは、0より大きい実数である。負の数(ふのすう、negative number)とは、0より小さい実数である。.

新しい!!: 数学史と正の数と負の数 · 続きを見る »

歴史

Historia (Allégorie de l'Histoire). ニコラオス・ギジス(Nikolaos Gysis) (1892年) The Historian E. アービング・クーゼ(1902年) 歴史(れきし、羅: historia)は、何かしらの事物が時間的に変遷したありさま、あるいはそれに関する文書や記録のことをいう。主に国家や文明など人間の社会を対象とする。記述されたことを念頭に置いている。ヴィルヘルム・ヴィンデルバントの科学分類に拠れば、「自然科学が反復可能な一般的法則であるのに対し、歴史科学が対象とする歴史は反復が不可能である一回限りかつ個性を持つもの」と定義している。また、現在に至る歴史を「来歴」と言う。.

新しい!!: 数学史と歴史 · 続きを見る »

歴史家

歴史学者(れきしがくしゃ)は、歴史を後世に残すべく、叙述(文章化)する人のことである。また、残された史料を元に歴史を研究し、その成果を論文や著作として著す人の事も指す。.

新しい!!: 数学史と歴史家 · 続きを見る »

殷(いん、、紀元前17世紀頃 - 紀元前1046年)は、中国の王朝である。文献には天乙が夏を滅ぼして王朝を立てたとされ、考古学的に実在が確認されている中国最古の王朝である。商(しょう、)、商朝ともよばれる。紀元前11世紀に帝辛の代に周によって滅ぼされた(殷周革命)。.

新しい!!: 数学史と殷 · 続きを見る »

沈括

沈括 沈 括(しん かつ、1030年 - 1094年)は、北宋時代中期の中国の政治家・学者。沈遘の従弟。字は存中。夢渓丈人と号する。.

新しい!!: 数学史と沈括 · 続きを見る »

波動方程式

波動方程式(はどうほうていしき、wave equation)とは、 で表される定数係数二階線型偏微分方程式の事を言う。 は波動の位相速度 (phase velocity) を表す係数である。波動方程式は振動、音、光、電磁波など振動・波動現象を記述するにあたって基本となる方程式である。.

新しい!!: 数学史と波動方程式 · 続きを見る »

添え字

添え字は、文字の右上、左上、右下、左下のいずれかに書かれる文字のことである。 上付き文字や下付き文字も添え字のひとつであるほか、漢文の送り仮名も添え字である。 縦書きで表記する場合には、冪乗を表す場合を除き上付き文字や下付き文字という言葉は使用されない。.

新しい!!: 数学史と添え字 · 続きを見る »

測量

1728年刊 "Cyclopaedia" より、測量機器と測量手法の図 測量(そくりょう)は、地球表面上の点の関係位置を決めるための技術・作業の総称。地図の作成、土地の位置・状態調査などを行う。 日本では高度の精度を必要としない測量は基本的に誰でも行うことができるが、国または地方公共団体の実施する基本測量、公共測量等は測量法に従って登録された測量士又は測量士補でなければ技術者として従事することはできず、またこうした測量は測量法に従って登録された、営業所ごとに測量士が一人以上置かれた測量業者でなければ請け負うことはできない。一方、登記を目的とした測量は土地家屋調査士でなければ行うことはできない。 測量の歴史は古く、古代エジプトの時代から行われてきた。日本では1800年に伊能忠敬が日本地図作成のため、蝦夷地(現在の北海道)で本格的な測量を行ったのが始まりとされる。.

新しい!!: 数学史と測量 · 続きを見る »

漢(かん、)は、中国の王朝である。通例、前漢(紀元前206年 - 8年)と後漢(25年 - 220年)の二つの王朝(両漢)を総称して「漢王朝」と呼ばれる。また、ここから転じて中国全土や中国の主要民族を指す名称ともなった。以下の記事では王朝について記述する。 中国初の統一王朝だった秦王朝が紀元前206年に滅亡すると、中国は秦を討った各軍の将帥による群雄割拠の状態に戻っていた。こうした中、漢中及び巴蜀に封じられていた劉邦が紀元前202年に垓下の戦いで項羽を討って中国を再統一した。中国を統一した劉邦は、皇帝として即位するにあたって旧来の国号であった漢をそのまま統一王朝の国号として用いた。この劉邦が開いた前漢と、いったん滅亡したのち劉秀によって再興された後漢の漢王朝は、あわせて400年の長きに渡った。初の統一王朝だった秦王朝が統一王朝としては実質的に一代で滅びたこともあり、漢王朝は中国の統一状態を実質的に確定した王朝となり、これから中国全土や中国の主要民族を指す名称として「漢」が用いられるようになった。 漢王朝の歴史の詳細については、前漢・後漢をそれぞれ参照。.

新しい!!: 数学史と漢 · 続きを見る »

木星

記載なし。

新しい!!: 数学史と木星 · 続きを見る »

朱世傑

朱世傑(しゅせいけつ、生没年不詳)は、元初期の数学者。朱世杰とも表記される。字は漢卿。自号は松庭。 詳細な伝記は不詳であるが、元は燕山(現在の北京付近)の人で、官に就かずに数学を学びながら国内を巡り、その間『算学啓蒙』(1299年)と『四元玉鑑』(1303年)を著した。『四元玉鑑』執筆時には旅の生活も既に20年以上になっていた。揚州に来た際、彼から数学を学ぼうと多くの人々が彼の元を訪れた。それを見てここに落ち着き、数学の教育に生涯を捧げたという。 『算学啓蒙』は宋から元にかけて発達した中国数学の集大成であり、命数法から四則演算、面積計算、天元術に至るまで幅広い内容を取り上げている。極以上の命数法が初めて登場したのも同書だった。『四元玉鑑』は天元術を発展させ、4元の高次連立方程式の解法を論じた。.

新しい!!: 数学史と朱世傑 · 続きを見る »

月経

月経(げっけい、menstruation)は、成熟した人間の女性および高等霊長類のメスの子宮から周期的に起こる、生理的出血である生化学辞典第2版、p.427 【月経周期】。正式な医学用語は月経だが、生理(せいり)、女の子の日、メンス、アレなど様々に呼ばれる。他には#別名節を参照。 月経は、思春期に始まり(初潮)、個人差はあるが、閉経時期までの間におよそ28日周期で起こり、通常4-7日間続く(正常月経周期:25-38日)。.

新しい!!: 数学史と月経 · 続きを見る »

有限単純群の分類

有限単純群の分類 とは、数学において全ての有限単純群を4つの大まかなクラスへと分類する定理である。 これらの群は、全ての有限群を構成する基本的な要素として見ることが出来る。 この分類定理の証明は、主に1955年から2004年に渡り出版された、100以上の著者により数百の学術誌において書かれた、計1万5000ページ以上もの成果の集大成である。 (d.1992) と、らは、この証明を整理し見通しよく改訂した「第2世代の証明」の出版を開始している。.

新しい!!: 数学史と有限単純群の分類 · 続きを見る »

易経

『易経』(えききょう、正字体:易經、)は、古代中国の書物。『卜』が動物である亀の甲羅や牛や鹿の肩甲骨に入ったヒビの形から占うものであるのに対して、『筮』は植物である『蓍』の茎の本数を用いた占いである。商の時代から蓄積された卜辞を集大成したものとして易経は成立した。易経は儒家である荀子の学派によって儒家の経典として取り込まれた。現代では、哲学書としての易経と占術のテキストとしての易経が、一部重なりながらも別のものとなっている。中心思想は、陰陽二つの元素の対立と統合により、森羅万象の変化法則を説く。著者は伏羲とされている。 中国では『黄帝内經』・『山海經』と合わせて「上古三大奇書」とも呼ぶ。.

新しい!!: 数学史と易経 · 続きを見る »

浮動小数点数

浮動小数点数(ふどうしょうすうてんすう、英: floating point number)は、浮動小数点方式による数のことで、もっぱらコンピュータの数値表現において、それぞれ固定長の仮数部と指数部を持つ、数値の表現法により表現された数である。.

新しい!!: 数学史と浮動小数点数 · 続きを見る »

文明

文明(ぶんめい、civilisation、ラテン語: civilizatio キーウィーリザティオー)とは、人間が作り出した高度な文化あるいは社会を包括的に指す。.

新しい!!: 数学史と文明 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 数学史と数学 · 続きを見る »

数学基礎論

数学基礎論(すうがくきそろん、英語:)は、数学の一分野。他の分野が整数・実数・図形・関数などを取り扱うのに対し、数学自体を対象とする。.

新しい!!: 数学史と数学基礎論 · 続きを見る »

数学の年表

本項目は、純粋数学と応用数学の歴史に関する年表である。.

新しい!!: 数学史と数学の年表 · 続きを見る »

数学的帰納法

数学的帰納法(すうがくてききのうほう、mathematical induction)は自然数に関する命題 が全ての自然数 に対して成り立っている事を証明するための、次のような証明手法である自然数の定義は を含む流儀とそうでない流儀があるが、ここでは後者を採用した。。.

新しい!!: 数学史と数学的帰納法 · 続きを見る »

数字

数字(すうじ、numeral)とは数(数値、数量、number)を表現するための記号(figure, digit)および文字(character, letter)である。 ただし日本では、数字は数自身と混同されることが多いが、これによって問題を生じることもある。 また、企業によっては売上や顧客数・視聴率(放送業界)など、数値によって表わされる業績を「数字」と呼ぶことがある。.

新しい!!: 数学史と数字 · 続きを見る »

数理論理学

数理論理学(mathematische Logik、mathematical logic)は、論理学(形式論理学)の数学への応用の探求ないしは論理学の数学的な解析を主たる目的とする、数学の関連分野である。局所的には数理論理学は超数学、数学基礎論、理論計算機科学などと密接に関係している。数理論理学の共通な課題としては形式体系の表現力や形式証明系の演繹の能力の研究が含まれる。 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。これらの領域はロジックのとくに一階述語論理や定義可能性に関する結果を共有している。計算機科学(とくに)における数理論理学の役割の詳細はこの記事には含まれていない。詳細はを参照。 この分野が始まって以来、数理論理学は数学基礎論の研究に貢献し、また逆に動機付けられてきた。数学基礎論は幾何学、算術、解析学に対する公理的な枠組みの開発とともに19世紀末に始まった。20世紀初頭、数学基礎論は、ヒルベルトのプログラムによって、数学の基礎理論の無矛盾性を証明するものとして形成された。クルト・ゲーデルとゲルハルト・ゲンツェンによる結果やその他は、プログラムの部分的な解決を提供しつつ、無矛盾性の証明に伴う問題点を明らかにした。集合論における仕事は殆ど全ての通常の数学を集合の言葉で形式化できることを示した。しかしながら、集合論に共通の公理からは証明することができない幾つかの命題が存在することも知られた。むしろ現代の数学基礎論では、全ての数学を展開できる公理系を見つけるよりも、数学の一部がどのような特定の形式的体系で形式化することが可能であるか(逆数学のように)ということに焦点を当てている。.

新しい!!: 数学史と数理論理学 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: 数学史と数論 · 続きを見る »

拍子

拍子(ひょうし)は、一般には、拍や拍の連なりのこと。西洋音楽では強拍に連なるいくつかの拍の集まりの繰り返しを言う。日本では「三三七拍子」という言葉でわかるように、この言葉は、西洋音楽の定義の「拍子」とは異なる使われ方をする。アラブ古典音楽のイーカーア(イーカー)やインド古典音楽のターラ(サンスクリット読み)を「何々拍子」と表現することがあるが、これも西洋音楽の定義の「拍子」とは異なる。 以下、本項においては、西洋音楽のそれについて述べる。.

新しい!!: 数学史と拍子 · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: 数学史と曲線 · 続きを見る »

0

0 |- | Divisors || all numbers |- | Roman numeral || N/A |- | Arabic || style.

新しい!!: 数学史と0 · 続きを見る »

10世紀

江南の爛熟。画像は顧閎中が描いた「韓煕載夜宴図(北京故宮博物館蔵)」。五代十国南唐の後主李煜時代の宮廷の優雅な様子がしのばれる。 コルドバ。画像はコルドバにあるメスキータの円柱の森。10世紀末までに歴代の後ウマイヤ朝カリフによって改築が続けられ今ある姿となった。 10世紀(じっせいき)とは、西暦901年から西暦1000年までの100年間を指す世紀。1千年紀における最後の世紀である。.

新しい!!: 数学史と10世紀 · 続きを見る »

53平均律

53平均律(53-equal temperament)とは、1オクターブを53の等しいステップに分割した音律である。 各ステップは、 2^ (\sqrt) の周波数比率、あるいは22.6415セントである。この音程は時にと呼ばれる。.

新しい!!: 数学史と53平均律 · 続きを見る »

6

UNOのカード。6と9に下線がある。 「六」の筆順 6(六、ろく、りく、る、む)は、自然数または整数において、5 の次で 7 の前の数である。英語でsix(シックス)、ラテン語で sex(セクス)。なお、紙片や球体などに印字される場合、9 との混同を避けるために「6」のように下線を引いて区別されることがある。.

新しい!!: 数学史と6 · 続きを見る »

ここにリダイレクトされます:

数学の歴史

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »