ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

位相幾何学

索引 位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

102 関係: 埋め込み (数学)偏微分方程式単射可微分多様体向き付け可能性多面体実数直線宇宙論層 (数学)不変量一意化定理平面幾何学幾何学的トポロジー幾何化予想代数的位相幾何学低次元トポロジー位相の特徴付け位相同型位相多様体位相空間位相空間論彫刻微分幾何学微分位相幾何学微分積分学志賀浩二ネットワーク・トポロジーハウスドルフ空間ポリゴンモーリス・ルネ・フレシェモーフィングユークリッド幾何学ユークリッド空間リーマン・ロッホの定理リーマン面ルベーグ被覆次元レムニスケートレオンハルト・オイラーロゴスヴィト・ヴォルテラトポロジカル絶縁体トポロジカル量子数トポストーラスフラーレンフーリエ級数フェリックス・ハウスドルフニコラ・ブルバキホモロジー (数学)...ホモトピーホモトピー群ベルンハルト・リーマンアンリ・ポアンカレカントール集合カール・フリードリヒ・ガウスカタストロフィー理論クラインの壺グラフ理論グロタンディーク位相グスタフ・ロッホゲオルク・カントールコンパクト空間コホモロジーゴットフリート・ライプニッツシュプリンガー・サイエンス・アンド・ビジネス・メディアジャック・アダマールタイムマシン円周写像全射球面空間結び目 (数学)結び目理論生命科学物理学特性類直線DNAトポイソメラーゼ違いを除いて複素平面距離空間近傍 (位相空間論)閉集合開かつ閉集合開集合自由群自明な結び目集合論集合族連続 (数学)連結空間抽象代数学束 (束論)材料工学朝倉書店情報科学意味論数学曲面3次元コンピュータグラフィックス インデックスを展開 (52 もっと) »

埋め込み (数学)

数学において、埋め込み(うめこみ、embedding, imbedding)とは、数学的構造間の構造を保つような単射のことである。 It is suggested by, that the word "embedding" is used instead of "imbedding" by "the English", i.e. the British.

新しい!!: 位相幾何学と埋め込み (数学) · 続きを見る »

偏微分方程式

偏微分方程式(へんびぶんほうていしき、partial differential equation, PDE)は、未知関数の偏微分を含む微分方程式である。.

新しい!!: 位相幾何学と偏微分方程式 · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 位相幾何学と単射 · 続きを見る »

可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

新しい!!: 位相幾何学と可微分多様体 · 続きを見る »

向き付け可能性

数学では、向き付け可能性(orientability)とは、ユークリッド空間内の曲面の性質であり、曲面のすべての点で法線の方向を整合性を持って選択できるか否かという性質である。曲面の法線の方向の選択は、例えばストークスの定理に必要であるように、右手の法則を使い曲面内のループの「時計回り」方向を決めことができる。より一般に、抽象的な曲面や多様体の向き付け可能性とは、多様体内のすべてのループの「時計回り」方向を整合性を持って選択可能か否かという性質である。同じことであるが、曲面が向き付け可能であるとは、空間内の のような二次元の図形が、空間の中を(連続的に)動き回って、スタート地点へ戻ってきても、決して自分自身の鏡像 にはならない場合を言う。 向き付け可能性の考え方は、同じように高次元の多様体へ一般化できる。向きの選択が整合性を持つ多様体を向き付け可能といい、連結で向き付け可能な多様体は、ちょうど 2つの異なる向き付けが可能である。この設定で、必要な応用や一般性の度合いに依存した様々な向き付け可能性の同値な定式化が可能である。一般の位相多様体への応用する定式化は、ホモロジー論の方法を活用することが多いのに対し、微分可能多様体(differentiable manifold)に対してはより詳細な構造があり、微分形式の言葉で定式化できる。空間の向き付け可能性の考え方の重要な一般化は、ある他の空間(ファイバーバンドル)にパラメトライズされた空間の族の向き付け可能性である。その際には、向きは、パラメータの値の変化につれて、各々の空間が連続的に変化するよう選択せねばならない。.

新しい!!: 位相幾何学と向き付け可能性 · 続きを見る »

多面体

多面体の一種、立方体 初等幾何学における多面体(ためんたい、polyhedron)は、複数(4つ以上)の平面に囲まれた立体のこと。複数の頂点を結ぶ直線の辺と、その辺に囲まれた面によって構成される。したがって、曲面をもつものは含まず、(円柱などは入らない)また、すべての面の境界が直線である場合に限られる。 3次元空間での多胞体であるとも定義できる。2次元空間での多胞体は多角形なので、多角形を3次元に拡張した概念であるとも言える。 英語ではポリヘドロン (polyhedron)、複数形はポリヘドラ (polyhedra) である。多角形のポリゴン (polygon) の複数形がポリゴンズ (polygons) であるのとは異なる。.

新しい!!: 位相幾何学と多面体 · 続きを見る »

実数直線

数学における実数直線(じっすうちょくせん、real line, real number line)は、その上の各点が実数であるような直線である。つまり、実数直線とは、すべての実数からなる集合 を、幾何学的な空間(具体的には一次元のユークリッド空間)とみなしたものということである。この空間はベクトル空間(またはアフィン空間)や距離空間、位相空間、測度空間あるいは線型連続体としてみることもできる。 単に実数全体の成す集合としての実数直線は記号 (あるいは黒板太字の &#x211d) で表されるのがふつうだが、それが一次元のユークリッド空間であることを強調する意味で と書かれることもある。 本項では の位相幾何学的、幾何学的あるいは実解析的な側面に焦点を当てる。もちろん実数の全体は一つの体として代数学でも重要な意味を持つが、その文脈での が直線として言及されるのは稀である。そういった観点を含めた の詳細は実数の項を参照のこと。.

新しい!!: 位相幾何学と実数直線 · 続きを見る »

宇宙論

宇宙論(うちゅうろん、cosmology)とは、「宇宙」や「世界」などと呼ばれる人間をとりかこむ何らかの広がり全体、広義には、それの中における人間の位置、に関する言及、論、研究などのことである。 宇宙論には神話、宗教、哲学、神学、科学(天文学、天体物理学)などが関係している。 「Cosmology コスモロジー」という言葉が初めて使われたのはクリスティアン・ヴォルフの 『Cosmologia Generalis』(1731)においてであるとされている。 本項では、神話、宗教、哲学、神学などで扱われた宇宙論も幅広く含めて扱う。.

新しい!!: 位相幾何学と宇宙論 · 続きを見る »

層 (数学)

数学における層(そう、sheaf, faisceau)とは、位相空間上で連続的に変化する様々な数学的構造をとらえるための概念であり、大域的なデータを局所的に取り出すこと、および局所的なデータの貼り合わせ可能性によって定式化される。より形式的に、大域から局所への移行のみを考える概念は前層(ぜんそう、)とよばれる。.

新しい!!: 位相幾何学と層 (数学) · 続きを見る »

不変量

不変量(ふへんりょう、invariant)とは、数学的対象を特徴付ける別種の数学的対象のことである。一般に、不変量は数や多項式など、不変量同士の同型性判定がもとの対象の同型性判定より簡単であるものをとる。良い不変量とは、簡単に計算でき、かつなるべく強い同型性判別能力をもつものである。.

新しい!!: 位相幾何学と不変量 · 続きを見る »

一意化定理

一意化定理(uniformization theorem)とは、すべての単連結リーマン面は、開円板、複素平面、リーマン球面の 3つのうちのひとつに共形同値であるという定理である。特に、単連結リーマン面は(constant curvature)のリーマン計量を持つ。この定理は普遍被覆リーマン面を楕円型(正の曲率、正の曲がった曲率をもつ)、放物型(平坦)、双曲型(負曲率)として分類する。 一意化定理はリーマンの写像定理の平面の固有な単連結開部分集合から、任意の単連結はリーマン面への一般化である。 一意化定理は、任意の連結である第二可算の面の同様な結果、定数曲率のリーマン計量を与えることができることを意味している。.

新しい!!: 位相幾何学と一意化定理 · 続きを見る »

平面

平面(へいめん、plane)とは、平らな表面のことである広辞苑 第五版、p.2395「平面」。平らな面。 一般的には曲面や立体などと対比されつつ理解されている。.

新しい!!: 位相幾何学と平面 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: 位相幾何学と幾何学 · 続きを見る »

幾何学的トポロジー

数学において、幾何学的トポロジー(geometric topology)は、多様体とそれらの間の写像、特に多様体から多様体への埋め込み(embedding)の研究をする。.

新しい!!: 位相幾何学と幾何学的トポロジー · 続きを見る »

幾何化予想

幾何化予想(きかかよそう、Geometrization conjecture)は、1982年にアメリカの数学者ウィリアム・サーストンによって提出された「コンパクト3次元多様体は、幾何構造を持つ8つの部分多様体に分解される」という命題。位相幾何学と微分幾何学を結びつけるものでありミレニアム懸賞問題にも挙げられていたポアンカレの予想問題の解法の過程として思いつかれた。2003年、グリゴリー・ペレルマンによるリッチフローを用いた証明が示され、現在ではその証明が基本的に正しいものとされている。これにより、およそ100年にわたり未解決だった3次元ポアンカレ予想が証明されることになった。.

新しい!!: 位相幾何学と幾何化予想 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: 位相幾何学と代数的位相幾何学 · 続きを見る »

低次元トポロジー

数学における低次元位相幾何学(ていじげんいそうきかがく、low-dimensional topologyは、4次元、あるいはそれ以下の次元の多様体の研究をする位相幾何学の一分野である。扱われる主題は、および4次元多様体の構造論、結び目理論および組み紐群などがある。低次元トポロジーは幾何学的位相幾何学の一部と見なすことができる。.

新しい!!: 位相幾何学と低次元トポロジー · 続きを見る »

位相の特徴付け

数学において位相空間の位相は開集合系として定義することが多いが、それと同値な位相の特徴付けがいくつも知られており、それらは同じ位相空間の圏を定める。どの定義からも位相的概念に対する新たな見方が提供され、多くの位相的概念について更なる事実や一般化の方向性が導き出される。.

新しい!!: 位相幾何学と位相の特徴付け · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: 位相幾何学と位相同型 · 続きを見る »

位相多様体

位相幾何学という数学の分野において,位相多様体(いそうたようたい,topological manifold)とは,以下に定義される意味で実 次元空間に局所的に似ている(分離空間でもある)位相空間である.位相多様体は数学全般に応用を持つ位相空間の重要なクラスをなす. 「多様体」は位相多様体を意味することもあるし,より多くは,追加の構造を持った位相多様体を指す.例えば可微分多様体は可微分構造を備えた位相多様体である.任意の多様体は,単に追加の構造を忘れることによって得られる,台となる位相多様体を持つ.多様体の概念の概観はその記事に与えられている.この記事は純粋に多様体の位相的側面に焦点を当てる..

新しい!!: 位相幾何学と位相多様体 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 位相幾何学と位相空間 · 続きを見る »

位相空間論

数学における位相空間論(いそうくうかんろん、general topology; 一般位相幾何学)または点集合トポロジー(てんしゅうごうトポロジー、point-set topology; 点集合論的位相幾何)は、位相空間の性質やその上に定義される構造を研究対象とする位相幾何学の一分野である。位相幾何学のほかの分野が多様体などの特定の構造や具体的な構造を前提とすることと異なり、現れる位相空間としては病的なものも含めた極めて広範かつ一般のものを扱い、その一般論を形成するのが位相空間論の主目的である。.

新しい!!: 位相幾何学と位相空間論 · 続きを見る »

彫刻

彫刻(ちょうこく)とは、木、石、土、金属などを彫り刻んで、物の像を立体的に表すこと。または、それらの表面に書画や図版などを掘り込むこと。あるいは美術的な鑑賞を目的として、様々な素材を用いて立体的に制作された芸術作品のこと。また、その表現領域を指す。以下では西洋美術の概念における、芸術作品としての彫刻(スカルプチャー、英語:sculpture)について述べる。 硬い素材を彫り刻む技法も彫刻(カーヴィング、carving)と呼び、それに対して、可塑性素材を盛りつけて形を作る技法を彫塑(モデリング、modeling)という。彫塑で作られた作品を特に塑像と呼び分けることもある。 使われる素材は、石、木、土、フェルト、石膏、紙、繊維、金属(鉄、銅など)、樹脂、ガラス、蝋など、多種にわたり、また、複数の素材を組み合わせる作品も多い。 彫刻の対象(モチーフ)は元来、人間や身近な動物など具体物であった(具象彫刻)が、20世紀になると、心象を表したもの(抽象彫刻)も多く制作されるようになった。 現在では、表現が多様化し、従来の彫刻の概念では収まらないケースもあり、それらを「立体」、「立体アート」と呼ぶこともあるほか、表現が設置空間全体へ拡散したものは、特に「空間表現」や「インスタレーション」と呼び分けられる。.

新しい!!: 位相幾何学と彫刻 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: 位相幾何学と微分幾何学 · 続きを見る »

微分位相幾何学

微分位相幾何学もしくは微分トポロジー(英語:differential topology)は、多様体の微分可能構造に注目する幾何学の一分野。微分可能構造という位相のみでは 決まらないものを扱うため純粋な位相幾何学として扱うのは難しい部分もあるが,位相が与えられている多様体の微分可能構造つまり微積分ができる ような構造を調べるということで位相多様体を調べるもので,微分可能構造まで込めた多様体に距離や曲率を定めて 研究を行う微分幾何学に比べ自由度は高いことから位相幾何学であるとされている。解析学や微分幾何学と位相幾何学の学際研究が非常に有益なことは初期から知られており、局所的な性質を扱う微分幾何学と大域的な性質を扱う位相幾何学の対照的な2分野による多様体の研究は双方の発展を促した。古くはフェリックス・クラインやアンリ・ポアンカレまで遡れ、現在微分位相幾何学と呼ばれているものはルネ・トムやジョン・ミルナーといった数学者によって創り出された。.

新しい!!: 位相幾何学と微分位相幾何学 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: 位相幾何学と微分積分学 · 続きを見る »

志賀浩二

志賀 浩二(しが こうじ、1930年(昭和5年)10月8日 - )は、日本の数学者、理学博士。東京工業大学名誉教授。専門は微分位相幾何学。.

新しい!!: 位相幾何学と志賀浩二 · 続きを見る »

ネットワーク・トポロジー

ネットワーク・トポロジー は、コンピュータネットワークのトポロジー。数学的にはグラフ理論の応用として研究されている。一般的には、ネットワーク上のノード(英: node、「節点」あるいは「頂点」を意味し、具体的にはコンピュータやネットワーク機器など端末のこと)と、ネットワークの経路(エッジ、英: edge、「枝」や「辺」を意味する)との相関をダイアグラムで抽象化した概念のことである。 「ネットワーク構成」や「網構成」とも言う。論理的な意味のほか、物理的な実装形態でも用いられ、例えばFTTHの幹線網の網構成)も同様にネットワーク構成と言う場合がある。.

新しい!!: 位相幾何学とネットワーク・トポロジー · 続きを見る »

ハウスドルフ空間

数学におけるハウスドルフ空間(ハウスドルフくうかん、Hausdorff space)とは、異なる点がそれらの近傍によって分離できるような位相空間のことである。これは分離空間(separated space)またはT2 空間とも呼ばれる。位相空間についてのさまざまな分離公理の中で、このハウスドルフ空間に関する条件はもっともよく仮定されるものの一つである。ハウスドルフ空間においては点列(あるいはより一般に、フィルターやネット)の極限の一意性が成り立つ。位相空間の理論の創始者の一人であるフェリックス・ハウスドルフにちなんでこの名前がついている。ハウスドルフによって与えられた位相空間の公理系にはこのハウスドルフ空間の公理も含まれていた。.

新しい!!: 位相幾何学とハウスドルフ空間 · 続きを見る »

ポリゴン

ポリゴンで造られた回転放物線 ポリゴン(polygon)とは、多角形のことであるが、この記事ではサーフェスモデルなど、コンピュータグラフィックス特に3次元コンピュータグラフィックスにおける応用について述べる。 一般に日常的には「三角形」や「四角形」といった語は、それらの辺だけのものを指すのか、囲まれた中身を含む「面分」か、明確でないことも多い(「円」で言うならば、「円周」と「円盤」の違い)。しかし、形状モデリング等の応用では、その面が塞がっている面なのか、穴が開いているのかは大きな違いであり、識別の必要がある。そのため、きちんと多角形として「閉じて」いて、囲まれた中身を含む場合はクローズドポリゴン(closed polygon)、ただの連結な線分など閉じていない場合をポリラインあるいはオープンポリゴン(open polygon)、と呼び分ける(ことがある)。 (なお、3次元に限らず2次元コンピュータグラフィックスにおいても同様である。一例として、地理情報システム(GIS) などの地図データ及び描画では、領域の輪郭はポリゴンであり、道路や鉄道などはポリラインである) このようなポリゴンで構成された物体は、基本的に直線と平面のみで構成されるが、線・面分割を細かくしてスムーズシェーディングなどの処理を併用する事で擬似的に曲線・曲面も表現できる。またピクサー社は単純なポリゴン形状で有機的曲面形状を制御するサブディビジョンサーフェス技術を開発している。.

新しい!!: 位相幾何学とポリゴン · 続きを見る »

モーリス・ルネ・フレシェ

モーリス・ルネ・フレシェ(Maurice René Fréchet、1878年9月2日 - 1973年6月4日)はフランスの数学者。点集合トポロジー(位相空間論)に多大な貢献をし、また距離空間の概念をきちんとした形で導入した。また、微分積分学同様に統計学および確率論の分野にもいくつかの重要な貢献を為している。フレシェの博士論文は距離空間上の汎函数論を拓くものであり、また彼はそこでコンパクト性の概念を導入している。リースとは独立に、ルベーグ自乗可積分函数の空間 L2 の表現定理を発見した。.

新しい!!: 位相幾何学とモーリス・ルネ・フレシェ · 続きを見る »

モーフィング

モーフィング (morphing) は、映画やアニメーションの中で使用されるSFXの1つで、コンピュータグラフィックスの手法の1つでもある。 ある物体から別の物体へと自然に変形する映像をみせる。これはオーバーラップを使った映像のすり替えとは異なり、変形していく間の映像をコンピュータによって補完して作成する。変身・変化を意味する単語「メタモルフォルシス(metamorphosis)」の中間部分から命名されたという説と、move(移動)+morphology(形態) の合成語であるとする説がある。 『永遠に美しく…』でアカデミー視覚効果賞受賞したILMのダグ・スマイスらが映画『ウィロー』のために開発。『インディ・ジョーンズ/最後の聖戦』や『アビス』でも使われた。知名度を引き上げたのは1991年の映画『ターミネーター2』で、敵役の描写にこの技術が使用されて話題になった。同年にも、マイケル・ジャクソンの「Black Or White」のPVで使われ、実に5億人が見たという。 初期は、主に実写映像などの2次元素材において用いられたが、後に3DCGにおけるキャラクターの表情の制御にも用いられるようになった。例えば、あらかじめ普通の表情と笑顔との2つのモデルを作っておき、その中間の形状を自動生成することで、表情変化のアニメーションを作り出す事が出来る。また、大掛りな変形ばかりでなく『フォレスト・ガンプ/一期一会』の歴代大統領が喋る唇や爆撃シーンで疾走するスタントマンとトム・ハンクスのスムーズな交替、『メン・イン・ブラック』『ミッション:インポッシブル』といた、変装マスクの効果にも応用されるようになった。 音響面でも援用され、その場合はクロスシンセシスと呼ばれる技術が用いられる。ある楽器の特徴を持つ音色から別の音色へ、音響スペクトルの滑らかな推移を伴う連続した音響を、コンピュータによって合成する。このような音響技術の研究機関のひとつとして、IRCAMがある。 Category:SFX Category:コンピュータグラフィックス.

新しい!!: 位相幾何学とモーフィング · 続きを見る »

ユークリッド幾何学

ユークリッド幾何学(ユークリッドきかがく、Euclidean geometry)は、幾何学体系の一つであり、古代エジプトのギリシア系・哲学者であるエウクレイデスの著書『ユークリッド原論』に由来する。詳しい説明は『ユークリッド原論』の記事にある。.

新しい!!: 位相幾何学とユークリッド幾何学 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 位相幾何学とユークリッド空間 · 続きを見る »

リーマン・ロッホの定理

リーマン・ロッホの定理(リーマン・ロッホのていり、Riemann–Roch theorem)とは、複素解析学や代数幾何学などで用いられる、閉リーマン面上の複素解析と曲面の種数とを結びつける定理である。特定の位数の零点と極をもつ有理型関数空間の次元計算に役立つ。 まず、ベルンハルト・リーマンがでリーマンの不等式(Riemann's inequality)を証明した。そして短い間ではあったが、リーマンの学生であったグスタフ・ロッホが、で決定的な形に到達した。その後、この定理は代数曲線上や高次元代数多様体に一般化され、さらにそれを超えた一般化もなされている。.

新しい!!: 位相幾何学とリーマン・ロッホの定理 · 続きを見る »

リーマン面

数学、特に複素解析においてリーマン面(Riemann surface)とは、連結な複素 1 次元の複素多様体のことである。ベルンハルト・リーマンにちなんで名付けられた。 リーマン面は、複素平面を変形したものと考えられる。 各点の近くで局所的には、複素平面の部分に似ているが、大域的位相は大きく異なり得る。例えば、球面、トーラス、または互いに糊付けした二枚の面のように見え得る。 リーマン面の主要な意味合いは、正則関数がそこで定義できることである。 今日、リーマン面は正則関数、特に、平方根や自然対数等の多価関数の大域的振る舞いを研究するための自然な土台と考えられている。 全てのリーマン面は向きづけ可能な実 2 次元の実解析的多様体(従って曲面)であって、正則関数を一義的に定義するために必要な追加的構造(特に複素構造)を含む。2 次元実多様体は、それが向き付け可能な場合、かつその場合に限り、(通常は、等価でない複数の方法により)リーマン面にすることができる。従って、球面やトーラスは複素構造を持ち得るが、メビウスの輪、クラインの壺および射影平面は持ち得ない。 リーマン面は、でき得る限り良い特性を有しているという幾何学的事実から、他の曲線、多様体または代数多様体に対し一般化の直感および動機をしばしばもたらす。リーマン・ロッホの定理は、この影響の第一の例である。.

新しい!!: 位相幾何学とリーマン面 · 続きを見る »

ルベーグ被覆次元

数学の一分野、位相空間論におけるルベーグ被覆次元(ひふくじげん、Lebesgue covering dimension)あるいは位相次元(いそうじげん、topological dimension)は、位相空間に対して位相不変量となる次元の概念の(いくつかの同値でないものの)うちの一種である。.

新しい!!: 位相幾何学とルベーグ被覆次元 · 続きを見る »

レムニスケート

ベルヌーイのレムニスケートと二つの焦点 pedal curveである。 レムニスケート(lemniscate)は極座標の方程式 で表される曲線である。連珠形(れんじゅけい)とも呼ばれる。またヤコブ・ベルヌーイのレムニスケートとも呼ばれる。カッシーニの卵形線の一種と見なすことができる。 直交座標の方程式では となる。 x軸、y軸に対して線対称である。原点Oで自らと交わる。原点Oにおける接線はy.

新しい!!: 位相幾何学とレムニスケート · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: 位相幾何学とレオンハルト・オイラー · 続きを見る »

ロゴス

(logos)とは、古典ギリシア語の λόγος の音写で、.

新しい!!: 位相幾何学とロゴス · 続きを見る »

ヴィト・ヴォルテラ

ヴィト・ヴォルテラ(Vito Volterra、1860年5月3日 - 1940年10月11日) は、イタリアの数学者、物理学者である。数学の分野では解析学に多くの業績を残し積分方程式にヴォルテラ方程式の名が残っている他、結晶の転位の概念を導入し、生態学に数学の手法を用いて競争のある環境での生物の個体数を解析するロトカ=ヴォルテラの方程式などに名前を残している。 教皇領アンコーナの貧しい家に生まれた。数学の才能を示し、ピサ大学にエンリコ・ベッティ(Enrico Betti)のもとで学び、1883年力学の教授になった。積分方程式を研究し、1930年に"Theory of functionals and of Integral and Integro-Differential Equations"(英題)を著した。 1892年トリノ大学の力学の教授、1900年にローマ大学の数理物理学の教授になった。ヴォルテラはイタリア統一運動(リソルジメント)の完成時期に育ち、ベッティとともに統一運動の協調者となった。教皇領がイタリア王国に併合されると、1905年には王国の議員に選ばれた。同じ1905年、結晶中の転位の理論を初めて発表した。第一次世界大戦が始まると、50代になっていたにもかかわらずイタリア陸軍に参加し、ジュリオ・ドゥーエのもとで気球の開発を行い、可燃性の水素ではなく不活性なヘリウムを使うアイデアを出し、気球の製作を指導した。 戦後は生物学に数学的手法を用いる研究を始めた。非線形方程式をもちいて人口問題を解析したピエール=フランソワ・フェルフルストの仕事に次ぐもので、最も有名な成果は競争のある環境での生物の個体数を解析したロトカ=ヴォルテラの方程式である。 1922年にムッソリーニに反対する党派に属し、1931年に大学教授の座を追われた。その後、主に海外で暮らし、死の直前にローマに戻った。.

新しい!!: 位相幾何学とヴィト・ヴォルテラ · 続きを見る »

トポロジカル絶縁体

Category:物性物理学.

新しい!!: 位相幾何学とトポロジカル絶縁体 · 続きを見る »

トポロジカル量子数

物理学においてトポロジカル量子数(トポロジカルりょうしすう topological quantum number、トポロジカルチャージ topological charge とも)とは、なんらかの物理的理論において定義されるトポロジーを考慮した量で、離散的な値のみを取るものをいう。最も一般的には、物理系をモデル化した微分方程式系に対する位相欠陥やソリトン型の解に付随するを意味する。実際、ソリトンの安定性はトポロジーに因るものである。「トポロジーを考慮」とは、具体的には問題の記述における基本群もしくは高次のホモトピー群によるもので、多くの場合は指定される境界条件が微分方程式により保存される非自明なホモトピー群を持つかどうかによる。ある解のトポロジカル量子数はその解の回転数と呼ばれることもあるが、より正確には写像度である。 最近の相転移の性質についての考察により、トポロジカル量子数とそれに付随する解が相転移により生成・消滅する可能性が示唆されている。.

新しい!!: 位相幾何学とトポロジカル量子数 · 続きを見る »

トポス

トポス(τόπος)とは、ギリシア語で「場所」を意味する語であり、以下の用法がある。.

新しい!!: 位相幾何学とトポス · 続きを見る »

トーラス

初等幾何学におけるトーラス(torus, 複数形: tori)、円環面、輪環面は、円周を回転して得られる回転面である。 いくつかの文脈では、二つの単位円周の直積集合 (に適当な構造を入れたもの)を「トーラス」と定義する。特に、位相幾何学における「トーラス」は、直積位相を備えた に同相な図形の総称として用いられ、 の(コンパクト二次元多様体)として特徴づけられる。このようなトーラスは三次元ユークリッド空間 に位相的に埋め込めるが、各生成円をそれぞれ別の平面 に埋め込んで、それら埋め込みを保つような直積空間としての「トーラス」をユークリッド空間に埋め込むことは では不可能で、 で考える必要がある。これは と呼ばれる、四次元空間内の曲面を成す。 混同すべきでない関連の深い図形として、トーラスに囲まれた領域(三次元図形)すなわち「中身の詰まったトーラス」(solid torus) を、トーラス体、輪環体、円環体などと(対してもとのトーラスをトーラス面 (toroid) と)呼ぶこともある。また、中身の詰まったトーラスを単に「トーラス」(toroid) と呼ぶ場合があるので注意が必要である。また、同様に「円環」などと呼ばれる別の図形アニュラス(annulus、環帯)とも混同してはならない。.

新しい!!: 位相幾何学とトーラス · 続きを見る »

フラーレン

60 の球棒モデル 60 のCPKモデル フラーレン (fullerene 、Fulleren) は、閉殻空洞状の多数の炭素原子のみで構成される、クラスターの総称である。共有結合結晶であるダイヤモンドおよびグラファイトと異なり、数十個の原子からなる構造を単位とする炭素の同素体である。呼び名はバックミンスター・フラーの建築物であるジオデシック・ドームに似ていることからフラーレンと名づけられたとされる。最初に発見されたフラーレンは、炭素原子60個で構成されるサッカーボール状の構造を持った60フラーレンである。.

新しい!!: 位相幾何学とフラーレン · 続きを見る »

フーリエ級数

フーリエ級数(フーリエきゅうすう、Fourier series)とは、複雑な周期関数や周期信号を、単純な形の周期性をもつ関数の(無限の)和によって表したものである。フーリエ級数は、フランスの数学者ジョゼフ・フーリエによって金属板の中での熱伝導に関する研究の中で導入された。 熱伝導方程式は、偏微分方程式として表される。フーリエの研究の前までには、一般的な形での熱伝導方程式の解法は知られておらず、熱源が単純な形である場合、例えば正弦波などの場合の特別な解しかえられていなかった。この特別な解は現在では固有解と呼ばれる。フーリエの発想は、複雑な形をした熱源をサイン波、コサイン波の和として考え、解を固有解の和として表すものであった。 この重ね合わせがフーリエ級数と呼ばれる。 最初の動機は熱伝導方程式を解くことであったが、数学や物理の他の問題にも同様のテクニックが使えることが分かり様々な分野に応用されている。 フーリエ級数は、電気工学、振動の解析、音響学、光学、信号処理、量子力学および経済学などの分野で用いられている。.

新しい!!: 位相幾何学とフーリエ級数 · 続きを見る »

フェリックス・ハウスドルフ

フェリックス・ハウスドルフ(Felix Hausdorff, 1869年11月8日 – 1942年1月26日)は、ドイツの数学者。 位相空間などの研究に貢献した。ボン大学、グライフスヴァルト大学の教授を務めた。ハウスドルフはユダヤ人であったため、ナチス政権がドイツを支配していた1942年に強制収容所に送られることが決定され、妻や義理の妹と共に自殺した。.

新しい!!: 位相幾何学とフェリックス・ハウスドルフ · 続きを見る »

ニコラ・ブルバキ

ニコラ・ブルバキ(Nicolas Bourbaki, ブールバキとも)は架空の数学者であり、主にフランスの若手の数学者集団のペンネームである。当初この数学者集団は秘密結社として活動し、ブルバキを一個人として活動させ続けた。日本で出版された38冊に及ぶ数学原論や、定期的に開催されるで有名。.

新しい!!: 位相幾何学とニコラ・ブルバキ · 続きを見る »

ホモロジー (数学)

数学、とくに代数的位相幾何学や抽象代数学において、ホモロジー (homology) (「同一である」ことを意味するギリシャ語のホモス (ὁμός) に由来)は与えられた数学的対象、例えば位相空間や群に、アーベル群や加群の列を対応させる一つの一般的な手続きをいう。より詳しい背景については ホモロジー論 を見られたい。また、ホモロジーの手法の位相空間に対する具体的な適用については特異ホモロジーを、群についてのそれは群コホモロジーを、それぞれ参照されたい。 位相空間に対しては、ホモロジー群は一般にホモトピー群よりもずっと計算しやすく、したがって、空間を分類する道具としてはより手軽に扱えるものといえるだろう。.

新しい!!: 位相幾何学とホモロジー (数学) · 続きを見る »

ホモトピー

数学におけるホモトピー (homotopy)とは、点や線や面などの幾何学的対象、あるいはそれらの間の連続写像が連続的に移りあうということを定式化した位相幾何学における概念のひとつである。位相幾何学では、2 つの対象 A と X との関係のうち、連続的な変形によって保たれるものを問題とすることが多い。これらの関係はふつう連続写像 A → X を通して定義され、ホモトピーの概念は連続的に変形する連続写像の族によって定式化される。ホモトピー的な種々の不変量は位相幾何学の研究における基本的な道具となる。 考察している幾何学的対象に「穴」が開いていれば、端を固定された曲線はそれを越えて連続的に変形することができない。したがって、ホモトピーによって「穴」の有無や、単純な構成要素に分解したときのそれらの組み合わせ的なつながり具合といった構造を調べることができる。ホモトピーが威力を発揮するのは、空間や写像といった幾何学的な対象に対し群や準同型などという代数的な対象を対応づけることであり、またそのような代数的な対象がしばしばもとの幾何学的な対象よりも単純化されているということにある。 このように、代数的な道具によって空間と写像の位相的性質を調べるという方法をとる幾何学は、代数的位相幾何学と呼ばれる。.

新しい!!: 位相幾何学とホモトピー · 続きを見る »

ホモトピー群

数学において、ホモトピー群 (homotopy group) は代数トポロジーにおいて位相空間を分類するために使われる。1次の最も簡単なホモトピー群は基本群であり、空間のについての情報がわかる。直感的には、ホモトピー群は位相空間の基本的な形、穴、についての情報を持っている。 n 次ホモトピー群を定義するために、(付き)n 次元球面から与えられた(基点付き)空間の中への基点を保つ写像はと呼ばれる同値類へと集められる。2つの写像がホモトープ (homotopic) とは、一方から他方へ連続的に変形できることをいう。これらのホモトピー類たちが基点付きの与えられた空間 X の n 次ホモトピー群 (n-th homotopy group) と呼ばれる群 n(X) をなす。異なるホモトピー群を持つ位相空間は決して同じ(同相)ではないが、逆は正しくない。 のホモトピーの概念はカミーユ・ジョルダン (Camille Jordan) によって導入された。.

新しい!!: 位相幾何学とホモトピー群 · 続きを見る »

ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

新しい!!: 位相幾何学とベルンハルト・リーマン · 続きを見る »

アンリ・ポアンカレ

ュール=アンリ・ポアンカレ(、1854年4月29日 – 1912年7月17日)はナンシー生まれのフランスの数学者。数学、数理物理学、天体力学などの重要な基本原理を確立し、功績を残した。フランス第三共和制大統領・レーモン・ポアンカレはアンリの従弟(いとこ)。.

新しい!!: 位相幾何学とアンリ・ポアンカレ · 続きを見る »

カントール集合

ントール集合(カントールしゅうごう、Cantor set)は、フラクタルの1種で、閉区間 に属する実数のうち、その三進展開のどの桁にも 1 が含まれないような表示ができるもの全体からなる集合である。1874年にイギリスの数学者により発見され、1883年にゲオルク・カントールによって紹介された。 カントールの三進集合とも呼ばれ、カントル集合、カントルの三進集合とも表記される。フラクタル概念の生みの親であるブノワ・マンデルブロは、位相次元が 0 の図形をダスト(塵)と呼び、カントール集合のことはカントール・ダストやカントールのフラクタルダストと呼んでいた。.

新しい!!: 位相幾何学とカントール集合 · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 位相幾何学とカール・フリードリヒ・ガウス · 続きを見る »

カタストロフィー理論

タストロフィー理論(カタストロフィーりろん、カタストロフ理論、catastrophe theory)は、力学系の分岐理論の一種を扱う理論。 不連続な現象を説明する、画期的な理論として一時注目を浴び、盛んに研究、議論された。 カタストロフィーとは周期的な秩序だった現象の中から不意に発生する無秩序な現象の総称。 ルネ・トムの『構造安定性と形態形成』により提唱された。.

新しい!!: 位相幾何学とカタストロフィー理論 · 続きを見る »

クラインの壺

ラインの壺(クラインのつぼ、Klein bottle)は、境界も表裏の区別も持たない(2次元)曲面の一種で、主に位相幾何学で扱われる。 ユークリッド空間に埋め込むには4次元、曲率0とすると5次元が必要である。3次元空間には通常の方法では埋め込み不可能だが、射影して強引に埋め込むと、自己交差する3次元空間内の曲面になる。その形を壺になぞらえたものである。 ドイツの数学者フェリックス・クラインにより考案された。クラインの管、クラインの瓶とも呼ばれる。この通称は英語に翻訳する際の錯誤によるものである。原語であるドイツ語では「Kleinsche Fläche(クラインの面)」であり、これが英語に翻訳される際、Fläche(面)がFlasche(瓶)と取り違えられ、bottleと訳された。現在ではドイツ語圏でも、Kleinsche Flascheのほうで定着している。 クラインの壺は、下図のように矢印を付けた正方形の対辺を矢印の向きが合うように貼り合わせて作ることができる。 Image:Klein Bottle Folding 1.svg Image:Klein Bottle Folding 2.svg Image:Klein Bottle Folding 3.svg Image:Klein Bottle Folding 4.svg Image:Klein Bottle Folding 5.svg Image:Klein Bottle Folding 6.svg 前述のように3次元空間内に実現するためには自己交差が必要であるが、クラインの壺そのものに交差はない。そのことを強調するために自己交差の部分をぼかして図示されることがある。 表裏の区別を持たない2次元曲面には他にメビウスの帯がある。メビウスの帯が2次元のテープ状のものをひねり表をたどっていくとそのまま裏に行き着くようにしたのに対し、クラインの壺は3次元のチューブをひねり内部をたどると外部に行き着くようにしたものである。また二つのメビウスの帯をそのふちに沿って貼り合わせるとクラインの壺ができる(上の図で、ここで示した順序とは逆に、青いほうの辺を先に貼り合わせるとメビウスの帯になる)。.

新しい!!: 位相幾何学とクラインの壺 · 続きを見る »

グラフ理論

ラフ理論(グラフりろん、graph theory)は、ノード(節点・頂点)の集合とエッジ(枝・辺)の集合で構成されるグラフに関する数学の理論である。グラフ (データ構造) などの応用がある。.

新しい!!: 位相幾何学とグラフ理論 · 続きを見る »

グロタンディーク位相

タンディーク位相(Grothendieck topology)とは位相空間上の開集合系が成り立つ性質を公理化し、圏の上に定義された一般化された位相のことである。またそのような位相を持つ圏を景(けい、仏、英: site, サイト)といい、その位相を用いることにより位相空間上での層の理論が使えてコホモロジー理論を得ることができる。歴史的には代数幾何学のヴェイユ予想を解決するためにアレクサンドル・グロタンディークがエタール・コホモロジーを定義する際に導入された。.

新しい!!: 位相幾何学とグロタンディーク位相 · 続きを見る »

グスタフ・ロッホ

タフ・ロッホ グスタフ・ロッホ(Gustav Roch, 1839年12月9日 - 1866年11月21日)はドイツの数学者。26年のごく短い生涯のうちにリーマン面の理論に関して顕著な業績を残したことで知られる。.

新しい!!: 位相幾何学とグスタフ・ロッホ · 続きを見る »

ゲオルク・カントール

ルク・カントール ゲオルク・フェルディナント・ルートヴィッヒ・フィリップ・カントール(Georg Ferdinand Ludwig Philipp Cantor, 1845年3月3日 - 1918年1月6日)は、ドイツで活躍した数学者。.

新しい!!: 位相幾何学とゲオルク・カントール · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: 位相幾何学とコンパクト空間 · 続きを見る »

コホモロジー

数学、とくにホモロジー論と代数トポロジーにおいて、コホモロジー (cohomology) はコチェイン複体から定義されるアーベル群の列を意味する一般的な用語である。つまり、コホモロジーはコチェイン、コサイクル、そしてコバウンダリの抽象的な研究として定義される。コホモロジーは、を、ホモロジーがもっているよりも洗練された代数的構造をもつ位相空間に割り当てる手法と見ることができる。コホモロジーはホモロジーの構成の代数的な双対から生じる。より抽象的でない言葉で言えば、基本的な意味でのコチェインは'量'をホモロジー論のチェインに割り当てる。 位相幾何学におけるその起源から、このアイデアは20世紀後半の数学において主要な手法となった。チェインについての位相的不変関係としてのホモロジーの最初の考えから、ホモロジーとコホモロジーの理論の応用の範囲は幾何学と抽象代数学に渡って拡がった。用語によって、多くの応用においてコホモロジー、反変理論、がホモロジーよりも自然であるという事実が隠されがちである。基本的なレベルではこれは幾何学的な状況において関数とを扱う。空間 X と Y、そして Y 上のある種の関数 F が与えられたとすると、任意の写像 f: X → Y に対して、f との合成は X 上の関数 F o f を引き起こす。コホモロジー群はまたしばしば自然な積、カップ積をもっており、環の構造を与える。この特徴のために、コホモロジーはホモロジーよりも強い不変量である。ホモロジーでは区別できないある種の代数的対象を区別できるのである。.

新しい!!: 位相幾何学とコホモロジー · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: 位相幾何学とゴットフリート・ライプニッツ · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 位相幾何学とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

ジャック・アダマール

ャック・アダマール ジャック・サロモン・アダマール(Jacques Salomon Hadamard、1865年12月8日 - 1963年10月17日)はフランスの数学者である。1896年に素数定理を証明したことで知られる。.

新しい!!: 位相幾何学とジャック・アダマール · 続きを見る »

タイムマシン

タイムマシン(Time Machine)とは、時間の流れを超えて未来や過去へ旅するための架空の機械である。.

新しい!!: 位相幾何学とタイムマシン · 続きを見る »

円周

円周(えんしゅう、circumference)とは、円の周囲もしくは周長のこと。円周と直径の比率を円周率という。.

新しい!!: 位相幾何学と円周 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: 位相幾何学と写像 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: 位相幾何学と全射 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: 位相幾何学と球面 · 続きを見る »

空間

間(くうかん)とは、.

新しい!!: 位相幾何学と空間 · 続きを見る »

結び目 (数学)

数学の特に低次元位相幾何学における結び目(むすびめ、knot; 結び糸)は、円周 の三次元ユークリッド空間 への埋め込みを、適当なホモトピーの違いを除いて考えるものである。このような数学における標準的な結び目の概念と、日常的な概念としての結び目との間の著しい違いは、数学的な結び目は閉曲線—つまり、結んだり解いたりするための「端」が存在しない—となっている点である。また、数学的な結び目に摩擦や厚みと言った物理学的性質も持っていない(そのような性質を勘案した結び目の数学的定義が無いわけではないが)。また、より高次化した の への埋め込み—特に、 のとき—をも「結び目」と呼ぶことがある。結び目を研究する数学の分野は結び目理論と呼ばれ、グラフ理論にも多くの単純な関係がある。.

新しい!!: 位相幾何学と結び目 (数学) · 続きを見る »

結び目理論

結び目理論(むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。.

新しい!!: 位相幾何学と結び目理論 · 続きを見る »

生命科学

生命科学(せいめいかがく、)は、 生命を研究対象とする学問のことである。自然科学(natural science)の中で、物理科学(physical science)と対をなす。広義には、応用分野も含む。.

新しい!!: 位相幾何学と生命科学 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 位相幾何学と物理学 · 続きを見る »

特性類

特性類 (Characteristic class)とは、位相空間 X の上のベクトル束やより一般に主束に対してさだまる X のコホモロジー類である。特性類は、主束の切断がどの程度存在するによって定まるもので、局所的には自明である主束の構造が大域的にどれほど非自明であるかをはかる位相不変量である。特性類は、代数多様体上のベクトル束に対しても定義され、代数トポロジー、微分幾何学や代数幾何学における統一した幾何学的な考え方の一つである。 1935年の多様体上のベクトル場についてのエドゥアルト・シュティーフェル (Eduard Stiefel) と (Hassler Whitney) の仕事より、特性類の考え方が発生した。.

新しい!!: 位相幾何学と特性類 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 位相幾何学と直線 · 続きを見る »

DNAトポイソメラーゼ

DNAトポイソメラーゼ(DNA topoisomerases)とは、2本鎖DNAの一方または両方を切断し再結合する酵素の総称である。 環状の2重鎖DNAでは、2本の鎖は位相幾何学(トポロジー)的には結び目があるのと等価であり、ねじれ数の異なるDNA、つまりトポアイソマー(トポロジーの異なる異性体)は、DNA鎖を切らない限り互いに変換できない。トポイソメラーゼはこの変換(topoisomerization)を触媒する異性化酵素という意味で命名された。抗がん剤や抗生物質のターゲットとしても知られる。.

新しい!!: 位相幾何学とDNAトポイソメラーゼ · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: 位相幾何学と違いを除いて · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: 位相幾何学と複素平面 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: 位相幾何学と距離空間 · 続きを見る »

近傍 (位相空間論)

平面上の集合 ''V'' が点 ''p'' の近傍であるのは、''p'' を中心とする小さな円板が ''V'' に含まれるときである。 矩形の頂点に対して、その矩形は近傍でない。 数学の位相空間論周辺分野でいう近傍(きんぼう、neighbourhood, neighborhood)は位相空間の基本概念の一つで、直観的に言えば与えられた点を含む集合で、その点を少しくらい動かしてもその集合から外に出ないようなものをいう。 近傍の概念は開集合と内部の概念と密接な関連がある。.

新しい!!: 位相幾何学と近傍 (位相空間論) · 続きを見る »

閉集合

閉集合(へいしゅうごう、closed set)は、その補集合が開集合となる集合のこと。距離空間の場合はその部分集合の元からなる任意の収束点列の極限がその部分集合の元であることと一致するので、それを定義としてもよい。 例えば、数直線上で不等式 0 ≤ x ≤ 1 によって定まる集合は閉区間と呼ばれるが、これは閉集合である。なぜならば、その補集合である x < 0 または x > 1 を満たす区間が開集合となるからである。 不等式を 0 < x < 1 としたものや 0 ≤ x < 1 としたものは、閉集合ではない。 また、連続関数 f(x,y) を使って、\ と表される集合は平面の閉集合である。円周も平面の閉集合である。 次の性質を満たす集合 X の部分集合の族 F があると、 F の元が閉集合であるような位相が X に定まる。.

新しい!!: 位相幾何学と閉集合 · 続きを見る »

開かつ閉集合

数学、特に位相幾何学や位相空間論において、ある位相空間の開かつ閉集合(かいかつへいしゅうごう、)とは、その位相空間の開集合であり閉集合でもあるような集合である。普通の意味の開 と閉 とは対義語であるから、開かつ閉集合 というものが有り得るということは直観に反するように見えるかもしれない。しかし、数学的に定義された開 と閉 とは相互排他的な概念ではない。一般に、 を位相空間、 を の部分集合とするとき、 とその補集合 とがいずれも の開集合であるならば、それらはいずれも の開かつ閉集合である。英語では、closed-open set を clopen set ともいう。clopen set という語は closed-open set という語から作られたかばん語である。.

新しい!!: 位相幾何学と開かつ閉集合 · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

新しい!!: 位相幾何学と開集合 · 続きを見る »

自由群

自由群(じゆうぐん、free group)とは、公理から来る自明なもの以外に元の間の等式がない群のことである。ただし、二つの元を取り出したとき、同じ元であるかどうか、および一方が他方の逆元であるかどうかは判定できる。.

新しい!!: 位相幾何学と自由群 · 続きを見る »

自明な結び目

自明な結び目(じめいなむすびめ、Trivial knot)または平凡な結び目(へいぼんなむすびめ)とは、位相幾何学の一分野である結び目理論において、「全く結ばれていない」という結び目のことである。3次元空間内の(2次元)円板の境界を標準的な自明な結び目とすれば、それと同値な結び目は全て自明な結び目と考える。自明な結び目は解けている(Unknot)ともいう。 例えば、あやとりで使う紐は(どんなに複雑な形をつくったとしても)自明な結び目と考えることができる。 1961年、ヴォルフガング・ハーケンによって、与えられた結び目が自明な結び目かどうかを判定するアルゴリズムが発見されている。 いくつかの自明な結び目を絡み合わないように並べたものは自明な絡み目という。.

新しい!!: 位相幾何学と自明な結び目 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

新しい!!: 位相幾何学と集合論 · 続きを見る »

集合族

数学の集合論関連分野における集合族(しゅうごうぞく、family of sets)は集合の「あつまり」である。ここで「集合の集合」といわず「集合のあつまり」としているのは、文脈によっては集合族が同じ集合をいくつも重複して持つ場合(しばしば添字付けられた族 (indexed family of sets) として扱われる)があったり、別の文脈では集合でない真の類 (proper class) となる場合があるなどの理由による。 特に与えられた集合 の部分集合のみを考えるとき、 の部分集合からなる集合は の部分集合族、 上の集合族あるいはなどと呼ぶ。グラフ理論の文脈では集合系はハイパーグラフとも呼ばれる。 また、自然数で添字付けられた(あるいは可算な)集合族は特にと呼ぶ(族 (数学)および列 (数学)の項も参照)。.

新しい!!: 位相幾何学と集合族 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 位相幾何学と連続 (数学) · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: 位相幾何学と連結空間 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: 位相幾何学と抽象代数学 · 続きを見る »

束 (束論)

数学における束(そく、lattice)は、任意の二元集合が一意的な上限(最小上界、二元の結びとも呼ばれる)および下限(最大下界、二元の交わりとも呼ばれる)を持つ半順序集合である。それと同時に、ある種の公理的恒等式を満足する代数的構造としても定義できる。二つの定義が同値であることにより、束論は順序集合論と普遍代数学の双方の領域に属することとなる。さらに、半束 (semilattice) の概念は束の概念を含み、さらにハイティング代数やブール代数の概念も含む。これら束に関連する構造は全て順序集合としても代数系としても記述することができるという特徴を持つ。.

新しい!!: 位相幾何学と束 (束論) · 続きを見る »

材料工学

材料工学(ざいりょうこうがく、英語:materials science and engineering)または材料科学(ざいりょうかがく)は、工学の一分野であり、物理学、化学等の知識を融合して新しい材料(素材)やデバイスの設計と開発、そして評価をおこなう学問である。 プロセス技術(結晶の成長、薄膜化、焼結、鋳造、圧延、溶接、イオン注入、ガラス形成など)、分析評価技術(電子顕微鏡、X線回折、熱量計測など)および産業上の材料生産での費用対利潤の評価などを扱う。.

新しい!!: 位相幾何学と材料工学 · 続きを見る »

朝倉書店

朝倉書店(あさくらしょてん)は、日本の出版社。 1929年(昭和4年)創業の賢文館が前身で、1944年(昭和19年)に株式会社朝倉書店設立。創業者は同文館出身の朝倉鑛造。 理学・工学・医学・農学・人文科学・家政学などの学術専門書および理工系の大学教科書を出版。.

新しい!!: 位相幾何学と朝倉書店 · 続きを見る »

情報科学

情報科学という語は日本語では多義的に用いられている。.

新しい!!: 位相幾何学と情報科学 · 続きを見る »

意味論

意味論(いみろん、英: semantics)とは、言語学では統語論に対置される分野、数学(とくに数理論理学)では証明論に対置される分野で、それらが中身(意味)に関与せず記号の操作によって対象を扱うのに対し、その意味について扱う分野である。なお、一般意味論というものもあるが、言語の使用に関する倫理を扱うものであり、ありていに言って無関係である。.

新しい!!: 位相幾何学と意味論 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 位相幾何学と数学 · 続きを見る »

曲面

数学、特に位相幾何学における曲面(きょくめん、surface)は二次元位相多様体である。最もよく知られた曲面の例は、古典的な三次元ユークリッド空間 R3 内の立体の境界として得られる曲面である。例えば、球体の境界としての球面はそのようなものの例になっている。他方でクラインの壷などの、特異点や自己交叉を持つことなしに三次元ユークリッド空間に埋め込み不可能な曲面というものも存在する。 曲面が「二次元」であるというのは、それが二次元の座標系を入れた「座標付きのきれはし」の貼り合せになっているということを指し示している。例えば、「地球の表面」は(理想的には)二次元球面であり、経線と緯線はその球面上の二次元座標系を与えている(ただし、両極を180度子午線で結んだ部分を除く)。.

新しい!!: 位相幾何学と曲面 · 続きを見る »

3次元コンピュータグラフィックス

3次元コンピュータグラフィックス(さんじげんコンピュータグラフィックス、Three-dimensional computer graphics, 3DCG)は、コンピュータの演算によって3次元空間内の仮想的な立体物を2次元である平面上の情報に変換することで奥行き感(立体感)のある画像を作る手法である。20世紀末からのコンピュータ技術の急速な発達と性能向上によって、従来は大企業や大きな研究所でしか得られなかった精細で高品質の3次元画像が、21世紀初頭現在ではPCやゲーム機で得られるようになっている。 毎年夏にアメリカ合衆国で開催されるCGの祭典「SIGGRAPH」(シーグラフ)にて、世界中の多くの研究者により最新のCGの論文が発表され、技術更新がなされている。.

新しい!!: 位相幾何学と3次元コンピュータグラフィックス · 続きを見る »

ここにリダイレクトされます:

トポロジトポロジー位相幾何

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »