ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

物質

索引 物質

物質(ぶっしつ)は、.

163 関係: 原始星原子原子論原子核反応半神単体反物質同位体同素体合金変化存在存在論定比例の法則実体実体二元論宇宙宇宙論対象対消滅不可知不可知論不純物幾何学形而上学信念化合物化学化学品の分類および表示に関する世界調和システム化学物質化学構造マルクス主義マックス・ヤンマーハロルド・ジョンソンバークリーバビロニアポジトロン断層法メソポタミアモナド (哲学)ルネ・デカルトトマス・ホッブズヘラクレイトスヘリウムプラトンプラズマビッグバンティマイオス...デモクリトスデュナミスデカルトホーリズム分子分解アナクシメネスアメデオ・アヴォガドロアリストテレスアルベルト・アインシュタインアルケーアントワーヌ・ラヴォアジエアボガドロの法則イマヌエル・カントイデアイデア論イオンエネルギーガラスクオリアケイ素ゲオルク・ヴィルヘルム・フリードリヒ・ヘーゲルゴットフリート・ライプニッツジョン・ドルトンソクラテス以前の哲学者タレス唯物論凝固凝固点元素固体四元素倍数比例の法則個体現象現象的意識神話空間空気窒素精神素粒子素粒子物理学純物質紀元前30世紀結露炭素生命生命力生気論異性体物体物理学物理化学物質物質の状態物質主義物性相対性理論相転移E=mc2階層構造融点融解非局所性香料解釈認識説明質量質量保存の法則質料蒸留蒸発還元重力量子論自然崇拝金属酸化陽電子恒星核種概念構成機械論正二十面体正八面体正四面体水素気体気体反応の法則沸点液体混合物溶解本質有機体論情報昇華昇華 (化学)新プラトン主義放射能意識懐疑主義思考時間 インデックスを展開 (113 もっと) »

原始星

原始星(げんしせい)(protostar)とは、誕生初期の恒星のことで、暗黒星雲の一部が自己の重力で収縮しはじめ、可視光でも観測できるおうし座T型星になる前の状態までを指す。 暗黒星雲が近くの超新星爆発などによる衝撃波を受けると、それによって物質の濃淡ができる。濃くなった部分は重力が強くなるので、周囲の物質を引きつけさらに物質の濃度が濃くなる。するとさらに重力が強くなり、加速度的に濃度が濃くなっていく。このようにして原始星が誕生する。 原始星には周囲からさらに物質が集積してくるので、降着円盤が形成され、原始星に取り込まれきれなかった物質は、円盤に垂直な方向へ宇宙ジェットとして放出される。この宇宙ジェットが周囲の星雲の物質と衝突して輝いているのがハービッグ・ハロー天体である。 原始星には周囲の物質が超音速で落下していき衝撃波面が形成されている。その面で落下物質の運動エネルギーが一気に熱に変わっている。そのため、原始星は主系列星よりも非常に明るく輝いている。この時は原始星はまだ周囲を暗黒星雲に覆われているため、星雲の外からは可視光では観測できず赤外線だけが観測される。この状態は、それを理論的に導出した日本の宇宙物理学者・林忠四郎にちなんで林フェイズと呼ばれる。 原始星は自己の重力でゆっくりと収縮していき、その際の重力エネルギーの解放で徐々に中心核の温度を上げていく。また、恒星風により周囲の暗黒星雲を吹き飛ばす。こうして可視光でも観測可能になった星がおうし座T型星である。さらに中心核の温度が上昇し、水素の核融合反応が開始されると主系列星となる。 原始星フレアの温度はおよそ1億度で、エネルギーは太陽フレアの約1万倍にもなる。.

新しい!!: 物質と原始星 · 続きを見る »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 物質と原子 · 続きを見る »

原子論

原子論(げんしろん、atomism)とは、“すべての物質は非常に小さな、分割不可能な粒子(Atom、原子)で構成されている”、とする仮説、理論、主義などのこと。.

新しい!!: 物質と原子論 · 続きを見る »

原子核反応

原子核物理学における原子核反応(げんしかくはんのう、nuclear reaction)または核反応とは、入射粒子が標的核(原子核)と衝突して生じる現象の総称を言う。大別して、吸収、核分裂、散乱の三つがあるが、その反応過程は多彩で統一的に記述する理論はまだない。 核反応においては、電荷、質量数、全エネルギー、全運動量が保存される。.

新しい!!: 物質と原子核反応 · 続きを見る »

半神

ランの猛犬を倒す少年時代のクー・フーリン、1904年画 半神(はんしん、demigod、Ημίθεος )は、神と人との間に生まれた存在である。半神半人。 ただし、神には至らない下級神を意味することもある。.

新しい!!: 物質と半神 · 続きを見る »

単体

単体(たんたい、simple substance)とは、単一の元素からできている純物質のことである。 水素 (H2)、酸素 (O2) などの等核二原子分子や、ナトリウム (Na)、金 (Au) などの純金属が含まれる。 これに対して、水 (H2O) など2種類以上の元素からできている純物質は化合物という。 酸素 (O2) とオゾン (O3)、あるいは赤リンと黄リンのように、同じ元素からできた単体であっても、異なる性質を示す場合がある。 このような単体同士の関係を同素体という。 たとえば、ダイヤモンドとグラファイトを混ぜ合わせた物質は、単一の炭素原子からできているが、密度・融点・沸点などの物理的性質が一定にさだまらないので純物質ではなく(したがって単体でもなく)、2種類の単体(炭素の同素体)の混合物である。.

新しい!!: 物質と単体 · 続きを見る »

反物質

反物質(はんぶっしつ、)は、ある物質と比して質量とスピンが全く同じで、構成する素粒子の電荷などが全く逆の性質を持つ反粒子によって組成される物質。例えば、電子はマイナスの電荷を持つが、反電子(陽電子)はプラスの電荷を持つ。中性子と反中性子は電荷を持たないが、中性子はクォーク、反中性子は反クォークから構成されている。.

新しい!!: 物質と反物質 · 続きを見る »

同位体

同位体(どういたい、isotope;アイソトープ)とは、同一原子番号を持つものの中性子数(質量数 A - 原子番号 Z)が異なる核種の関係をいう。この場合、同位元素とも呼ばれる。歴史的な事情により核種の概念そのものとして用いられる場合も多い。 同位体は、放射能を持つ放射性同位体 (radioisotope) とそうではない安定同位体 (stable isotope) の2種類に分類される。.

新しい!!: 物質と同位体 · 続きを見る »

同素体

同素体(どうそたい、allotrope、allotropism)とは、同一元素の単体のうち、原子の配列(結晶構造)や結合様式の関係が異なる物質同士の関係をいう。同素体は単体、すなわち互いに同じ元素から構成されるが、化学的・物理的性質が異なる事を特徴とする。 典型的な例としてよく取り上げられるものに、ダイヤモンドと黒鉛(グラファイト)がある。 炭素の同素体である両者は硬度以外にも、透明度や電気伝導性が大きく異なるが、これはダイヤモンドの分子(正四面体の格子) とグラファイトの分子(平面的な六方格子の層)の構造に大きな違いがあるためで、物性における分子構造の重要性を示す例となっている。 多くの同素体は安定した分子として存在し、相転移(気体、液体、固体)しても化学形は変化しない (例:O2、O3) が、例外的にリンの同素体は固体でのみ現れ、液体ではすべて P4 の形を取る。.

新しい!!: 物質と同素体 · 続きを見る »

合金

合金(ごうきん、alloy)とは、単一の金属元素からなる純金属に対して、複数の金属元素あるいは金属元素と非金属元素から成る金属様のものをいう。純金属に他の元素を添加し組成を調節することで、機械的強度、融点、磁性、耐食性、自己潤滑性といった性質を変化させ材料としての性能を向上させた合金が生産されて様々な用途に利用されている。 一言に合金といっても様々な状態があり、完全に溶け込んでいる固溶体、結晶レベルでは成分の金属がそれぞれ独立している共晶、原子のレベルで一定割合で結合した金属間化合物などがある。合金の作製方法には、単純に数種類の金属を溶かして混ぜ合わせる方法や、原料金属の粉末を混合して融点以下で加熱する焼結法、化学的手法による合金めっき、ボールミル装置を使用して機械的に混合するメカニカルアロイングなどがある。ただし、全ての金属が任意の割合で合金となるわけではなく、合金を得られる組成の範囲については、物理的・化学的に制限(あるいは最適点)が存在する。.

新しい!!: 物質と合金 · 続きを見る »

場(ば、field、工学分野では電界・磁界など界とも)とは、物理量を持つものの存在が、その近傍・周囲に連続的に影響を与えること、あるいはその影響を受けている状態にある空間のこと。.

新しい!!: 物質と場 · 続きを見る »

変化

変化(へんか、へんげ).

新しい!!: 物質と変化 · 続きを見る »

存在

存在(そんざい、英語 being, existence, ドイツ語 Sein)とは、.

新しい!!: 物質と存在 · 続きを見る »

存在論

存在論(そんざいろん、ontology、Ontologie)は、哲学の一部門。さまざまに存在するもの(存在者)の個別の性質を問うのではなく、存在者を存在させる存在なるものの意味や根本規定について取り組むもので、形而上学ないしその一分野とされ、認識論と並ぶ哲学の主要分野でもある。.

新しい!!: 物質と存在論 · 続きを見る »

定比例の法則

定比例の法則(ていひれいのほうそく、)とは、物質が化学反応する時、反応に関与する物質の質量の割合は、常に一定であるという法則。また化学反応において元素の転換は起こらないので、これは化合物を構成する成分元素の質量の比は常に一定であることも意味する。例えば水を構成する水素と酸素の質量の比は常に1:8である(1Hと16Oのみを考えた場合)。他の例としては、酸化銅(II)を構成する銅と酸素の質量の比が常に4:1であることなどがある。 法則の和名が現象に則さないため、近年では一定組成の法則への名称変更が提唱されている。.

新しい!!: 物質と定比例の法則 · 続きを見る »

実体

実体(じったい)は、古代ギリシアから使われている古典的な哲学用語。真に実在するもの。IT分野では、エンティティと呼ばれることもある。また、化学では、「分子実体」(molecular entity)などと使用され、原子、分子、イオン、イオンペア、ラジカル、ラジカルイオン、錯体などを指す総称として使われる.

新しい!!: 物質と実体 · 続きを見る »

実体二元論

実体二元論(じったいにげんろん、Substance dualism)とは、心身問題に関する形而上学的な立場のひとつで、この世界にはモノとココロという本質的に異なる独立した二つの実体がある、とする考え方。ここで言う実体とは他の何にも依らずそれだけで独立して存在しうるものの事を言い、つまりは脳が無くとも心はある、とする考え方を表す。ただ実体二元論という一つのはっきりとした理論があるわけではなく、一般に次の二つの特徴を併せ持つような考え方が実体二元論と呼ばれる。.

新しい!!: 物質と実体二元論 · 続きを見る »

宇宙

宇宙(うちゅう)とは、以下のように定義される。.

新しい!!: 物質と宇宙 · 続きを見る »

宇宙論

宇宙論(うちゅうろん、cosmology)とは、「宇宙」や「世界」などと呼ばれる人間をとりかこむ何らかの広がり全体、広義には、それの中における人間の位置、に関する言及、論、研究などのことである。 宇宙論には神話、宗教、哲学、神学、科学(天文学、天体物理学)などが関係している。 「Cosmology コスモロジー」という言葉が初めて使われたのはクリスティアン・ヴォルフの 『Cosmologia Generalis』(1731)においてであるとされている。 本項では、神話、宗教、哲学、神学などで扱われた宇宙論も幅広く含めて扱う。.

新しい!!: 物質と宇宙論 · 続きを見る »

対象

対象(たいしょう、object)とは、認識や意志、欲求のような意識や行為が向けられるもののことである。由来はラテン語のobjectum。広義には客体と同一視することもあり、一般には狭義である目標物または相手の意味でも用いられる。尚、主題に対立し、物的なものから心的なものまでありとあらゆるものが対象となる。.

新しい!!: 物質と対象 · 続きを見る »

対消滅

対消滅(ついしょうめつ、)は、粒子と反粒子が衝突し、エネルギーが他の粒子に変換される現象である。対生成の逆。 例えば電子と陽電子(電子の反粒子。電子と同じ質量でプラスの電荷をもつ)の衝突では、電子と陽電子はそれぞれの静止エネルギー(それぞれ511keV)とそれらのもつ運動エネルギーの和に等しいエネルギーをもつ光子に変換され、γ線として観測される。具体例としては非常に精度の高い約511keVのエネルギーをもつγ線源として知られるナトリウムの放射性同位体22Naがある。原子核がβ+崩壊によって放出する陽電子と原子核の周囲に存在する電子が対消滅し光子に変換される。対消滅では運動量が保存されるため、大きな運動エネルギーをもたない電子と陽電子の対消滅により変換された二つの光子は均等に分配された静止エネルギーを持つことになる。.

新しい!!: 物質と対消滅 · 続きを見る »

不可知

不可知(ふかち)とは、知る事のできない領域、思い図るだけ無駄な事。 「もし、こうなっていたならば」など選択しなかった選択肢を選択した場合の結果。実施されなかった事を実施した場合の結果。 過去の或る時点における選択しなかった選択肢を選択した場合の結果など。 例)私はあの時諦めてしまったが、諦めずに継続していればどの様な結果になったであろうか? Category:認識.

新しい!!: 物質と不可知 · 続きを見る »

不可知論

不可知論(ふかちろん、agnosticism)は、ものごとの本質は人には認識することが不可能である、とする立場のこと。.

新しい!!: 物質と不可知論 · 続きを見る »

不純物

不純物(ふじゅんぶつ)とは、ある物質に、それ以外の物質が僅かに含まれている場合、その本来の物質以外の別の物質のことを指す。不純物は欠陥の一種である。一般には、不純物の存在は、本来の物質の性質を損なうことになる場合が多く、通常は不純物をいかに取り除くかに多くの努力が費やされる。ただ、一方では逆に不純物を利用して、本来その物質が持っていなかった新しい性質を引き出し、産業上有用な物質となる場合もある。.

新しい!!: 物質と不純物 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: 物質と幾何学 · 続きを見る »

事(こと)は、言(こと)と同語源の。象形文字で『新漢語林』、大修館書店、2008年。、事(じ)とも読む。「神への祈りの言葉を書きつけ、木の枝などに結びつけた札を手にした形」にかたどる。「祭事にたずさわる人のさま」から仕事・仕えるの意味を表す。.

新しい!!: 物質と事 · 続きを見る »

形而上学

形而上学(けいじじょうがく、μεταφυσικά、Metaphysica、Metaphysics、métaphysique、Metaphysik)は、感覚ないし経験を超え出でた世界を真実在とし、その世界の普遍的な原理について理性的な思惟によって認識しようとする学問ないし哲学の一分野である『岩波哲学小事典』「形而上学」の項目。世界の根本的な成り立ちの理由(世界の根本原因)や、物や人間の存在の理由や意味など、見たり確かめたりできないものについて考える。対立する用語は唯物論である『岩波哲学小事典』「形而上学」の項目。他に、実証主義や不可知論の立場から見て、客観的実在やその認識可能性を認める立場『岩波哲学小事典』「形而上学」の項目や、ヘーゲル・マルクス主義の立場から見て弁証法を用いない形式的な思考方法のこと『岩波哲学小事典』「形而上学」の項目。.

新しい!!: 物質と形而上学 · 続きを見る »

信念

信念(しんねん、英語:belief)とは信じられる内容のことである。それを裏付ける証拠が有るか無いかは問われない。.

新しい!!: 物質と信念 · 続きを見る »

心(こころ)は非常に多義的・抽象的な概念であり文脈に応じて多様な意味をもつ言葉であり、人間(や生き物)の精神的な作用や、それのもとになるものなどを指し、感情、意志、知識、思いやり、情などを含みつつ指している。.

新しい!!: 物質と心 · 続きを見る »

化合物

化合物(かごうぶつ、chemical compound)とは、化学反応を経て2種類以上の元素の単体に生成することができる物質であり岩波理化学辞典(4版)、p.227、【化合物】、言い換えると2種類以上の元素が化学結合で結びついた純物質とも言える。例えば、水 (H2O) は水素原子 (H) 2個と酸素原子 (O) 1個からなる化合物である。水が水素や酸素とは全く異なる性質を持っているように、一般的に、化合物の性質は、含まれている元素の単体の性質とは全く別のものである。 同じ化合物であれば、成分元素の質量比はつねに一定であり、これを定比例の法則と言い株式会社 Z会 理科アドバンスト 考える理科 化学入門、混合物と区別される。ただし中には結晶の不完全性から生じる岩波理化学辞典(4版)、p.1109、【不定比化合物】不定比化合物のように各元素の比が自然数にならないが安定した物質もあり、これらも化合物のひとつに含める。 化合物は有機化合物か無機化合物のいずれかに分類されるが、その領域は不明瞭な部分がある。.

新しい!!: 物質と化合物 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

新しい!!: 物質と化学 · 続きを見る »

化学品の分類および表示に関する世界調和システム

化学品の分類および表示に関する世界調和システム(かがくひんのぶんるいおよびひょうじにかんするせかいちょうわシステム、; )とは、化学品(物質および混合物)の危険有害性(hazard)に関する国際的な危険有害性分類基準と表示方法(ラベルとSDS)に関するシステムである。ここで、「ラベル」とは、必ずしも、パッケージや容器に貼り付けるものを意味しているわけではなく、あらかじめパッケージや容器に印刷されているものも含まれている。英語のLabelの意味である。.

新しい!!: 物質と化学品の分類および表示に関する世界調和システム · 続きを見る »

化学物質

化学物質(かがくぶっしつ、chemical substance)とは、分野や文脈に応じて以下のような様々な意味で用いられている言葉である。.

新しい!!: 物質と化学物質 · 続きを見る »

化学構造

化学構造(かがくこうぞう、chemical structure)とは、物質の化学的性質を分子などの内部構造と関連させた概念であり、その表記方法は化学式として表される。分子を構成する構造的な位置情報である分子構造は分子立体モデルで表される。 すなわち、特定の化学的性質は固有の分子構造に起因するという化学的パラダイムが化学構造である。それ故、化学構造の要素である特性基や官能基は化学的性質の概念と密接に関連している。 今日の分子構造概念は、量子力学に基づいて分布する電子と原子核の配置を定式化した分子軌道法の予測結果として理解され、個々の分子やそれを構成する原子の振舞を研究する分子動力学は電子と原子核との間に生じる静電相互作用を力学的に解析する、物理学に立脚した物理化学的な分子像である。 それに対して今日の応用化学や特に有機化学の領域においては厳密な分子構造ではなく化学構造を使って化学変化や化学的性質を把握する場面が多い。これは単に構造を表しているだけでは無く、その構造が有する化学的性質とその理論的背景を具象化することが、その研究対象を表現する上で有用な為である。 化学構造論の原点は有機化学の領域ではアウグスト・ケクレとアーチボルド・クーパーが確立した構造論であり、無機化学の領域ではアルフレート・ヴェルナーの配位説である。化学構造論以前の化学においては、化学的性質は物質を構成する元素の成分比により決定づけられると考えられていた。 これらの化学構造の理論が、今日のように分子構造を原子核物理学や量子力学の諸法則が確立する以前に成立したことは特筆に値する。すなわち、化学構造の理論は原子の物理的挙動から演繹的に導かれたものではなく、化合物や反応における化学的性質から帰納的に導き出されたものである。そして今日では化学構造の概念は物理化学的な諸理論により再検証され補正・発展している。このように化学理論と物理理論の統合が進展した結果、化学構造と分子構造とは概念的に同一視できるまでになってきている。.

新しい!!: 物質と化学構造 · 続きを見る »

マルクス主義

マルクス主義(マルクスしゅぎ、Marxismus)とは、カール・マルクスとフリードリヒ・エンゲルスによって展開された思想をベースとして確立された社会主義思想体系の一つである。しばしば科学的社会主義(かがくてきしゃかいしゅぎ)とも言われる。 マルクス主義は、資本を社会の共有財産に変えることによって、労働者が資本を増殖するためだけに生きるという賃労働の悲惨な性質を廃止し、階級のない協同社会をめざすとしている。 エンゲルスは1883年に『空想から科学へ』を出版し、彼やマルクスの思想を社会主義思想、弁証法的唯物論、資本主義分析の三つの分野に分けて解説したうえで、唯物史観と剰余価値の発見によって社会主義は科学になったと説明した。また、レーニンは1913年に『マルクス主義の三つの源泉と三つの構成部分』を書き、マルクス主義の三つの源泉をドイツ哲学、イギリス経済学、フランス社会主義とし、マルクス主義の三つの構成部分を弁証法的唯物論、経済学、社会主義思想とした。.

新しい!!: 物質とマルクス主義 · 続きを見る »

マックス・ヤンマー

マックス・ヤンマー(Max Jammer, 1915年4月13日 - 2010年12月18日)は、イスラエルの物理学者、物理学の哲学研究者。.

新しい!!: 物質とマックス・ヤンマー · 続きを見る »

ハロルド・ジョンソン

ハロルド・ジョンソン(Harold Johnson、1927年8月9日 - 2015年2月19日)は、アメリカ合衆国の男性プロボクサー。ペンシルベニア州マナユンク出身。元世界ライトヘビー級王者。ライトヘビー級を代表する技巧派選手として19歳のデビューから44歳までの25年間長らく一級戦で戦い続けた。キャリアの中でもアーチー・ムーアと5度との戦いがいずれも激戦となり、そのうち3連戦において僅差まで競ったことで有名。.

新しい!!: 物質とハロルド・ジョンソン · 続きを見る »

バークリー

バークリー、バークレー、バークレイは、英語圏の地名、また姓、名。元の綴りは様々なものがある。.

新しい!!: 物質とバークリー · 続きを見る »

バビロニア

バビロニア(Βαβυλωνία、Babylonia)、またはバビュロニアは、現代のイラク南部、ティグリス川とユーフラテス川下流の沖積平野一帯を指す歴史地理的領域。南北は概ね現在のバグダード周辺からペルシア湾まで、東西はザグロス山脈からシリア砂漠やアラビア砂漠までの範囲に相当するオリエント事典, pp.440-442.

新しい!!: 物質とバビロニア · 続きを見る »

ポジトロン断層法

PET ポジトロン断層法(ポジトロンだんそうほう、positron emission tomography:PET)とは陽電子検出を利用したコンピューター断層撮影技術である。CTやMRIが主に組織の形態を観察するための検査法であるのに対し、PETはSPECTなど他の核医学検査と同様に、生体の機能を観察することに特化した検査法である。主に中枢神経系の代謝レベルを観察するのに用いられてきたが、近年、腫瘍組織における糖代謝レベルの上昇を検出することにより癌の診断に利用されるようになった。患者への被曝量はCTに比べて少ないが、医療スタッフの被曝量に注意が必要である。ただし、下述するようにPET/CT装置を用いた検査の場合の被曝量はCTに比べても大きくなる場合がある。 CTとPETを比較すると、CTでは外部からX線を照射して全体像を観察しているのに対して、PETなどの核医学検査では生体内部の放射性トレーサーを観察しているという違いがある。ここで、CT像は解剖学的な情報にすぐれているので形態画像と呼ばれ、PET像は生理学的な情報に勝れているので機能画像(functional image)と呼ばれる。なお、両者の利点を総合的に利用するために、PETとCTを一体化した装置・PET/CTも開発されており、診断には両画像をソフトウェア的に重ね合わせた融合画像が主流となりつつある。.

新しい!!: 物質とポジトロン断層法 · 続きを見る »

メソポタミア

メソポタミアに関連した地域の位置関係 メソポタミア(、ギリシャ語で「複数の河の間」)は、チグリス川とユーフラテス川の間の沖積平野である。現在のイラクの一部にあたる。 古代メソポタミア文明は、メソポタミアに生まれた複数の文明を総称する呼び名で、世界最古の文明であるとされてきた。文明初期の中心となったのは民族系統が不明のシュメール人である。 地域的に、北部がアッシリア、南部がバビロニアで、バビロニアのうち北部バビロニアがアッカド、下流地域の南部バビロニアがシュメールとさらに分けられる。南部の下流域であるシュメールから、上流の北部に向かって文明が広がっていった。土地が非常に肥沃で、数々の勢力の基盤となったが、森林伐採の過多などで、上流の塩気の強い土が流れてくるようになり、農地として使えない砂漠化が起きた。 古代メソポタミアは、多くの民族の興亡の歴史である。 例えば、シュメール、バビロニア(首都バビロン)、アッシリア、アッカド(ムロデ王国の四つの都市のひとつ)、ヒッタイト、ミタンニ、エラム、古代ペルシャ人の国々があった。古代メソポタミア文明は、紀元前4世紀、アレクサンドロス3世(大王)の遠征によってその終息をむかえヘレニズムの世界の一部となる。.

新しい!!: 物質とメソポタミア · 続きを見る »

モナド (哲学)

モナド (Monad) は、ライプニッツ が案出した空間を説明するための概念である。ギリシア語 μονάς monas モナス(個、単一)、μόνος monos モノス (単一の) に由来する。単子と翻訳される場合もある。.

新しい!!: 物質とモナド (哲学) · 続きを見る »

ルネ・デカルト

ルネ・デカルト(René Descartes、1596年3月31日 - 1650年2月11日)は、フランス生まれの哲学者、数学者。合理主義哲学の祖であり、近世哲学の祖として知られる。.

新しい!!: 物質とルネ・デカルト · 続きを見る »

トマス・ホッブズ

トマス・ホッブズ(Thomas Hobbes、1588年4月5日 - 1679年12月4日)は、イングランドの哲学者。17世紀の近世哲学にあって、ルネ・デカルトなどと共に機械論的世界観の先駆的哲学者の一人であり、バールーフ・デ・スピノザなどとともに唯物論の先駆的思索を行った哲学者の一人である。政治哲学者として側面は広く周知され、人工的国家論の提唱と社会契約説により近代的な政治哲学理論を基礎づけた人物として一般的に知られる。イングランド王チャールズ1世王太子の家庭教師。.

新しい!!: 物質とトマス・ホッブズ · 続きを見る »

ヘラクレイトス

ミケランジェロといわれている。 ヘラクレイトス(Ἡράκλειτος, Hērakleitos、 紀元前540年頃 - 紀元前480年頃?)は、ギリシア人の哲学者、自然哲学者。.

新しい!!: 物質とヘラクレイトス · 続きを見る »

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

新しい!!: 物質とヘリウム · 続きを見る »

プラトン

プラトン(プラトーン、、Plato、紀元前427年 - 紀元前347年)は、古代ギリシアの哲学者である。ソクラテスの弟子にして、アリストテレスの師に当たる。 プラトンの思想は西洋哲学の主要な源流であり、哲学者ホワイトヘッドは「西洋哲学の歴史とはプラトンへの膨大な注釈である」という趣旨のことを述べた“ヨーロッパの哲学の伝統のもつ一般的性格を最も無難に説明するならば、プラトンに対する一連の脚註から構成されているもの、ということになる”(『過程と実在』)。ちなみに、ホワイトヘッドによるこのプラトン評は「あらゆる西洋哲学はプラトンのイデア論の変奏にすぎない」という文脈で誤って引用されることが多いが、実際には、「プラトンの対話篇にはイデア論を反駁する人物さえ登場していることに見られるように、プラトンの哲学的着想は哲学のあらゆるアイデアをそこに見出しうるほど豊かであった」という意味で評したのである。。『ソクラテスの弁明』や『国家』等の著作で知られる。現存する著作の大半は対話篇という形式を取っており、一部の例外を除けば、プラトンの師であるソクラテスを主要な語り手とする。 青年期はアテナイを代表するレスラーとしても活躍し、イストミア大祭に出場した他、プラトンという名前そのものがレスリングの師から付けられた仇名であると言われているディオゲネス・ラエルティオス『ギリシア哲学者列伝』3巻4節。(中野好夫訳、1984年、pp.

新しい!!: 物質とプラトン · 続きを見る »

プラズマ

プラズマ(英: plasma)は固体・液体・気体に続く物質の第4の状態R.

新しい!!: 物質とプラズマ · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

新しい!!: 物質とビッグバン · 続きを見る »

ティマイオス

『ティマイオス』(Τίμαιος、Timaeus)は、古代ギリシアの哲学者プラトンの後期対話篇の1つであり、また、そこに登場する人物の名称。副題は「自然について」。 アトランティス伝説、世界の創造、リゾーマタ(古典的元素)、医学などについて記されている。自然を論じた書としてはプラトン唯一のもので、神話的な説話を多く含む。後世へ大きな影響を与えた書である。プラトンは、『ティマイオス』と未完の『クリティアス』、未筆の『ヘルモクラテス』を三部作として構想していたという。 ピタゴラス学派の音楽観、宇宙観、数学観に沿って世界の仕組みをプラトンなりに解説した作品だが、世界霊や宇宙の調和など形而上の事物を抽象的な数学によって解明しようと試みたために、非常に難解な内容となっている。例えば、本書をラテン語に翻訳したキケロは「あの奇怪な対話篇はまったく理解できなかった」と述べている。.

新しい!!: 物質とティマイオス · 続きを見る »

デモクリトス

デモクリトス(デーモクリトス、Δημόκριτος、Democritus、紀元前460年頃-紀元前370年頃)は、古代ギリシアのイドニア学派の哲学者。 ソクラテスよりも後に生まれた人物だが慣例でソクラテス以前の哲学者に含まれる。.

新しい!!: 物質とデモクリトス · 続きを見る »

デュナミス

デュナミス (dynamis / dunamis) とは、能力・可能態・潜勢態の意味を持つ、アリストテレスの哲学の概念である。 『自然学』などで解説された。事物の生成とは可能的なものが現実的なものに発展することである、とアリストテレスは考えた。たとえば、まだ花でないものとしての種子(可能的なもの)は、発展することで花(現実的なもの)となる、と。このような時、前者を「デュナミス」、後者を「エネルゲイア」と呼んだ。この両概念は「質料」と「形相」の概念とも関係している。形相と結びつきうるものとしての質料(可能態)は、すでに両者の結びついた個物(現実態)として現実に存在するものとなる。さらに、その可能性を完全に実現して、その目的に到っている状態のことを「エンテレケイア」と呼んだ。 可能性(可能態)に対する実現化ゆえ、これは「デュナミス」と対になる語である。即ち、デュナミスはエネルゲイアと、さらにはエンテレケイアと相対を成す概念であると言える。.

新しい!!: 物質とデュナミス · 続きを見る »

デカルト

デカルト (Descartes).

新しい!!: 物質とデカルト · 続きを見る »

ホーリズム

ホーリズム(Holism)とは、ある系(システム)全体は、それの部分の算術的総和以上のものである、とする考えのことである。あるいは、全体を部分や要素に還元することはできない、とする立場である。 すなわち、部分部分をバラバラに理解していても系全体の振る舞いを理解できるものではない、という事実を指摘する考え方である。部分や要素の理解だけでシステム全体が理解できたと信じてしまう還元主義と対立する。全体論と訳すこともある。.

新しい!!: 物質とホーリズム · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: 物質と分子 · 続きを見る »

分解

分解(ぶんかい)とは、1種類の物を2種類以上に分ける (分かれる事)。.

新しい!!: 物質と分解 · 続きを見る »

アナクシメネス

アナクシメネス(Anaximenes of Miletus、Άναξιμένης、紀元前585年 - 紀元前525年)は、古代ギリシアの自然哲学者。 アナクシマンドロスの弟子で、アナクシマンドロス、タレスとともにイオニア学派の代表。ミレトス三哲人のひとりとされる。 万物の根源(アルケー)は空気(気息、pneuma)であるとした。死人は呼吸をしないことから、息は生命そのものであると古代ギリシアでは考えられていた。そこでアナクシメネスは、ちょうど息が生命を作るように、空気が世界を作るものと考えた。 空気は薄くなるにつれて熱くなり、最も薄くなると火となる。逆に濃くなるにつれて冷たくなって水になり、更に濃くなると土や石になる、とした。また、大地は大きな石の円盤で、木の葉が風に舞うように空気に乗って安定しているものとし、太陽や月など宇宙のその他のものは、この大地円盤の土が希薄化する事によって生じているものだ、とした。.

新しい!!: 物質とアナクシメネス · 続きを見る »

アメデオ・アヴォガドロ

アメデオ・アヴォガドロ(アメデーオ・アヴォガードロ、Lorenzo Romano Amedeo Carlo Avogadro, Conte di Quaregna e Cerreto、1776年8月9日 - 1856年7月9日)は、サルデーニャ王国(現:イタリア)トリノ出身の物理学者、化学者。分子の研究に貢献し、1811年に発見した同圧力、同温度、同体積の全ての種類の気体には同じ数の分子が含まれるアボガドロの法則で名高い。 1809年にヴェルチェッリ王立大学の物理学教授を務め、1820年にはトリノ大学で理論物理学の初代教授を務めた。.

新しい!!: 物質とアメデオ・アヴォガドロ · 続きを見る »

アリストテレス

アリストテレス(アリストテレース、Ἀριστοτέλης - 、Aristotelēs、前384年 - 前322年3月7日)は、古代ギリシアの哲学者である。 プラトンの弟子であり、ソクラテス、プラトンとともに、しばしば「西洋」最大の哲学者の一人とされ、その多岐にわたる自然研究の業績から「万学の祖」とも呼ばれる。特に動物に関する体系的な研究は古代世界では東西に類を見ない。イスラーム哲学や中世スコラ学、さらには近代哲学・論理学に多大な影響を与えた。また、マケドニア王アレクサンドロス3世(通称アレクサンドロス大王)の家庭教師であったことでも知られる。 アリストテレスは、人間の本性が「知を愛する」ことにあると考えた。ギリシャ語ではこれをフィロソフィア()と呼ぶ。フィロは「愛する」、ソフィアは「知」を意味する。この言葉がヨーロッパの各国の言語で「哲学」を意味する言葉の語源となった。著作集は日本語版で17巻に及ぶが、内訳は形而上学、倫理学、論理学といった哲学関係のほか、政治学、宇宙論、天体学、自然学(物理学)、気象学、博物誌学的なものから分析的なもの、その他、生物学、詩学、演劇学、および現在でいう心理学なども含まれており多岐にわたる。アリストテレスはこれらをすべてフィロソフィアと呼んでいた。アリストテレスのいう「哲学」とは知的欲求を満たす知的行為そのものと、その行為の結果全体であり、現在の学問のほとんどが彼の「哲学」の範疇に含まれている立花隆『脳を究める』(2001年3月1日 朝日文庫)。 名前の由来はギリシア語の aristos (最高の)と telos (目的)から 。.

新しい!!: 物質とアリストテレス · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: 物質とアルベルト・アインシュタイン · 続きを見る »

アルケー

アルケー(αρχη arkhē)とは、「はじめ、始源・原初・根源・原理・根拠」等のことであり、哲学用語としては「万物の根源」また「根源的原理」を指す。宇宙の神的・神話的な起原である。.

新しい!!: 物質とアルケー · 続きを見る »

アントワーヌ・ラヴォアジエ

Marie-Anne Pierrette Paulzeの肖像画 『化学要論』(名古屋市科学館展示、金沢工業大学所蔵 『化学要論』(名古屋市科学館展示、金沢工業大学所蔵 マリー=アンヌが描いた実験図。A側の方を熱してAは水銀、Eは空気である 呼吸と燃焼の実験 ダイヤモンドの燃焼実験 宇田川榕菴により描かれた『舎密開宗』。蘭学として伝わったラヴォアジエの水素燃焼実験図 Jacques-Léonard Mailletによって作られたラヴォアジエ(ルーヴル宮殿) アントワーヌ・ラヴォアジエ Éleuthère Irénée du Pont de Nemoursとラヴォアジエ アントワーヌ=ローラン・ド・ラヴォアジエ(ラボアジェなどとも、フランス語:Antoine-Laurent de Lavoisier, 、1743年8月26日 - 1794年5月8日)は、フランス王国パリ出身の化学者、貴族。質量保存の法則を発見、酸素の命名、フロギストン説を打破したことから「近代化学の父」と称される - コトバンク、2013年3月27日閲覧。。 1774年に体積と重量を精密にはかる定量実験を行い、化学反応の前後では質量が変化しないという質量保存の法則を発見。また、ドイツの化学者、医師のゲオルク・シュタールが提唱し当時支配的であった、「燃焼は一種の分解現象でありフロギストンが飛び出すことで熱や炎が発生するとする説(フロギストン説)」を退け、1774年に燃焼を「酸素との結合」として説明した最初の人物で、1779年に酸素を「オキシジェーヌ(oxygène)」と命名した。ただし、これは酸と酸素とを混同したための命名であった。 しばしば「酸素の発見者」と言及されるが、酸素自体の最初の発見者は、イギリスの医者ジョン・メーヨーが血液中より酸素を発見していたが、当時は受け入れられず、その後1775年3月にイギリスの自然哲学者、教育者、神学者のジョゼフ・プリーストリーが再び発見し、プリーストリーに優先権があるため、厳密な表現ではない; 。進展中だった科学革命の中でプリーストリーの他にスウェーデンの化学者、薬学者のカール・ヴィルヘルム・シェーレが個別に酸素を発見しているため、正確に特定することは困難だが、結果としてラヴォアジエが最初に酸素を「酸素(oxygène)」と命名したことに変わりはない。またアメリカの科学史家の トーマス・クーンは『科学革命の構造』の中でパラダイムシフトの概念で説明しようとした。。なお、プリーストリーは酸素の発見論文を1775年に王立協会に提出しているため、化学史的に酸素の発見者とされる人物はプリーストリーである。 また、化学的には誤りではあったが物体の温度変化を「カロリック」によって引き起こされるものだとし、これを体系づけてカロリック説を提唱した。.

新しい!!: 物質とアントワーヌ・ラヴォアジエ · 続きを見る »

アボガドロの法則

アボガドロの法則(アボガドロのほうそく、英語:Avogadro's law)とは、同一圧力、同一温度、同一体積のすべての種類の気体には同じ数の分子が含まれるという法則である。 1811年にアメデオ・アボガドロがゲイ=リュサックの気体反応の法則とジョン・ドルトンの原子説の矛盾を説明するために仮説として提案した。 少し遅れて1813年にアンドレ=マリ・アンペールも独立に同様の仮説を提案したことから、アボガドロ-アンペールの法則ともいう。 また特に分子という概念を提案した点に着目して分子説(ぶんしせつ)とも呼ぶ。 元素、原子、分子の3つの概念を区別し、またそれらに対応する化学当量、原子量、分子量の違いを区別する上で鍵となる仮説である。 アボガドロの仮説は提案後半世紀近くの間、一部の化学者以外にはほとんど忘れ去られていた。 そのため、化学当量と原子量、分子量の区別があいまいになり、化学者によって用いる原子量の値が異なるという事態に陥っていた。 1860年のにおいてスタニズラオ・カニッツァーロによりアボガドロの仮説についての解説が行なわれ、これを聞いた多くの化学者が仮説を受け入れ原子量についての混乱は徐々に解消されていった。 その後、問題になったのはアボガドロの提案した分子という存在が実在するかどうかであった。 分子の実在を主張する側からは気体分子運動論が提案され、気体の状態方程式などが説明されるに至った。 しかし一方で実証主義の立場から未だ観測できていない分子はあくまで理論の説明に都合の良い仮説と主張する物理学者、化学者も多かった。 この問題は最終的には1905年のアルベルト・アインシュタインによるブラウン運動の理論の提案とジャン・ペランによるその理論の実証により間接的に分子の実在が証明されることによって解決した。 現在では分子の実在が確認されたことから、アボガドロの仮説はアボガドロの法則と呼ばれており、分子量と同じグラム数の気体が含む分子の数を表す物理定数を彼の名を冠してアボガドロ定数と呼んでいる。.

新しい!!: 物質とアボガドロの法則 · 続きを見る »

イマヌエル・カント

イマヌエル・カント(Immanuel Kant、1724年4月22日 - 1804年2月12日)は、プロイセン王国(ドイツ)の哲学者であり、ケーニヒスベルク大学の哲学教授である。『純粋理性批判』、『実践理性批判』、『判断力批判』の三批判書を発表し、批判哲学を提唱して、認識論における、いわゆる「コペルニクス的転回」をもたらした。フィヒテ、シェリング、そしてヘーゲルへと続くドイツ古典主義哲学(ドイツ観念論哲学)の祖とされる。彼が定めた超越論哲学の枠組みは、以後の西洋哲学全体に強い影響を及ぼしている。.

新しい!!: 物質とイマヌエル・カント · 続きを見る »

イデア

イデア(ιδέα、idea)とは、.

新しい!!: 物質とイデア · 続きを見る »

イデア論

イデア論(イデアろん、theory of Forms, theory of Ideas, Ideenlehre)は、プラトンが説いたイデア(ιδέα、idea)に関する学説のこと。 本当にこの世に実在するのはイデアであって、我々が肉体的に感覚している対象や世界とはあくまでイデアの《似像》にすぎない、とする。.

新しい!!: 物質とイデア論 · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

新しい!!: 物質とイオン · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: 物質とエネルギー · 続きを見る »

ガラス

ガラス工芸 en) 建築物の外壁に用いられているガラス ガラス(、glass)または硝子(しょうし)という語は、物質のある状態を指す場合と特定の物質の種類を指す場合がある。.

新しい!!: 物質とガラス · 続きを見る »

クオリア

波長 630-760 nm が際立っている光が強く網膜に入るとき現れる、赤のクオリアカラーフィルターなどのスペクトルはこの波長とは、性格が異なり一致しないのが普通である。 クオリア(qualia(複数形)、quale(単数形))とは、心的生活のうち、内観によって知られうる現象的側面のことTye, Michael, 「Qualia」、The Stanford Encyclopedia of Philosophy (Summer 2009 Edition)、Edward N. Zalta編。以下記事冒頭部より引用「Philosophers often use the term ‘qualia’ (singular ‘quale’) to refer to the introspectively accessible, phenomenal aspects of our mental lives.」、とりわけそれを構成する個々の質、感覚のことをいう。日本語では感覚質(かんかくしつ)と訳される。.

新しい!!: 物質とクオリア · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

新しい!!: 物質とケイ素 · 続きを見る »

ゲオルク・ヴィルヘルム・フリードリヒ・ヘーゲル

ルク・ヴィルヘルム・フリードリヒ・ヘーゲル(Georg Wilhelm Friedrich Hegel, 1770年8月27日 - 1831年11月14日)は、ドイツの哲学者である。ヨハン・ゴットリープ・フィヒテ、フリードリヒ・シェリングと並んで、ドイツ観念論を代表する思想家である。18世紀後半から19世紀初頭の時代を生き、領邦分立の状態からナポレオンの侵攻を受けてドイツ統一へと向かい始める転換期を歩んだ。 シュトゥットガルトのヘーゲルハウスにあるポートレイト.

新しい!!: 物質とゲオルク・ヴィルヘルム・フリードリヒ・ヘーゲル · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: 物質とゴットフリート・ライプニッツ · 続きを見る »

ジョン・ドルトン

ョン・ドルトン(John Dalton, 1766年9月6日 - 1844年7月27日)は、イギリスの化学者、物理学者ならびに気象学者。原子説を提唱したことで知られる。また、自分自身と親族の色覚を研究し、自らが先天色覚異常であることを発見したことによって、色覚異常を意味する「ドルトニズム (Daltonism)」の語源となった。.

新しい!!: 物質とジョン・ドルトン · 続きを見る »

ソクラテス以前の哲学者

ラテス前の哲学者(ソクラテスぜんのてつがくしゃ)は、ソクラテス前の初期ギリシア(紀元前6世紀から紀元前4世紀)の哲学者のことである。 しかしソクラテス前には「哲学」という概念はなく、彼らを哲学者と表記するには異議が多いため、しばしば独語を用いてフォアゾクラティカー (Vorsokratiker) ともいう。.

新しい!!: 物質とソクラテス以前の哲学者 · 続きを見る »

タレス

タレス(タレース、、、紀元前624年頃 - 紀元前546年頃)は、古代ギリシアの哲学者。.

新しい!!: 物質とタレス · 続きを見る »

唯物論

唯物論(ゆいぶつろん、Materialism、Materialismus)とは、 観念や精神、心などの根底には物質があると考え、それを重視する考え方岩波 哲学・思想事典 p.1616【唯物論】。 対義語は観念論(イデアリズム、Idealism)で、精神のほうが根源的で、物質は精神の働きから派生したとみる。.

新しい!!: 物質と唯物論 · 続きを見る »

凝固

凝固(ぎょうこ、solidification, freezing)とは、物理、化学で液体が固体になるプロセスのこと。 相転移の一つ。融解と反対の意味を示す。また、凝固が起こる温度を凝固点と呼ぶ。水の場合は氷結と言う言い方のほうが一般的である。純粋に温度変化によって固体に変化することを凍結と言う。ヘリウムを除く全ての液体が凍結することが知られており、絶対零度下でも凍結しないものは高圧をかけなければ凍結しない。多くの物体では凝固点と融点が同じ温度であるが、物によっては差が生じ、寒天は85度でとけだし、40度から31度で固まる。 化学変化によってコロイド溶液がゲル化するなどして固化することや、タンパク質のコロイド溶液が凝集したり熱変性によって固まることなども凝固と呼ばれる。揚げ油を廃棄の為にゲル化剤を用いて固体にすることや、牛乳にレモンを入れるとタンパク質が沈殿することがこのことにあたるよ。.

新しい!!: 物質と凝固 · 続きを見る »

凝固点

凝固点(ぎょうこてん、英語:freezing point)とは、液体が凝固し固化する温度のことを言い、相転移点の一種である。なお、水が凍る温度のことは氷点(ひょうてん)とも言う。ヒステリシスが無い場合には融点(固体が融解する温度)と一致する。.

新しい!!: 物質と凝固点 · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

新しい!!: 物質と元素 · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: 物質と光 · 続きを見る »

固体

固体インスリンの単結晶形態 固体(こたい、solid)は物質の状態の一つ。固体内の原子は互いに強く結合しており、規則的な幾何学的格子状に並ぶ場合(金属や通常の氷などの結晶)と、不規則に並ぶ場合(ガラスなどのアモルファス)がある。 液体や気体と比較して、変形あるいは体積変化が非常に小さい。変形が全く起こらない剛体は理想化された固体の一つである。連続体力学においては、固体は静止状態においてもせん断応力の発生する物体と捉えられる。液体のように容器の形に合わせて流動することがなく、気体のように拡散して容器全体を占めることもない。 固体を扱う物理学は固体物理学と呼ばれ、物性物理学の一分野である。また物質科学はそもそも、強度や相変化といった固体の性質を扱う学問であり、固体物理学と重なる部分が多い。さらに固体化学の領域もこれらの学問と重なるが、特に新しい物質の開発(化学合成)に重点が置かれている。 今まで知られている最も軽い固体はエアロゲルであり、そのうち最も軽いものでは密度は約 1.9 mg/cm3 と水の密度の530分の1程度である。.

新しい!!: 物質と固体 · 続きを見る »

四元素

四元素(よんげんそ、Τέσσερα στοιχεία)とは、この世界の物質は、火・空気(もしくは風)『ユーナニ医学入門 イブン・シーナーの「医学規範」への誘い』 サイード・パリッシュ・サーバッジュー(著)ベースボールマガジン社(1997年)・水・土の4つの元素から構成されるとする概念である。四元素は、日本語では四大元素、四大、四元、四原質ともよばれる。古代ギリシア・ローマ、イスラーム世界、および18~19世紀頃までのヨーロッパで支持された。古代インドにも同様の考え方が見られる。中国の五行説と類比されることも多い。 エンペドクレスの説がよく知られるが、アラビア・ヨーロッパの西洋文化圏で広く支持されたのはアリストテレスの説であり、四元素を成さしめる「熱・冷・湿・乾」の4つの性質を重視するため、四性質ともいわれる。4つの元素は、土や水など、実際にその名でよばれている具体物を指すわけではなく、物質の状態であり、様相であり『錬金術』 セルジュ・ユタン(著), 有田忠郎 白水社(1978年)、それぞれの物質を支える基盤のようなものだとされた『図解 錬金術』 草野巧(著) 新紀元社 (2008年)。.

新しい!!: 物質と四元素 · 続きを見る »

倍数比例の法則

倍数比例の法則(ばいすうひれいのほうそく、 )とは、同じ成分元素からなる化合物の間に成り立つ法則である。この法則は、1802年にジョン・ドルトンによって発見され、彼が発表した原子論の有力な証拠として発表された。 法則の和名が現象に則さないため、近年では倍数組成の法則への名称変更が提唱されている。.

新しい!!: 物質と倍数比例の法則 · 続きを見る »

個体

'''個体と群体''' 群体ボヤ ''Symplegma rubra''の例 ホヤはヒトと同じ脊索動物門に属する動物である。入水口を一つずつ備える各個体は心臓と血管系をもつ。しかしながら、血管系は互いに接続されており、協調して動作する。 個体(こたい)とは、個々の生物体をさす言葉である。生物体の単位と見なされるが、その定義や内容は判断の難しい部分が多い。.

新しい!!: 物質と個体 · 続きを見る »

燃えるマッチ 火(ひ)とは、熱と光を出す現象。 化学的には物質の燃焼(物質の急激な酸化)に伴って発生する現象、あるいは燃焼の一部と考えられている現象である。 火は熱や光と共に様々な化学物質も生成する。気体が燃焼することによって発生する激しいものは炎と呼ばれる。煙が熱と光を持った形態で、気体の示す一つの姿であり、気体がイオン化してプラズマを生じている状態である。燃焼している物質の種類や含有している物質により、炎の色や強さが変化する。 (→#火の構造、しくみ) 人類の火についての理解は大きく変遷してきている。象徴的な理解は古代から現代まで力を持っている。また理知的には古代ギリシアにおいては4大元素のひとつと考えられた。西欧では18世紀頃までこうした考え方はされた。18世紀に影響力をもったフロギストン説も科学史的に重要である。(→#火の理解史) 人類は調理、暖房、合図として、また動力源としても火を利用してきた。(→#火の利用・用途) 火は火災を引き起こし、燃焼によって人間が物的損害を被ることがある。また、世界的な生態系にも影響する重要なプロセスである。火はある面では生態系を維持し、生物の成長を促す効果を持つ。また、火は水質・土壌・大気などを汚染する原因という側面もある。.

新しい!!: 物質と火 · 続きを見る »

現象

象(げんしょう φαινόμενoν- phainomenon, pl.

新しい!!: 物質と現象 · 続きを見る »

現象的意識

象的意識(げんしょうてきいしき、Phenomenal consciousness)は、人間の意識という言葉に関する区分のひとつで、質的な内容を持った、主観的な体験のこと。現象的意識に含まれる個々の質感のことをクオリアと言う。 現象的意識は現在の物理学の中に還元できる特性のひとつでしかない、と考える唯物論(または物理主義)的立場と、そうした還元は出来ないと考える二元論的立場の間で、その存在論的位置づけを巡って、一部で論争が行われた。.

新しい!!: 物質と現象的意識 · 続きを見る »

神話

日本神話のイザナギとイザナミの国産み。創造神話の典型。 神話(しんわ、、)は、人類が認識する自然物や自然現象、または民族や文化・文明などさまざまな事象を、世界が始まった時代における神など超自然的・形而上的な存在や文化英雄などとむすびつけた一回限りの出来事として説明する物語であり、諸事象の起源や存在理由を語る説話でもある世界神話事典 pp.24-46、大林、総説。このような性質から、神話が述べる出来事などは、不可侵であり規範として従わなければならないものとして意義づけられている。 英語の(ミソロジー)には「物語としての神話」と「神話の研究」のふたつの意味がある。例えば「比較神話学」()は異なる文化圏の神話を比較研究する学問でありLittleton p.32、一方で「ギリシア神話」()とは古代ギリシアの神話物語の体系を指す。単語「」は口語にてしばしば「誤った根拠」を指して使われるEliade、''Myth and Reality'' p.1が、学問的に使われる場合は、その真偽を問うことは無いDundes, ''Introduction'' p.1。民俗学では、神話とは世界や人類がいかにして現在の姿となったかを説明する象徴的な物語と定義されるDundes, ''Binary'' p.45Dundes, ''Madness'' p.147が、他の学問分野では単語「myth」の使い方が異なり、伝統的な説話を広く包括する意味合いを持たせている。 比喩的な用法では根拠も無く絶対的事実だと思われている事象を例えて用いる言葉にも使われ、「日本の『安全神話』()が崩れた」といった例で使われる場合もある。これらは、現実が隠蔽され、人々の考え方や行動が何かしら誤った方向に固定化してしまった「常識」とも言える。.

新しい!!: 物質と神話 · 続きを見る »

空間

間(くうかん)とは、.

新しい!!: 物質と空間 · 続きを見る »

空気

気(くうき)とは、地球の大気圏の最下層を構成している気体で、人類が暮らしている中で身の回りにあるものをいう。 一般に空気は、無色透明で、複数の気体の混合物からなり、その組成は約8割が窒素、約2割が酸素でほぼ一定である。また水蒸気が含まれるがその濃度は場所により大きく異なる。工学など空気を利用・研究する分野では、水蒸気を除いた乾燥空気(かんそうくうき, dry air)と水蒸気を含めた湿潤空気(しつじゅんくうき, wet air)を使い分ける。.

新しい!!: 物質と空気 · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: 物質と窒素 · 続きを見る »

精神

精神(せいしん)は、心、意識、気構え、気力、理念といった意味を持つ言葉。.

新しい!!: 物質と精神 · 続きを見る »

素粒子

物理学において素粒子(そりゅうし、elementary particle)とは、物質を構成する最小の単位のことである。基本粒子とほぼ同義語である。.

新しい!!: 物質と素粒子 · 続きを見る »

素粒子物理学

素粒子物理学(そりゅうしぶつりがく、particle physics)は、物質の最も基本的な構成要素(素粒子)とその運動法則を研究対象とする物理学の一分野である。 大別して素粒子論(素粒子理論)と素粒子実験からなる。また実証主義、還元主義に則って実験的に素粒子を研究する体系を高エネルギー物理学と呼ぶ。 粒子加速器を用い、高エネルギー粒子の衝突反応を観測することで、主に研究が進められることから、そう命名された。しかしながら、現在、実験で必要とされる衝突エネルギーはテラ電子ボルトの領域となり、加速器の規模が非常に大きくなってきている。将来的に建設が検討されている国際リニアコライダーも建設費用は一兆円程度になることが予想されている。また、近年においても、伝統的に非加速器による素粒子物理学の実験的研究が模索されている。 何をもって素粒子とするのかは時代とともに変化してきており、立場によっても違い得るが標準理論の枠組みにおいては、物質粒子として6種類のクォークと6種類のレプトン、力を媒介する粒子としてグルーオン、光子、ウィークボソン、重力子(グラビトン)、さらにヒッグス粒子等が素粒子だと考えられている。超弦理論においては素粒子はすべて弦(ひもともいう)の振動として扱われる。.

新しい!!: 物質と素粒子物理学 · 続きを見る »

純物質

純物質(じゅんぶっしつ、pure substance)とは、一定の性質を持つ化学物質のこと。特に水素や酸素など単一の元素(厳密には同素体)からのみ構成されるものを単体、水など複数の元素が化合してできたものを化合物という。 純物質を構成しているそれぞれの元素の組成や密度・融点・沸点は一定であり、それらの物理的性質から物質の種類を判別することができる。複数の純物質が混合してできた物質は混合物という。 純物質は物理的方法(ろ過・蒸留・再結晶・クロマトグラフィーなど)ではこれ以上分離しない。しかし、化学的方法(電気分解など)を用いれば単体にまで分解することができる。.

新しい!!: 物質と純物質 · 続きを見る »

紀元前30世紀

イヤルオンタリオ博物館に所蔵されている石製の祭祀用ナイフ。ジェルの名前が彫られている。 バット、アル=フトゥム、アル=アインの考古遺跡群。現在のオマーンのマガン地方にはメソポタミアへ銅を供給したバット遺跡やそれと関連した遺跡がいくつかある。画像はアル=アインのネクロポリスの遺跡。 紀元前30世紀(きげんぜんさんじゅうせいき)は、西暦による紀元前3000年から紀元前2901年までの100年間を指す世紀。.

新しい!!: 物質と紀元前30世紀 · 続きを見る »

結露

結露(けつろ)とは、固体状態における物質の表面、または内部で、空気中の水蒸気が凝縮する現象のことである。 例:温度20℃・湿度50%の室内における露点温度は、9.6℃であり、壁や窓などの表面が、9.6℃以下の場所で結露が発生する。 250px.

新しい!!: 物質と結露 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

新しい!!: 物質と炭素 · 続きを見る »

生命

ここでは生命(せいめい、、 ウィータ)について解説する。.

新しい!!: 物質と生命 · 続きを見る »

生命力

生命力(せいめいりょく);一般概念.

新しい!!: 物質と生命力 · 続きを見る »

生気論

生気論(せいきろん、vitalism)は、「生命に非生物にはない特別な力を認める」仮説である。生気説、活力説、活力論とも呼ばれる。.

新しい!!: 物質と生気論 · 続きを見る »

熱の流れは様々な方法で作ることができる。 熱(ねつ、heat)とは、慣用的には、肌で触れてわかる熱さや冷たさといった感覚である温度の元となるエネルギーという概念を指していると考えられているが、物理学では熱と温度は明確に区別される概念である。本項目においては主に物理学的な「熱」の概念について述べる。 熱力学における熱とは、1つの物体や系から別の物体や系への温度接触によるエネルギー伝達の過程であり、ある物体に熱力学的な仕事以外でその物体に伝達されたエネルギーと定義される。 関連する内部エネルギーという用語は、物体の温度を上げることで増加するエネルギーにほぼ相当する。熱は正確には高温物体から低温物体へエネルギーが伝達する過程が「熱」として認識される。 物体間のエネルギー伝達は、放射、熱伝導、対流に分類される。温度は熱平衡状態にある原子や分子などの乱雑な並進運動の運動エネルギーの平均値であり、熱伝達を生じさせる性質をもつ。物体(あるいは物体のある部分)から他に熱によってエネルギーが伝達されるのは、それらの間に温度差がある場合だけである(熱力学第二法則)。同じまたは高い温度の物体へ熱によってエネルギーを伝達するには、ヒートポンプのような機械力を使うか、鏡やレンズで放射を集中させてエネルギー密度を高めなければならない(熱力学第二法則)。.

新しい!!: 物質と熱 · 続きを見る »

異性体

性体(いせいたい、、発音:()とは同じ数、同じ種類の原子を持っているが、違う構造をしている物質のこと。分子A1と分子A2が同一分子式で構造が異なる場合、A1はA2の異性体であり、A2はA1の異性体である。また同一分子式の一群の化合物をAと総称した場合、A1もA2もAの異性体である。「ジエチルエーテルはブタノールの異性体である」というのが前者の使い方であり、「ブタノールの構造異性体は4種類ある」というのが後者の使い方である。分子式C4H10Oの化合物の構造異性体と言えば、ブタノールに加えてジエチルエーテルやメチルプロピルエーテルも含まれる。 大多数の有機化合物のように多数の原子の共有結合でできた分子化合物は異性体を持ちうる。ひとつの中心原子に複数種類の配位子が配位した錯体は異性体を持ちうる。 異性体を持つという性質、異性体を生じる性質を異性(isomerism、発音:または)という。イェンス・ベルセリウスが、「同じ部分が一緒になっている」ことを意味するギリシャ語ιςομερηςから1830年に命名した。.

新しい!!: 物質と異性体 · 続きを見る »

物(もの、ぶつ)とは、広義には対象を特定化せず一般的・包括的にいう語であり、人間が知覚し思考し得る対象の一切である。.

新しい!!: 物質と物 · 続きを見る »

物体

物体(ぶったい)とは、ものとして認知しうる対象物である。すなわち、実物または実体として宇宙空間において存在するものが物体である。物理学および哲学の主要な研究対象の一つである。 物体と物質は次のように区別される。.

新しい!!: 物質と物体 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 物質と物理学 · 続きを見る »

物理化学

物理化学(ぶつりかがく、physical chemistry)とは、化学の対象である物質、あるいはその基本的な構成を成している化合物や分子などについて、物質の構造、物質の性質(=物性)、物質の反応を調べる知恵蔵2012 市村禎二郎 東京工業大学教授 執筆【物理化学】ために、物理学的な手法を用いて研究する領域に対する呼称。理論的な基礎として熱力学と量子力学、およびこれら2つをつなぐ統計力学を大きな柱とする。 化学は対象とする物質によって有機化学、無機化学などがあるが、物理化学でも対象によって有機物理化学、無機物理化学と呼び分けられている。 物理化学の中の分野としては以下のものがある。.

新しい!!: 物質と物理化学 · 続きを見る »

物質

物質(ぶっしつ)は、.

新しい!!: 物質と物質 · 続きを見る »

物質の状態

物質の状態は、相の違いにより区別される物質の状態である。 歴史的には、物質の状態は巨視的な性質により区別されていた。即ち、固体は定まった体積と形を持つ。液体は定まった体積を持つが、形は定まっていない。気体は体積も形も定まっていない。近年では、物質の状態は分子間相互作用によって区別されている。即ち、固体は分子間の相互配置が定まっており、液体では近接分子は接触しているが相互配置は定まっていないのに対し、気体では分子はかなり離れていて、分子間相互作用はそれぞれの運動にほとんど影響を及ぼしていない。また、プラズマは高度にイオン化した気体で、高温下で生じる。イオンの引力、斥力による分子間相互作用によりこのような状態を生じるため、プラズマはしばしば「第四の状態」と呼ばれる。 分子以外から構成される物質や別の力で組織される物質の状態も、ある種の「物質の状態」だと考えられる。フェルミ凝縮やクォークグルーオンプラズマ等が例として挙げられる。 また、物質の状態は相転移からも定義される。相転移は物質の性質の突然の変化から構造の変化を示すものである。この定義では、物質の状態とは他とは異なった熱力学的状態のことである。水はいくつかの異なった固体の状態を持つといえる。また、超伝導の出現は相転移と関連していて、「超伝導状態」という状態がある。液晶や強磁性が相転移により特別の性質を持つのと同様である。 相転移のダイアグラム.

新しい!!: 物質と物質の状態 · 続きを見る »

物質主義

物質主義(ぶっしつしゅぎ)とは、物質的・即物的なものごとを、他のものごとよりも優先させる態度のこと。ここで言う"物質"とは、比喩的な表現であり、人により解釈の幅があるが、おおむね「衣食住」のことや、いわゆる"経済的"なこと、すなわち「財貨」・「金銭」・「物品」の獲得・所有・占有・使用などのことを指していることが多い。経済的物質主義(Economic materialism)、物質中心主義とも言う。 広くは、人生で遭遇する様々な貴重な体験・経験を、自身の学びや気づきの機会として充分に活かすこともなく、経済的な側面だけから一面的に評価しただけで全て終わらせてしまったり、経済的な側面だけ見て一喜一憂する態度も、この名称で指されることもある。 物質主義の態度・傾向のある者を「物質主義者」と呼ぶ。.

新しい!!: 物質と物質主義 · 続きを見る »

物性

物性(ぶっせい)とは、物質の示す物理的性質のこと。機械的性質(力学的性質)、熱的性質、電気的性質、磁気的性質、光学的性質がある。.

新しい!!: 物質と物性 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: 物質と相対性理論 · 続きを見る »

相転移

転移(そうてんい、英語:phase transition)とは、ある系の相(phase)が別の相へ変わることを指す。しばしば相変態(そうへんたい、英語:phase transformation)とも呼ばれる。熱力学または統計力学において、相はある特徴を持った系の安定な状態の集合として定義される。一般には物質の三態(固体・固相、液体・液相、気体・気相)の相互変化として理解されるが、同相の物質中の物性変化(結晶構造や密度、磁性など)や基底状態の変化に対しても用いられる。相転移に現れる現象も単に「相転移」と呼ぶことがある。.

新しい!!: 物質と相転移 · 続きを見る »

E=mc2

(イー・イコール・エム・シーじじょう、イー・イコール・エム・シー・スクエアド、E equals m c squared)とは、 の物理学的関係式を指し、「質量とエネルギーの等価性」とその定量的関係を表している。アルベルト・アインシュタインにより、特殊相対性理論の帰結として、1905年の論文『物体の慣性はその物体の含むエネルギーに依存するであろうか』内で発表された。 この等価性の帰結として、質量の消失はエネルギーの発生を、エネルギーの消失は質量の発生をそれぞれ意味する。したがってエネルギーを転換すれば無から質量が生まれる。.

新しい!!: 物質とE=mc2 · 続きを見る »

階層構造

階層構造(かいそうこうぞう、hierarchy、ヒエラルキー)は、ある事象や認識対象の構造が、高層建築物のように、各階を、下層から上層へと順に積み重ねて全体を構成している場合の構造である。あるいは、積み木構造ともいえる。 また、ある要素が複数集まることでひとつのユニット(集合体)を形成し、そのユニットが複数集まることでさらに大きなひとつの大ユニットを形成し、その大ユニットが……という構造も、階層構造である。.

新しい!!: 物質と階層構造 · 続きを見る »

融点

融点(ゆうてん、Schmelzpunkt、point de fusion、melting point)とは、固体が融解し液体になる時の温度のことをいう。ヒステリシスが無い場合には凝固点(液体が固体になる時の温度)と一致する。また、三重点すなわち平衡蒸気圧下の融点は物質固有の値を取り、不純物が含まれている場合は凝固点降下により融点が低下することから物質を同定したり、純度を確認したりする手段として用いられる。 熱的に不安定な物質は溶融と共に分解反応が生じる場合もある。その場合の温度は分解点と呼ばれる場合があり、融点に(分解)と併記されることがある。.

新しい!!: 物質と融点 · 続きを見る »

融解

融解(ゆうかい、melting)とは、物理学で固体が液体に変化すること。また、そうさせるために加熱することである。固体が液体に変化する温度を融点、液体に変化した物質の状態を液相という。.

新しい!!: 物質と融解 · 続きを見る »

非局所性

非局所性(ひきょくしょせい、nonlocality)とは、この宇宙における現象が、離れた場所にあっても相互に絡み合い、影響し合っているという性質のこと。 マイケル・レッドヘッドが1987年に解説し、翌年ラカトシュ賞を受けた。.

新しい!!: 物質と非局所性 · 続きを見る »

香料

香料(こうりょう、flavor)は、食品に香りと味の一部を付与する食品添加物(フレーバー)と、食品以外のものに香りを付けるフレグランス(香粧品香料)に大別される。 一般に香料は、様々な植物や一部の動物から抽出された天然香料(てんねんこうりょう)、あるいは化学的に合成された合成香料(ごうせいこうりょう)を多数調合して作られる。これらはフレーバー、フレグランスにかかわらず調合香料(ちょうごうこうりょう)と呼ばれる。調合香料を作成する際の調合品目やその割合、調合の順序などを記載した処方箋(レシピ)を作成すること、あるいは実際に調合香料を作成する行為を調香といい(調合香料を作成する行為は調合(ちょうごう)と呼ばれ、この二つは混同されることも多いが、意図的に語を使いわける場合もある)、調香を行う専門職は調香師と呼ばれる。特にフレーバーを調香する調香師はフレーバリスト、フレグランスを調香する調香師はパフューマーと呼ばれる。.

新しい!!: 物質と香料 · 続きを見る »

解釈

解釈(かいしゃく、ἑρμηνεία (hermeneia)、interpretatio、Auslegung、Interpretation)は、主として以下のような意味で用いられる。.

新しい!!: 物質と解釈 · 続きを見る »

認識

認識(にんしき)は基本的には哲学の概念で、主体あるいは主観が対象を明確に把握することを言う。知識とほぼ同義の語であるが、日常語の知識と区別され、知識は主に認識によって得られた「成果」を意味するが、認識は成果のみならず、対象を把握するに至る「作用」を含む概念である。.

新しい!!: 物質と認識 · 続きを見る »

説明

説明(せつめい、explanation)とは、事柄の内容や意味を、よく分かるように解き明かすこと広辞苑第六版【説明】。ある事柄について、よくわかるように述べること。.

新しい!!: 物質と説明 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: 物質と質量 · 続きを見る »

質量保存の法則

質量保存の法則(しつりょうほぞんのほうそく、law of conservation of mass)とは「化学反応の前と後で物質の総質量は変化しない」とする化学の法則のことである。現在は自然の基本法則ではないことが知られているが、実用上広く用いられている。.

新しい!!: 物質と質量保存の法則 · 続きを見る »

質料

質料(しつりよう、ὕλη、ヒュレー)は古代ギリシアの概念で、形式をもたない材料が、形式を与えられることで初めてものとして成り立つ、と考えるとき、その素材、材料のことをいう。.

新しい!!: 物質と質料 · 続きを見る »

蒸留

実験室レベルにおける典型的な蒸留装置の模式図。1,熱源(ガスバーナー)、2,蒸留用フラスコ(丸底フラスコ)、3,ト字管、4,温度計、5,冷却器、6,冷却水(入)、7,冷却水(出)8,蒸留液を溜めるフラスコ、9,真空ポンプ、10,真空用アダプター 蒸留(じょうりゅう、Distillation)とは、混合物を一度蒸発させ、後で再び凝縮させることで、沸点の異なる成分を分離・濃縮する操作をいう。通常、目的成分が常温で液体であるか、融点が高々100℃程度の固体の場合に用いられる。共沸しない混合物であれば、蒸留によりほぼ完全に単離・精製することが可能であり、この操作を特に分留という。.

新しい!!: 物質と蒸留 · 続きを見る »

蒸発

蒸発(じょうはつ、英語:evaporation)とは、液体の表面から気化が起こる現象のことである。常温でも蒸発するガソリンなどの液体については、揮発(きはつ)と呼ばれることもある。.

新しい!!: 物質と蒸発 · 続きを見る »

還元

還元(かんげん、英:reduction)とは、対象とする物質が電子を受け取る化学反応のこと。または、原子の形式酸化数が小さくなる化学反応のこと。具体的には、物質から酸素が奪われる反応、あるいは、物質が水素と化合する反応等が相当する。 目的化学物質を還元する為に使用する試薬、原料を還元剤と呼ぶ。一般的に還元剤と呼ばれる物質はあるが、反応における還元と酸化との役割は物質間で相対的である為、実際に還元剤として働くかどうかは、反応させる相手の物質による。 還元反応が工業的に用いられる例としては、製鉄(原料の酸化鉄を還元して鉄にする)などを始めとする金属の製錬が挙げられる。また、有機合成においても、多くの種類の還元反応が工業規模で実施されている。.

新しい!!: 物質と還元 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: 物質と重力 · 続きを見る »

量子論

量子論(りょうしろん)とは、ある物理量が任意の値を取ることができず、特定の離散的な値しかとることができない、すなわち量子化を受けるような全ての現象と効果を扱う学問である。粒子と波動の二重性、物理的過程の不確定性、観測による不可避な擾乱も特徴である。量子論は、マックス・プランクのまで遡る全ての理論、、概念を包括する。量子仮説は1900年に、例えば光や物質構造に対する古典物理学的説明が限界に来ていたために産まれた。 量子論は、相対性理論と共に現代物理学の基礎的な二つの柱である。量子物理学と古典物理学との間の違いは、微視的な(例えば、原子や分子の構造)もしくは、特に「純粋な」系(例えば、超伝導やレーザー光)において特に顕著である。しかし、様々な物質の化学的および物理的性質(色、磁性、電気伝導性など)のように日常的な事も、量子論によってしか説明ができない。 量子論には、量子力学と量子場理論と呼ばれる二つの理論物理学上の領域が含まれる。量子力学はの場の影響下での振る舞いを記述する。量子場理論は場も量子的対象として扱う。これら二つの理論の予測は、実験結果と驚くべき精度で一致する。唯一の欠点は、現状の知識状態では一般相対性理論と整合させることができないという点にある。.

新しい!!: 物質と量子論 · 続きを見る »

自然崇拝

自然崇拝(しぜんすうはい・英nature worship/physiolatry)とは、自然物・自然現象を対象とする崇拝、もしくはそれらを神格化する信仰の総称。 「自然への崇拝」ではなく、「自然」という概念ができる以前の崇拝形態である。自然崇拝は世界各地に見られ、また各地の神話にも自然物・現象を神格化した神が登場することから、古くは普遍的であったと思われる。万物に宿る精霊を崇拝対象とするアニミズムとも関係が深く、その原初的な形とも捉えられる。しかし自然崇拝では精霊でなく自然物・現象そのものを崇拝対象とする(自然と超自然的存在を区別しない)場合も多く、またしばしば特定の自然物・現象だけを尊重する点で区別される。.

新しい!!: 物質と自然崇拝 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: 物質と金属 · 続きを見る »

酸化

酸化(さんか、英:oxidation)とは、対象の物質が酸素と化合すること。 例えば、鉄がさびて酸化鉄になる場合、鉄の電子は酸素(O2)に移動しており、鉄は酸化されていることが分かる。 目的化学物質を酸化する為に使用する試薬、原料を酸化剤と呼ぶ。ただし、反応における酸化と還元との役割は物質間で相対的である為、一般的に酸化剤と呼ぶ物質であっても、実際に酸化剤として働くかどうかは、反応させる相手の物質による。.

新しい!!: 物質と酸化 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

新しい!!: 物質と鉄 · 続きを見る »

陽電子

陽電子(ようでんし、ポジトロン、英語:positron)は、電子の反粒子。絶対量が電子と等しいプラスの電荷を持ち、その他の電子と等しいあらゆる特徴(質量やスピン角運動量 (1/2))を持つ。.

新しい!!: 物質と陽電子 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

新しい!!: 物質と恒星 · 続きを見る »

核種

核種(かくしゅ、、または nuclear species小田稔ほか編、『』、研究社、1998年、項目「nuclide」より。ISBN 978-4-7674-3456-8)とは、原子核の組成、すなわち核の中の陽子の数、中性子の数及び核のエネルギー準位によって規定される特定の原子の種類を言う。米国の核化学者 T. P. Kohman によって提案された。 核種は原子核の同位体やその他の性質を区別するために利用される。放射能を持つ核種を放射性核種、そうではない安定した核種を安定核種と呼ぶ。.

新しい!!: 物質と核種 · 続きを見る »

概念

概念(がいねん、哲学では仏: notion、独: Begriffというが、日常的に仏: concept、独: Konzeptという。コンセプトは前記フランス語から由来している)は、命題の要素となる項(Terminus)が表すものであり、言い換えれば、それが言語で表現された場合に名辞(Terminus)となるものが概念である。 事象に対して、抽象化・ 普遍化してとらえた、思考の基礎となる基本的な形態として、脳の機能によってとらえたもの。.

新しい!!: 物質と概念 · 続きを見る »

構成

構成(こうせい)とは、目的に従って統一的にすることである。なお、ある目的に従って構成された組織のメンバーを構成員という。本項には哲学と美学における構成の概念を解説するがこの他にも音楽の作曲をさして構成という場合もある。(コンポーズ).

新しい!!: 物質と構成 · 続きを見る »

機械論

機械論(きかいろん、Mechanism、Mechanizismus)は、自然現象に代表される現象一般を、心や精神や意志、霊魂などの概念を用いずに、その部分の決定論的な因果関係のみ、特に古典力学的な因果連鎖のみで、解釈が可能であり、全体の振る舞の予測も可能、とする立場。 哲学、そして、科学史の分野並びにその学際領域において扱われる名辞・概念、名称・用語であり、それらの分野では目的論や生気論と比較、対置されている。但し、具体的にどの見解に従って"機械論"とするのかは、論者、著書によって異なり、その"機械論"の性質も多少変わってくる。なお、「目的論」「生気論」の範囲についても同様である。ただし、大局的には、哲学史のみならず、決定論に帰着する。 超自然的な力の介在を否定する機械論は、自然科学の発展の礎となった。しかし、量子力学の不確定性原理のように、断片的にであれ決定論と衝突する学説も知られている。.

新しい!!: 物質と機械論 · 続きを見る »

正二十面体

正二十面体 正二十面体(せいにじゅうめんたい、regular icosahedron)は立体の名称の1つ。空間を正三角形20枚で囲んだ凸多面体。3次元空間で最大の面数を持つ正多面体である。.

新しい!!: 物質と正二十面体 · 続きを見る »

正八面体

正八面体 正八面体(せいはちめんたい、regular octahedron)は立体の名称の1つ。空間を正三角形8枚で囲んだ形。.

新しい!!: 物質と正八面体 · 続きを見る »

正四面体

正四面体(せいしめんたい、せいよんめんたい、regular tetrahedron)は、4枚の合同な正三角形を面とする四面体である。 最も頂点・辺・面の数が少ない正多面体であり、最も頂点・辺・面の数が少ないデルタ多面体であり、アルキメデスの正三角錐である。また、3次元の正単体である。 なお一般に、n 面体のトポロジーは一定しないが、四面体だけは1種類のトポロジーしかない。つまり、四面体は全て、正四面体と同相であり、正四面体の辺を伸ばしたり縮めたりしたものである。.

新しい!!: 物質と正四面体 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 物質と水 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: 物質と水素 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

新しい!!: 物質と気体 · 続きを見る »

気体反応の法則

気体反応の法則(きたいはんのうのほうそく、)は、2種以上の気体物質が関与する化学反応について成り立つ法則である。1808年にジョセフ・ルイ・ゲイ=リュサックによって発表された。 法則の和名が現象に則さないため、近年では反応体積比の法則への名称変更が提唱されている。.

新しい!!: 物質と気体反応の法則 · 続きを見る »

沸点

沸点(ふってん、)とは、液体の飽和蒸気圧が外圧液体の表面にかかる圧力のこと。と等しくなる温度であるアトキンス第8版 p.122.

新しい!!: 物質と沸点 · 続きを見る »

液体

液体の滴は表面積が最小になるよう球形になる。これは、液体の表面張力によるものである 液体(えきたい、liquid)は物質の三態(固体・液体・気体)の一つである。気体と同様に流動的で、容器に合わせて形を変える。液体は気体に比して圧縮性が小さい。気体とは異なり、容器全体に広がることはなく、ほぼ一定の密度を保つ。液体特有の性質として表面張力があり、それによって「濡れ」という現象が起きる。 液体の密度は一般に固体のそれに近く、気体よりもはるかに高い密度を持つ。そこで液体と固体をまとめて「凝集系」などとも呼ぶ。一方で液体と気体は流動性を共有しているため、それらをあわせて流体と呼ぶ。.

新しい!!: 物質と液体 · 続きを見る »

混合物

混合物(こんごうぶつ、mixture)とは、複数の種類のものが混じり合ってできたもののこと。化学的には複数の物質が混じり合ってできた物質のことであり、たとえば空気は窒素・酸素・アルゴン・二酸化炭素などの混合物である。化学物質の混合物であることを示す場合は、特に化学混合物 (chemical mixture) とも呼ぶ。 混合物の密度・融点・沸点などの物理的性質は、各成分の量比によって変化し、一定でない。一般に、混合物の融点は純物質の融点よりも低くなるため、物質の純度を簡単に確かめる方法として用いられる。 混合物を成分ごとに分離・精製し、純物質にする方法としては、ろ過・蒸留・抽出・昇華・再結晶・クロマトグラフィーなどの手法が状況に応じて用いられる。たとえば、「泥の混じった塩水」から純粋な水を得るためには、まずろ過によって泥を取り除き、蒸留によって水だけを取り出せばよい。.

新しい!!: 物質と混合物 · 続きを見る »

溶解

水に溶解する塩 溶解(ようかい、)とは溶質と呼びあらわされる固体、液体または気体が溶媒(液体)中に分散して均一系を形成する現象。 その生成する液体の均一系は溶液と呼ばれる。溶解する場合の分散は単一分子であったり、分子の会合体であったりする。あるいは金属工学などでは金属の融解()を溶解と呼ぶこともある。.

新しい!!: 物質と溶解 · 続きを見る »

本質

本質(ほんしつ、ουσια (ousia), substantia / essentia)とは、あるものがそのものであると云いうるために最低限持たなければいけない性質をいう。もしくはそうした性質からなる理念的な実体をいう場合もある。.

新しい!!: 物質と本質 · 続きを見る »

有機体論

有機体論(ゆうきたいろん、英:organicism 他言語では、仏:organicisme、独:Organizismus)とは、生命現象の基本というのは、部分過程がorganize(組織・編成)されて、その系(システム)に固有の平衡または発展的変化を可能にしている点にある、とする立場岩波生物学事典第四版のことである。 有機体論は、生命現象というのは、あくまで有機体の物質と過程がある特定な結合状態・秩序にあるときに(のみ)可能なものなのだということ、Systemeigenschaften(その系に具わる特性)である、ということに力点を置く説いているテーマは生命論ではあるが、なかば人間の思考パターン自体の問題点を指摘している。例えば、>にはその下位要素として確かにドアや窓や屋根があるが、だからといって、家を一旦バラバラにして、ドアや窓や屋根などの要素を、たとえ全てであっても、空き地に乱雑に山のように積み上げても、それはもはや > では全然なく、ただのガレキにすぎない、 >と呼べるのはあくまでドア・窓・屋根などが特定の位置関係で、特定の結合状態で、特定の秩序にあるときである、といったことである。つまり、初学者が陥りがちな、また学者ですらしばしば陥ってしまうことがある、思慮の足らない還元主義という思考パターンの問題点の指摘が内に含まれている。。 20世紀前半では、L.ベルタランフィー、ウッジャー(Joseph Henry Woodger)、W.E.リッター(William Emerson Ritter)、Edna.W.Baileyらによって論じられた。その後も現在にいたるまで、多くの賛同者がいる。.

新しい!!: 物質と有機体論 · 続きを見る »

情報

情報(じょうほう、英語: information、ラテン語: informatio インフォルマーティオー)とは、.

新しい!!: 物質と情報 · 続きを見る »

昇華

昇華(しょうか、sublimation).

新しい!!: 物質と昇華 · 続きを見る »

昇華 (化学)

昇華(しょうか、sublimation)は元素や化合物が液体を経ずに固体から気体、または気体から固体へと相転移する現象。後者については凝華(ぎょうか)とも。温度と圧力の交点が三重点より下へ来た場合に起こる。 標準圧では、ほとんどの化合物と元素が温度変化により固体、液体、気体の三態間を相転移する性質を持つ。この状態においては、固体から気体へと相転移する場合、中間の状態である液体を経る必要がある。 しかし、一部の化合物と元素は一定の圧力下において、固体と気体間を直接に相転移する。相転移に影響する圧力は系全体の圧力ではなく、物質各々の蒸気圧である。 日本語においては、昇華という用語は主に固体から気体への変化を指すが、気体から固体への変化を指すこともある。また気体から固体への変化を特に凝固と呼ぶこともあるが、これは液体から固体への変化を指す用語として使われることが多い。英語では sublimation が使われるが、気体から固体への変化を特に deposition と呼ぶこともある。.

新しい!!: 物質と昇華 (化学) · 続きを見る »

新プラトン主義

新プラトン主義(Neoplatonism)は、後3世紀に成立し、西洋古代哲学の掉尾を飾った潮流である。始祖とされるプロティノス(3世紀)は、プラトンのイデア論を徹底させ、万物は一者から流出したもの(流出説)と捉えた。ネオプラトニズムとも。 「新プラトン主義」(Neuplatonismus)は18世紀のドイツで生まれた造語が19世紀に入ってから定着した近代の用語であり、シュライアーマッハー以降、文献学により、プラトン自身のオリジナルの教説と後世の追随者の思想とが区別して捉えられるようになって確立した概念である。多くの場合、時代的に新しいプラトン主義であるというだけでなく、いくつかの面でプラトン思想とは異なる特徴を呈しており、本来のそれからの逸脱である、という含みをもって用いられる。.

新しい!!: 物質と新プラトン主義 · 続きを見る »

放射能

放射能(ほうしゃのう、radioactivity、activity)とは、放射性同位元素が放射性崩壊を起こして別の元素に変化する性質(能力)を言う。なお、放射性崩壊に際しては放射線の放出を伴う。 放射能は、単位時間に放射性崩壊する原子の個数(単位:ベクレル )で計量される。 なお、ある元素の同位体の中で放射能を持つ元素を表す場合は「放射性同位体」、それらを含む物質を表す場合は「放射性物質」と呼ぶのが適切である。.

新しい!!: 物質と放射能 · 続きを見る »

意識

意識(いしき、Consciousness)は、一般に、「起きている状態にあること(覚醒)」または「自分の今ある状態や、周囲の状況などを認識できている状態のこと」を指す。 ただし、歴史的、文化的に、この言葉は様々な形で用いられており、その意味は多様である。哲学、心理学、生物学、医学、宗教、日常会話などの中で、様々な意味で用いられる。 日本語では、「ある物事について要求される注意を払っている」とか「考え方や取り組み方について努力が行われている」といったことを表す場合に、意識が高い(または低い)といった言い方が許される。たとえば公害や廃棄物などの問題についてよく勉強し、改善のために様々な行動や対策を行っている個人や集団を、環境問題についての意識が高い、などと表現する。このような用法は遵法意識、コスト意識、プロ意識、意識調査、意識改革、など様々な表現に見られる。 学術的には、文脈に応じて意識という語は様々な意味で使用される。以下では、哲学、心理学、臨床医学をはじめとするいくつかの分野に分けて、代表的な意味を解説する。.

新しい!!: 物質と意識 · 続きを見る »

懐疑主義

懐疑主義(かいぎしゅぎ、、)とは、基本的原理・認識に対して、その普遍妥当性、客観性ないし蓋然性を吟味し、根拠のないあらゆるドクサ(独断)を排除しようとする主義である。懐疑論(かいぎろん)とも呼ばれる。これに対して、絶対的な明証性をもつとされる基本的原理(ドグマ)を根底におき、そこから世界の構造を明らかにしようとする立場を独断主義(Dogmatismus)ないし独断論という。懐疑主義ないし懐疑論は、古代から近世にかけて、真の認識をもたらさない、あるいは無神論へとつながる破壊的な思想として論難されることが多かった。これは、懐疑主義が、懐疑の結果、普遍妥当性及び客観性ないし蓋然性ある新たな原理・認識が得られなかった場合、判断停止に陥り、不可知論と結びつき、伝統的形而上学の保持する神や存在の確かさをも疑うようになったためである。しかし近代以降は、自然科学の発展の思想的エネルギー源となったこともあり、肯定的に語られることが多い。 経験的な証拠が欠如している主張の真実性、正確性、普遍妥当性を疑う認識論上の立場、および科学的・日常的な姿勢は科学的懐疑主義と呼ばれる。.

新しい!!: 物質と懐疑主義 · 続きを見る »

思考

思考(しこう、Thinking)は、考えや思いを巡らせる行動であり、結論を導き出すなど何かしら一定の状態に達しようとする過程において、筋道や方法など模索する精神の活動である。広義には人間が持つ知的作用を総称する言葉、狭義では概念・判断・推理を行うことを指す。知的直感を含める場合もあるが、感性や意欲とは区別される。哲学的には思惟(しい、しゆい)と同義だが、大森荘蔵は『知の構築とその呪縛』(p152)にて思考と思惟の差について言及し、思惟とは思考を含みつつ感情なども包括した心の働きと定義している。 論理学分野で研究されてきた思考の定義は定まっておらず『ブリタニア国際大百科事典、第2版改訂』、多様な側面を持つ。心理学分野の研究では、思考とは何らかの思想や問題対処法を立ち上げる心の過程や操作を示し、その対象は問題解決、方略、推理、理解、表象(心像、観念、概念など)知識といった現象を取り扱う『日本大百科全書』。 漢字「思考」の「思」は、「田」が頭蓋骨の意味が転じた「頭脳の活動」、「心」が「精神の活動」を指す。「考」は知恵の意味「老」に終わりなく進む「て」が付属したものである。漢字全体では、頭や心で活動し、知恵を巡らせることを意味する。 思考とは何かという疑問は、人類の歴史の中で繰り返し問いかけられてきた。ただし思考だけを独立させて取り扱うのではなく、知能や生命、さらに社会など総体的に人間が生きる側面のひとつとみなし、複雑系を構成する要素として組織的に扱う必要がある。イマヌエル・カントは、近代的な個人の思考とはひとりでは成り立たせることは不可能であり、必ず他者と共同され、公開し、主観を共有する状態からしか生まれないと述べた。そうでないものを「未成年状態」と定め、それを脱却するために啓蒙が必要と説いた。したがって、言論の自由とは意思を発表する権利という点に止まらず、思考の権利でもあると考えた。.

新しい!!: 物質と思考 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: 物質と時間 · 続きを見る »

ここにリダイレクトされます:

化合

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »