ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

スピノール

索引 スピノール

数学および物理学におけるスピノル(spinor; スピノール、スピナー)は、特に直交群の理論に於いて空間ベクトルの概念を拡張する目的で導入された複素ベクトル空間の元である。これらが必要とされるのは、与えられた次元における回転群の全体構造を見るためには余分の次元を必要とするからである。 もっと形式的に、スピノルは与えられた二次形式付きベクトル空間から、代数的なあるいは量子化の手続きを用いることで構成される幾何学的な対象として定義することもできる。与えられた二次形式は、スピノルのいくつかことなる型を記述するかも知れない。与えられた型のスピノル全体の成す集合は、それ自身回転群の作用を持つ線型空間であるが、作用の符号について曖昧さがある。それゆえに、スピノル全体の空間は回転群のを導く。符号の曖昧さは、スピノル全体の空間を、スピン群 Spin(n) のある線型表現と見なすことによって除くこともできる。この形式的な観点では、スピノルについての多くの本質的で代数的な性質が(空間幾何での話に比べて)よりはっきり見て取れるが、もとの空間幾何との繋がりはわかりにくい。他にも、複素係数の使用が最小限に押さえられる。 一般のスピノルは、1913年にエリ・カルタンによって発見された。後に、スピノルは、電子や他のフェルミ粒子の内在する角運動量、即ちスピン角運動量の性質を研究するために、量子力学に適用された。今日、スピノルは物理学の様々な分野で用いられている。古典的に、が非相対論的な電子のスピンを記述するのに用いられた。ディラック方程式では、相対論的な電子の量子状態を数学的に記述する際に、ディラック・スピノルが必須となる。場の量子論では、相対論的な多粒子系の状態は、スピノルで記述される。 数学、殊に微分幾何学およびにおいて、スピノルが発見されて以来、代数的位相幾何学・微分位相幾何学、斜交幾何学、ゲージ理論、複素代数幾何、指数定理、および特殊ホロノミー などに対して幅広い応用がなされている。.

41 関係: 双線型形式場の量子論学術用語集代数的位相幾何学微分幾何学微分位相幾何学リー代数リー群パウリ行列ディラック・スピノルディラック方程式フェルミ粒子ベクトル空間アプリオリアティヤ=シンガーの指数定理アドホックエリ・カルタンガンマ行列クリフォード代数ゲージ理論シンプレクティック幾何学スピン群スピン角運動量元 (数学)回転群空間ベクトル符号数群の表現物理学直交群相対性理論被覆空間複素数角運動量量子力学量子化量子状態電子退化形式文部科学省数学

双線型形式

数学の特に抽象代数学および線型代数学における双線型形式(そうせんけいけいしき、bilinear form)とは、スカラー値の双線型写像、すなわち各引数に対してそれぞれ線型写像となっている二変数函数を言う。より具体的に、係数体 上のベクトル空間 で定義される双線型形式 は.

新しい!!: スピノールと双線型形式 · 続きを見る »

場の量子論

場の量子論(ばのりょうしろん、英:Quantum Field Theory)は、量子化された場(素粒子物理ではこれが素粒子そのものに対応する)の性質を扱う理論である。.

新しい!!: スピノールと場の量子論 · 続きを見る »

学術用語集

学術用語集(がくじゅつようごしゅう)とは、.

新しい!!: スピノールと学術用語集 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: スピノールと代数的位相幾何学 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: スピノールと微分幾何学 · 続きを見る »

微分位相幾何学

微分位相幾何学もしくは微分トポロジー(英語:differential topology)は、多様体の微分可能構造に注目する幾何学の一分野。微分可能構造という位相のみでは 決まらないものを扱うため純粋な位相幾何学として扱うのは難しい部分もあるが,位相が与えられている多様体の微分可能構造つまり微積分ができる ような構造を調べるということで位相多様体を調べるもので,微分可能構造まで込めた多様体に距離や曲率を定めて 研究を行う微分幾何学に比べ自由度は高いことから位相幾何学であるとされている。解析学や微分幾何学と位相幾何学の学際研究が非常に有益なことは初期から知られており、局所的な性質を扱う微分幾何学と大域的な性質を扱う位相幾何学の対照的な2分野による多様体の研究は双方の発展を促した。古くはフェリックス・クラインやアンリ・ポアンカレまで遡れ、現在微分位相幾何学と呼ばれているものはルネ・トムやジョン・ミルナーといった数学者によって創り出された。.

新しい!!: スピノールと微分位相幾何学 · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: スピノールとリー代数 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: スピノールとリー群 · 続きを見る »

パウリ行列

パウリ行列(パウリぎょうれつ, Pauli matrices)、パウリのスピン行列(パウリのスピンぎょうれつ, Pauli spin matrices)とは、下に挙げる3つの2×2複素行列の組みのことである猪木、河合(1994)、第7章J.J Sakurai and Jim Napolitano(2010), chapter 3。(シグマ)で表記されることが多い。量子力学のスピン角運動量や、部分偏極状態の記述方法に関連が深い。1927年に物理学者ヴォルフガング・パウリによって、スピン角運動量の記述のために導入された。 \sigma_1.

新しい!!: スピノールとパウリ行列 · 続きを見る »

ディラック・スピノル

自由粒子のディラック方程式の解は、以下の平面波の形式を持つ: ここで、\omega \, は4成分スピノル (ディラック・スピノル) であり、x \, を変数とする関数ではない。 このスピノルは以下のように書き下せる.

新しい!!: スピノールとディラック・スピノル · 続きを見る »

ディラック方程式

ディラック方程式(ディラックほうていしき)はフェルミ粒子を記述するディラック場が従う基礎方程式である。ポール・ディラックにより相対論的量子力学として導入され、場の量子論に受け継がれている。.

新しい!!: スピノールとディラック方程式 · 続きを見る »

フェルミ粒子

フェルミ粒子(フェルミりゅうし)は、フェルミオン(Fermion)とも呼ばれるスピン角運動量の大きさが\hbarの半整数 (1/2, 3/2, 5/2, …) 倍の量子力学的粒子であり、その代表は電子である。その名前は、イタリア=アメリカの物理学者エンリコ・フェルミ (Enrico Fermi) に由来する。.

新しい!!: スピノールとフェルミ粒子 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: スピノールとベクトル空間 · 続きを見る »

アプリオリ

アプリオリとは、経験的認識に先立つ先天的、自明的な認識や概念。カントおよび新カント学派の用法。ラテン語のa prioriに由来する。日本語では、「先験的」「先天的」「超越的」などと訳される。.

新しい!!: スピノールとアプリオリ · 続きを見る »

アティヤ=シンガーの指数定理

アティヤ=シンガーの指数定理(Atiyah–Singer index theorem)とは、スピンc多様体 の上の複素ベクトル束の間の楕円型微分作用素について、解析的指数と呼ばれる量と位相的指数と呼ばれる量とが等しいという定理である。解析的指数は与えられた楕円型微分作用素が定める偏微分方程式の解の次元を表す解析的な量であり、一方で位相的指数は微分作用素の主表象をもとにして多様体のコホモロジーを通じて定義される幾何的な量である。従って指数定理は解析学と幾何学という見かけ上異なった体系の間のつながりを与えているという意味で20世紀の微分幾何学における最も重要な定理ともいわれる。 本稿で述べる形の指数定理はマイケル・アティヤとイサドール・シンガーによって1963年に発表され、1968年に証明 が刊行された。指数定理の特別な場合として、以前から知られていたガウス・ボンネの定理やヒルツェブルフ・リーマン・ロッホの定理(ヒルツェブルフのリーマン・ロッホの定理)などが含まれていると理解できる。さらに、1950年代の終わりに得られていた(グロタンディークのリーマン・ロッホの定理)はこの定理の定式化に大きな影響を与えたとされ、グロタンディークが代数多様体に対して用いたK理論の構成を微分多様体に対して実行することが指数定理の定式化・証明における重要なステップをなしている。またアティヤ-シンガーによる枠組みの一般化として群が作用している場合や、楕円型微分作用素を持つ多様体が、ある多様体によってパラメーター付けされた族として与えられている場合、葉層構造によってパラメーター付けが与えられている場合などに指数定理が一般化されている。 この定理の研究から、アティヤとシンガーは2004年にアーベル賞を受賞した。.

新しい!!: スピノールとアティヤ=シンガーの指数定理 · 続きを見る »

アドホック

アドホック(ad hoc)は、「特定の目的のための」「限定目的の」などといった意味のラテン語の語句である。 ad hocのadは「~へ」「~について」、hocは「これ」「この」という意味で、英語では「for this」に相当することになる。 ヨーロッパ諸語では様々な語句と組み合わせて用いられている。.

新しい!!: スピノールとアドホック · 続きを見る »

エリ・カルタン

エリ・カルタン(Élie Joseph Cartan, 1869年4月9日 - 1951年5月6日)はフランスの数学者。リー群、微分幾何学に大きな業績を残した。数学界の巨人のひとり。 イゼール県ドロミューで、父親は鍛冶屋、母は絹織物工で、幼時より非凡な才能を示し、記憶力は抜群であった。 高等師範学校にすすみ、碩学エミール・ピカールなどの講義をうける。ソルボンヌ大学も通い、グルサやエルミートの講義などに感激した。 25歳の時に出した学位論文「有限次元連続変換群の構造について」は学者としての地位を約束するものであった。この論文によりみとめられ、1894年、モンペリエ大学の講師に任命される。 その後、40歳でパリ大学の講師に任命される。研究は多岐におよび、対称空間の発見、接続の概念の提唱など基本的な重要な仕事をした。リー群論、スピノル理論、連続群論、微分幾何学、積分不変式など。 子供は4人、3男1女、長男アンリは関数論の専門家、次男ジャンは作曲家だが夭逝、三男ルイは物理学者、長女のエレーヌは数学教師とのことである。 690409 -690409 Category:フランスの数学者 Category:微分幾何学者 Category:王立協会外国人会員 Category:フランス科学アカデミー会員 Category:モンペリエ大学の教員 Category:イゼール県出身の人物 Category:数学に関する記事 Category:1869年生 Category:1951年没.

新しい!!: スピノールとエリ・カルタン · 続きを見る »

ガンマ行列

ンマ行列(ガンマぎょうれつ、gamma matrices)、あるいはディラック行列(ディラックぎょうれつ、Dirac matrices)とは、反交換関係 によって定義される行列の組。場の理論におけるディラック場の記述に応用される。物理学者ポール・ディラックが相対論的な波動方程式としてディラック方程式を導く際に導入した。.

新しい!!: スピノールとガンマ行列 · 続きを見る »

クリフォード代数

数学において、クリフォード代数 (Clifford algebra) は結合多元環の一種である。K-代数として、それらは実数、複素数、四元数、そしていくつかの他の超複素数系を一般化する。クリフォード代数の理論は二次形式と直交変換の理論と親密に関係がある。クリフォード代数は幾何学、理論物理学、デジタル画像処理を含む種々の分野において重要な応用を持つ。それらはイギリス人幾何学者にちなんで名づけられている。 最もよく知られたクリフォード代数、あるいは直交クリフォード代数 (orthogonal Clifford algebra) は、リーマンクリフォード代数 (Riemannian Clifford algebra) とも呼ばれる。.

新しい!!: スピノールとクリフォード代数 · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

新しい!!: スピノールとゲージ理論 · 続きを見る »

シンプレクティック幾何学

ンプレクティック幾何学(シンプレクティックきかがく、symplectic geometry)とは、シンプレクティック多様体上で展開される幾何学をいう。シンプレクティック幾何学は解析力学を起源とするが、現在では大域解析学の一分野でもあり、可積分系・非可換幾何学・代数幾何学などとも深い繋がりを持つ。また、弦理論や超対称性との関わりも盛んに研究がなされている。.

新しい!!: スピノールとシンプレクティック幾何学 · 続きを見る »

スピン群

数学 において、 スピン群(スピンぐん、spin group) Spin(n) は特殊直交群 SO(n) の二重被覆であり、従って、以下に記すリー群の短完全系列が存在する。 n > 2 に対し、Spin(n) は単連結であり、よって SO(n) の普遍被覆である。 従って、リー群 Spin(n) の次元は n(n − 1)/2 と特殊直交群と同じであり、リー環も特殊直交群のものと同じである。 Spin(n) は、クリフォード多元環 Cℓ(n) の乗法可逆元からなる部分群として構成できる。 n 次元実ユークリッド空間 Rn の標準的正値 2 次形式に対するクリフォード多元環および偶クリフォード多元環を夫々 Cℓ(n)、Cℓ0(n) と書く。 Cℓ(n) の乗法可逆元全体 Cℓ(n)× は乗法群になり、Cℓ0(n) の乗法可逆元全体 Cℓ0(n)× はその部分群になる。 X∈Cℓ(n)× に対して、 は Cℓ(n) の内部自己同型である。 一般クリフォード群 は、Cℓ(n)× の部分群で、特殊クリフォード群 も部分群である。 Cℓ(n) の主逆自己同型を J と書くとき、X∈Γ(n) のノルム は Cℓ(n) の中心の可逆元である。 準同型としてのノルム写像 ν の Γ0(n) への制限の核 Ker(ν|Γ0(n)) は、Spin(n) になる。.

新しい!!: スピノールとスピン群 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: スピノールとスピン角運動量 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: スピノールと元 (数学) · 続きを見る »

回転群

(n 次の)回転群(かいてんぐん、rotation group)あるいは特殊直交群(とくしゅちょっこうぐん、special orthogonal group)とは、n行n列の直交行列であって、行列式が1のもの全体が行列の乗法に関してなす群をいう。SO(n) と書く。 SO(n) はコンパクトリー群であり、n.

新しい!!: スピノールと回転群 · 続きを見る »

空間ベクトル

間ベクトル(くうかんベクトル、Vektor, vector, vector, 「運搬者、運ぶもの」より)は、大きさと向きを持った量である。ベクタ、ベクターともいう。漢字では有向量と表記される。ベクトルで表される量をベクトル量と呼ぶ。 例えば、速度や加速度、力はベクトルである。平面上や空間内の矢印(有向線分)として幾何学的にイメージされる。ベクトルという用語はハミルトンによってスカラーなどの用語とともに導入された。スカラーはベクトルとは対比の意味を持つ。 この記事では、ユークリッド空間内の幾何ベクトル、とくに 3次元のものについて扱い、部分的に一般化・抽象化された場合について言及する。本項目で特に断り無く空間と呼ぶときは、3次元実ユークリッド空間のことを指す。.

新しい!!: スピノールと空間ベクトル · 続きを見る »

符号数

数学、とくに線型代数学における符号数(ふごうすう、signature)は固有値の符号(正・負・零)を重複度を込めて数えたものである。.

新しい!!: スピノールと符号数 · 続きを見る »

群の表現

数学において、群の表現(ぐんのひょうげん、group representation)とは、抽象的な群 の元 に対して具体的な線形空間 の正則な線形変換としての実現を与える準同型写像 のことである。線型空間 の基底を取ることにより、 をより具体的な正則行列として表すことができる。.

新しい!!: スピノールと群の表現 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: スピノールと物理学 · 続きを見る »

直交群

数学において、 次元の直交群(ちょっこうぐん、orthogonal group)とは、 次元ユークリッド空間上のある固定された点を保つような距離を保つ変換全体からなる群であり、群の演算は変換の合成によって与える。 と表記する。同値な別の定義をすれば、直交群とは、元が の実直交行列であり、群の積が行列の積によって与えられるものをいう。直交行列とは、逆行列がもとの行列の転置と等しくなるような行列のことである。 直交行列の行列式は か である。 の重要な部分群である特殊直交群 は行列式が である直交行列からなる。この群は回転群ともよばれ、例えば次元 2 や 3 では、群の元が表す変換は(2次元における)点や(3次元における)直線のまわりの通常の回転である。低次元ではこれらの群の性質は幅広く研究されている。 用語「直交群」は上の定義を一般化して、体上のベクトル空間における非退化な対称双線型形式や二次形式基礎体の標数が でなければ、対称双線型形式と二次形式のどちらを使っても同値である。を保つような、可逆な線形作用素全体からなる群を表すことがある。特に、体 上の 次元ベクトル空間 上の双線型形式がドット積で与えられ、二次形式が二乗の和で与えられるとき、これに対応する直交群 は、群の元が 成分 直交行列で群の積を行列の積で定めるものである。これは一般線形群 の部分群であって、以下の形で与えられる。 ここで は の転置であり、 は単位行列である。.

新しい!!: スピノールと直交群 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: スピノールと相対性理論 · 続きを見る »

被覆空間

数学、特に代数トポロジーにおいて、被覆写像(covering map)あるいは被覆射影(covering projection)とは、位相空間 C から X への連続全射 p のうち、 X の各点が p により「均一に被覆される」開近傍をもつものをいう。厳密な定義は追って与える。このとき C を被覆空間(covering space)、X を底空間(base space)と呼ぶ。この定義は、すべての被覆写像は局所同相であることを意味する。 被覆空間はホモトピー論、調和解析、リーマン幾何学、微分幾何学で重要な役割を果たす。たとえば、リーマン幾何学では、分岐は、被覆写像の考え方の一般化である。また、被覆写像はホモトピー群、特に基本群の研究とも深く関係する: X が十分によい位相空間であれば、X の被覆の同値類の集合と 基本群 π1(X) の共役な部分群の類全体との間に全単射が存在する(被覆の分類定理)。 from a topological space, C, to a topological space, X, such that each point in X has an open neighbourhood evenly covered by p (as shown in the image); the precise definition is given below.

新しい!!: スピノールと被覆空間 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: スピノールと複素数 · 続きを見る »

角運動量

角運動量(かくうんどうりょう、)とは、運動量のモーメントを表す力学の概念である。.

新しい!!: スピノールと角運動量 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: スピノールと量子力学 · 続きを見る »

量子化

量子化(りょうしか、quantization)とは、ある物理量が量子の整数倍になること、あるいは整数倍にする処理のこと。.

新しい!!: スピノールと量子化 · 続きを見る »

量子状態

量子状態(りょうしじょうたい、)とは、量子論で記述される系(量子系)がとる状態のことである。 これは系の物理量(可観測量、オブザーバブル)を測定したとき、その測定値のバラつき具合を表す確率分布によって定義される。 以下に述べるように、量子状態には、純粋状態と混合状態とがある。.

新しい!!: スピノールと量子状態 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: スピノールと電子 · 続きを見る »

退化形式

数学、とくに線型代数学において、ベクトル空間 V 上の退化 (degenerate) 双線型形式 f(x, y) とは、V から V*(V の双対空間)への v \mapsto (x \mapsto f(x,v)) で与えられる写像が同型でないような双線型形式である。V が有限次元のときの同値な定義はそれが非自明な核をもつということである、すなわち V の 0 でない元 x が存在して、 となる。.

新しい!!: スピノールと退化形式 · 続きを見る »

文部科学省

文部科学省(もんぶかがくしょう、略称:文科省(もんかしょう)、Ministry of Education, Culture, Sports, Science and Technology、略称:MEXT)は、日本の行政機関の一つである。 「教育の振興および生涯学習の推進を中核とした豊かな人間性を備えた創造的な人材の育成、学術、スポーツおよび文化の振興並びに科学技術の総合的な振興を図るとともに、宗教に関する行政事務を適切に行うこと」を任務とする(文部科学省設置法3条)。 中央合同庁舎第7号館東館に所在している。2004年(平成16年)1月から2008年(平成20年)1月までの期間、新庁舎への建替え・移転のため丸の内の旧三菱重工ビルを「文部科学省ビル」と改称して仮庁舎としていた(その後、同ビルは丸の内二丁目ビルに改称され、みずほフィナンシャルグループの本社を経て、現在は東京商工会議所として使用されている)。.

新しい!!: スピノールと文部科学省 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: スピノールと数学 · 続きを見る »

ここにリダイレクトされます:

スピノル

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »