ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

空間

索引 空間

間(くうかん)とは、.

206 関係: 古典力学古典物理学可分空間双対双対ベクトル空間名前空間多様体大小定常宇宙論実空間宮殿完備性宇宙空間宇宙論寺院対称性密着空間射影空間局所コンパクト群島宇宙左右上下不変量並木道中央公論新社中公新書世界遺産市場万有引力一般相対性理論一様空間座標庭園広場空間代数幾何学代数的位相幾何学仮説建造環境位相空間位相空間 (物理学)位相空間論形而上学作用素環論土地利用地理学地理空間情報包摂ミンコフスキー空間...ミシェル・ド・セルトーノルム線型空間マニュエル・カステルマイケルソン・モーリーの実験マクスウェルの方程式ハウスドルフ空間バナッハ空間ユークリッド幾何学ユークリッド空間リーマン幾何学リゾートルネ・デカルトレクリエーションヴィラボストンコモントポスヘンドリック・ローレンツヒルベルト空間ヒッグス粒子ビッグバンデヴィッド・ハーヴェイディラックの海デカルト主義フランスフローの空間ニュートン力学ホモトピーベクトル空間ベクトル解析ベクトル束別荘分離公理アメリカ合衆国アリストテレスアルベルト・アインシュタインアルジュン・アパデュライアンリ・ルフェーヴルアフィン空間アドレス空間アドホックな仮説アイザック・ニュートンイマヌエル・カントイギリスイタリアエルンスト・マッハエヴァンジェリスタ・トリチェリエーテル (物理)エドウィン・ハッブルオカルトカシミール効果クラウディオス・プトレマイオスコモンズの悲劇コルモゴロフ空間コンパクト空間コホモロジーゴルフ場ゴットフリート・ライプニッツジュリアン・バーバースペインスキー場タプル内井惣七商空間入会地公園光速前後図形国立公園国際連合教育科学文化機関四元素理論物理学者確率空間磁場社会学社会集団空 (仏教)空間 (数学)空間充填空間編成空間群空間統合精神線型位相空間線型部分空間緑地緑空間縦と横真空統一場理論絶対時間と絶対空間経済地理学環 (数学)環境問題点 (数学)無形文化遺産無限特殊相対性理論狩猟直観相同性相対性理論相関空間銀河遊園地非可換幾何計量ベクトル空間高速道路質量超自然距離空間関数 (数学)関数空間閉集合開集合重力重力を説明する古典力学的理論量子力学自由空間自然哲学自然哲学の数学的諸原理自然公園長さ色空間離散空間離散群零空間電磁場造園計画連結空間逆格子空間LF空間T1空間接ベクトル空間極限渦動説有界有界化有限群新幹線日本日本建築学会数学数学的構造慣性系手紙景観時空時間1539年2次元3次元4次元 インデックスを展開 (156 もっと) »

古典力学

古典力学(こてんりきがく、英語:classical mechanics)は、量子力学が出現する以前のニュートン力学や相対論的力学。物理学における力学に関する研究、つまり適当な境界の下に幾何学的表現された物質やその集合体の運動を支配し、数学的に記述する物理法則群に関する研究のうち、量子論以降の量子に関するそれを「量子力学」とするのに対し、レトロニム的に、量子論以前のもの(現代でもさかんに研究されている分野だが)を指してそう呼ぶ。 古典力学は、マクロな物質の運動つまり、弾道計算から部分的には機械動作、天体力学、例えば宇宙船、衛星の運動、銀河に関する研究に使われている。そして、それらの領域に対して、とても精度の高い結果をもたらす、最も古く最も広範な科学、工学における領域のうちの一つである。古典力学以外の領域としては気体、液体、固体などを扱う多くの分野が存在している。加えて、古典力学は光速に近い場合には特殊相対性理論を用いることによってより一般な形式を与えることとなる。同様に、一般相対性理論は、より深いレベルで重力を扱うこととなり、量子力学では、分子や原子における、粒子と波動の二重性について扱うこととなる。.

新しい!!: 空間と古典力学 · 続きを見る »

古典物理学

古典物理学(こてんぶつりがく、Physics in the Classical Limit)とは、量子力学を含まない物理学。その多くは量子力学が発達する前の原理に基づいて体系だてられたものだが、量子力学と同時またはそれ以降に構築された特殊相対性理論、一般相対性理論も含まれる。現代物理学の対義語では必ずしもないので注意を要する。.

新しい!!: 空間と古典物理学 · 続きを見る »

可分空間

数学の位相空間論における可分空間(かぶんくうかん、separable space)とは、可算な稠密部分集合を持つような位相空間をいう。つまり、空間の点列 で、その空間の空でない任意の開集合が少なくとも一つその点列の項を含むものが存在する。 他の可算公理と同様に、可分性は(濃度の言葉を必ずしも用いない)位相空間により適した集合の「大きさの制限」を与えるものである(とはいえハウスドルフの公理の存在においてはこの限りでないが)。特に、可分空間上の連続写像でその像がハウスドルフ空間の部分集合であるようなものは全て、その可算稠密部分集合上の値によって決定される。 一般に、可分性は極めて有用で(幾何学や古典的な解析学で研究されるような空間のクラスに対しては)きわめて緩やかなものと一般に考えられる、空間への技術的仮定である。可分性とそれに関連のある第二可算性の概念の比較は重要である(第二可算のほうが一般には強い条件だが、距離化可能な空間のクラスでは同値になる。.

新しい!!: 空間と可分空間 · 続きを見る »

双対

双対(そうつい、dual, duality)とは、互いに対になっている2つの対象の間の関係である。2つの対象がある意味で互いに「裏返し」の関係にあるというようなニュアンスがある(双対の双対はある意味で "元に戻る")。また、2つのものが互いに双対の関係にあることを「双対性がある」などとよぶ。双対は数学や物理学をはじめとする多くの分野に表れる。 なお読みについて、双対を「そうたい」と読む流儀もあり「相対 (relative)」と紛らわしい。並行して相対を「そうつい」と読む流儀もある。一般には「双対」を「そうつい」、「相対」を「そうたい」と呼び分ける場合が多いようである。 双対の具体的な定義は、双対関係の成立している対象の種類によって様々に与えられる。.

新しい!!: 空間と双対 · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

新しい!!: 空間と双対ベクトル空間 · 続きを見る »

名前空間

名前空間(なまえくうかん)はNamespaceの訳語で、名前の集合を分割することで衝突の可能性を低減しつつ参照を容易にする概念である。 この集合は、全事象の元の全ての組み合わせ可能なものからなる集合全体および物理的な名称を指すことが可能である。つまり英字・数字・記号などを組みあわせて作られる名前全てを含む集合である。名前に結び付けられる実体(型や変数)は、名前がそれぞれどの集合(空間)に属するか指定されることで一意に定まる。名前空間が異なれば同じ名前でも別の実体に対応付けられる。.

新しい!!: 空間と名前空間 · 続きを見る »

場(ば、field、工学分野では電界・磁界など界とも)とは、物理量を持つものの存在が、その近傍・周囲に連続的に影響を与えること、あるいはその影響を受けている状態にある空間のこと。.

新しい!!: 空間と場 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: 空間と多様体 · 続きを見る »

大小

大小(だいしょう).

新しい!!: 空間と大小 · 続きを見る »

定常宇宙論

定常宇宙論(ていじょううちゅうろん、steady state cosmology)とは、1948年にフレッド・ホイル、トーマス・ゴールド、ヘルマン・ボンディらによって提唱された宇宙論のモデルであり、(宇宙は膨張しているが)無からの物質の創生により、任意の空間の質量(大雑把に言えば宇宙空間に分布する銀河の数)は常に一定に保たれ、宇宙の基本的な構造は時間によって変化することはない、とするものである。 2005年現在、ビッグバン理論(ビッグバン仮説)が有力と考えられることが多く、支持する多くの科学者らから「標準的宇宙論モデル」と呼ばれており、このような立場からは定常宇宙論は「非標準的宇宙論 (non-standard cosmology)」の一つと見なされている。.

新しい!!: 空間と定常宇宙論 · 続きを見る »

実空間

実空間(じつくうかん、Real space).

新しい!!: 空間と実空間 · 続きを見る »

宮殿

イタリア共和国カンパニア州 宮殿(きゅうでん)は、王族、皇族などの君主およびその一族が居住する、もしくは居住していた御殿。君主が政務や外国使節の謁見、国家的な儀式などを行う朝廷部分と、君主が私的な生活を行う宮廷(きゅうてい)部分に分かれる。中世ヨーロッパにおいては戦士階級と世俗君主階級が一体化していたため、城壁に囲まれた城砦の中に国王や領主が居住し、君主が住み政治的機能を有する城砦を宮殿と同時に呼ぶことが一般的であった。しかし、時代の変遷とともに城砦形式の有効性が低下したことなどから、防衛機能より見た目の豪華さ、壮大さや居住性を重視して、都市の中に建設されるようになった。ヨーロッパ大陸諸国では都市の中に建てられた貴族の壮麗な邸宅を指すことがある。ヨーロッパ諸語における「Palace(英)」、「Palast(独)」「 Palais(仏)」、「Palazzo(伊)」という表現は、古代ローマのローマの七丘の一つである「Palatinus Mons(パラティーノ)」に由来する。この丘にローマ貴族の多くが邸宅を建て、初代皇帝も居住したからである。 日本においては戦士階級(武士)に対して、天皇の形式上の地位が保たれていたことから、天皇の住居のみが宮殿と呼ばれ、武士の住居および軍事的基地である城砦とは明確に区別される。日本語の「御所」は「宮殿」と共に英語のPalaceに意味が近い。イタリア語のPalazzoは宮殿というより単に大邸宅を指す語となっている。.

新しい!!: 空間と宮殿 · 続きを見る »

完備性

数学における完備性(かんびせい、completeness)は、様々な場面においてそれぞれの対象に関して特定の意味を以って考えられ、またそれぞれの意味において完備(かんび、complete)でない対象に対する完備化 (completion) と呼ばれる操作を考えることができる。complete は「完全」と訳されることもある。.

新しい!!: 空間と完備性 · 続きを見る »

宇宙空間

地球大気の鉛直構造(縮尺は正しくない) 宇宙空間(うちゅうくうかん、)は、地球およびその他の天体(それぞれの大気圏を含む)に属さない空間領域を指す。また別義では、地球以外の天体を含み、したがって、地球の大気圏よりも外に広がる空間領域を指す。なお英語では を省いて単に と呼ぶ場合も多い。 狭義の宇宙空間には星間ガスと呼ばれる水素 (H) やヘリウム (He) や星間物質と呼ばれるものが存在している。それらによって恒星などが構成されていく。.

新しい!!: 空間と宇宙空間 · 続きを見る »

宇宙論

宇宙論(うちゅうろん、cosmology)とは、「宇宙」や「世界」などと呼ばれる人間をとりかこむ何らかの広がり全体、広義には、それの中における人間の位置、に関する言及、論、研究などのことである。 宇宙論には神話、宗教、哲学、神学、科学(天文学、天体物理学)などが関係している。 「Cosmology コスモロジー」という言葉が初めて使われたのはクリスティアン・ヴォルフの 『Cosmologia Generalis』(1731)においてであるとされている。 本項では、神話、宗教、哲学、神学などで扱われた宇宙論も幅広く含めて扱う。.

新しい!!: 空間と宇宙論 · 続きを見る »

寺院

日本の寺院の地図記号 寺院(じいん、梵、)は、仏像が祀られ、仏教の出家者が起居し、修行を行う施設である。寺(てら)、仏閣(ぶっかく)ともいう。 本来は仏教用語であるが、神道を除く諸宗教の教会・神殿を指す語としても広く用いられている(ごく稀に神社にも用いられることがある)。.

新しい!!: 空間と寺院 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: 空間と対称性 · 続きを見る »

密着空間

数学の位相空間論周辺分野における密着空間(みっちゃくくうかん、indiscrete space)は、直観的にはその空間の全ての点が「一塊に密着」していてどの点も位相的な意味で区別できないような位相空間である。密着空間の位相は、開集合系が空集合と空間全体のみからなる自明な位相 (trivial toppology) であり、これをしばしば密着位相 (indiscrete topology) とも呼ぶ。密着空間を、任意の二点間の距離が 0 であるような距離函数に関する擬距離空間と考えることができる。.

新しい!!: 空間と密着空間 · 続きを見る »

射影空間

射影空間(しゃえいくうかん、projective space) とは、その次元が n であるとき、(n + 1)個の「数」の比全体からなる空間の事をさす。比を構成する「数」をどんな体(あるいは環)にとるかによって様々な空間が得られる。非ユークリッド幾何学のひとつである射影幾何学がその概念の端緒であるが、射影空間は位相幾何学、微分幾何学、代数幾何学など幾何学のあらゆる分野にわたって非常に重要な概念である。.

新しい!!: 空間と射影空間 · 続きを見る »

局所コンパクト群

数学において、局所コンパクト群 (locally compact group) とは、位相空間として局所コンパクトかつハウスドルフな位相群 G である。数学で現れる群の多くの例は局所コンパクトでありそのような群はハール測度と呼ばれる自然な測度を持っているから局所コンパクト群は重要である。これによって G 上のボレル可測関数の積分を定義することができフーリエ変換や L^p 空間といった標準的な解析学の概念を一般化することができる。 有限群の表現論の結果の多くは群上平均化することによって証明される。コンパクト群に対しては、これらの証明の修正は正規化されたに関して平均を取ることによって類似の結果をもたらす。一般の局所コンパクト群では、そのような技術が使えるとは限らない。得られる理論は調和解析の中心的な部分である。局所コンパクトアーベル群の表現論はポントリャーギン双対によって記述される。.

新しい!!: 空間と局所コンパクト群 · 続きを見る »

島宇宙

# 銀河(島のように大宇宙に散在していることから)。.

新しい!!: 空間と島宇宙 · 続きを見る »

左右

この写真の場合、1, 2, 3, 4, 5がある方向が右、7, 8, 9, 10, 11がある方向が左となり、6と12は左右の区別の内に含まれない。 左右(さゆう、ひだりみぎ)とは、六方位(六方)の名称の一つで、横・幅を指す方位の総称。絶対的な方向ではなく、おのおのの観測者にとって、上(同時に下)と前(同時に後)の方向が定まった時に、そしてその時初めて、その観測者にとっての左と右の方向が決まる。前後、上下とは直角に交差し、左と右は互いに正反対である。 アナログ時計に向かって、7 から 11 までの文字盤がある方向を左(ひだり)、1 から 5 までの文字盤がある方向を右(みぎ)という。あるいは南を下、北を上とした時、東の方向が右、西の方向が左となる。 左右の概念は、また鏡像関係にある二つの存在を区別するためにも援用される。.

新しい!!: 空間と左右 · 続きを見る »

上下

上下(じょうげ、うえした)とは、六方位(六方)の名称の一つで、高さ・深さを指す方位の概念を表す言葉である。.

新しい!!: 空間と上下 · 続きを見る »

不変量

不変量(ふへんりょう、invariant)とは、数学的対象を特徴付ける別種の数学的対象のことである。一般に、不変量は数や多項式など、不変量同士の同型性判定がもとの対象の同型性判定より簡単であるものをとる。良い不変量とは、簡単に計算でき、かつなるべく強い同型性判別能力をもつものである。.

新しい!!: 空間と不変量 · 続きを見る »

並木道

並木道(なみきみち、allee、avenue)は、道路や小道(の両端)に木々が道に沿って植えられたものである。通常、高木が並んでいるものについていう。 並んでいる立木(高木)を並木(なみき)という。並木は、道以外の河川などに沿って、あるいは単に列に並んでいる木もいう。街路に沿って植えられた木は街路樹(市街並木)、地方のものを並木(地方並木)として区別する場合もあるが、日本では一般に、街路に並んでいる木(街路樹)を並木ともいう。 植えられた植栽の樹種により、松並木、杉並木、桜並木、ポプラ並木のほか、リンゴ並木、イチョウ並木、ソテツ並木など、様々な並木道がある。場所では、街路のほかに公園、墓地、学校(大学のキャンパスなど)、寺院・神社(参道)、城郭、屋敷の中などの並木道もある。 諸言語で、alleeという表現がよく用いられるが、これはフランス語のaller.

新しい!!: 空間と並木道 · 続きを見る »

中央公論新社

株式会社中央公論新社(ちゅうおうこうろんしんしゃ)は、日本の出版社である。読売新聞グループ本社の傘下。略称は中公(ちゅうこう)。 本項では、旧法人の株式会社中央公論社(ちゅうおうこうろんしゃ)についても述べる。.

新しい!!: 空間と中央公論新社 · 続きを見る »

中公新書

中公新書(ちゅうこうしんしょ)は、中央公論新社(読売新聞グループ)が発行している新書レーベルの1つ。現行の新書レーベルでは岩波新書に次ぐ歴史がある。サブレーベルとして中公PC新書、中公新書ラクレがある。.

新しい!!: 空間と中公新書 · 続きを見る »

世界遺産

世界遺産(せかいいさん、World Heritage Site)は、1972年のユネスコ総会で採択された「世界の文化遺産及び自然遺産の保護に関する条約」(世界遺産条約)に基づいて世界遺産リスト(世界遺産一覧表)に登録された、文化財、景観、自然など、人類が共有すべき「顕著な普遍的価値」を持つ物件のことで、移動が不可能な不動産が対象となっている。なお、慣例的な用法として、その中の文化遺産を世界文化遺産、自然遺産を世界自然遺産と呼ぶことがある。 なお、世界遺産の制度では正式な文書は英語とフランス語で示され、日本語文献では英語が併記されることがしばしばある一方、フランス語が併記されることは普通ないため、以下では参照しやすさを考慮して、などに依拠して、主たる用語には英語を併記しておく。.

新しい!!: 空間と世界遺産 · 続きを見る »

市場

ポルトガルの市場 シンガポールの市場 市場(いちば、しじょう、market、 マーケット)とは、定期的に人が集まり商いを行う場所、あるいは、この市場(いちば)における取引機構に類似した社会機構の概念を指す。「市(いち)」「市庭」とも言う。.

新しい!!: 空間と市場 · 続きを見る »

万有引力

万有引力(ばんゆういんりょく、universal gravitation)または万有引力の法則(ばんゆういんりょくのほうそく、law of universal gravitation)とは、「地上において質点(物体)が地球に引き寄せられるだけではなく、この宇宙においてはどこでも全ての質点(物体)は互いに gravitation(.

新しい!!: 空間と万有引力 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: 空間と一般相対性理論 · 続きを見る »

一様空間

一様空間(いちようくうかん、uniform space)は数学の一分野である位相空間論の概念で、一様連続性、一様収束性、完備性、一様被覆といった性質の定式化が可能になる条件を抽象する事で得られたものである。 一様空間は距離空間と位相空間の中間の強さを持つ概念であり、距離空間は自然に一様空間とみなせ、一様空間は自然に位相空間とみなせる。また擬距離空間や位相群なども一様空間とみなせる。 一様空間は距離空間と位相群を一般化する概念であるので、解析学における議論の多くの基盤を与えるものとなっている。 一様構造と位相構造の概念的な違いは、一様空間においては点の近さや相対的な近さといったようなある種の概念が定式化できるというようなことにある。つまり、「点 x の点 a への近さは、点 y の点 bへの近さよりも近い」といったような考察は一様空間において意味を成すのである。対する一般の位相空間では、部分集合 A, B が与えられれば、「点 x が集合 A にどれほどでも近い(x が A の閉包に属する)」とか「集合 A は集合 B よりも小さい近傍である」といったようなことは言える。しかし点の近さの概念や相対的な近さといったようなものは、位相構造のみでは記述することができない。.

新しい!!: 空間と一様空間 · 続きを見る »

座標

幾何学において、座標(ざひょう)とは、点の位置を指定するために与えられる数の組 (coordinates)、あるいはその各数 (coordinate) のことであり、その組から点の位置を定める方法を与えるものが座標系(ざひょうけい、coordinate system)である。座標系と座標が与えられれば、点はただ一つに定まる。 座標は点により定まる関数の組であって、一つの空間に複数の座標系が重複して定義されていることがある。例えば、多様体は各点の近くでユークリッド空間と同様の座標系が貼り付けられているが、ほとんどの場合、一つの座標系の座標だけを考えていたのでは全ての点を特定することができない。このような場合は、たくさんの座標系を貼り付けて、重なる部分での読み替えの方法を記した地図帳(アトラス、atlas)を用意することもある。 地球上の位置を表す地理座標や、天体に対して天球上の位置を表す天球座標がある。.

新しい!!: 空間と座標 · 続きを見る »

庭園

庭園(ていえん)は、見て、歩いて楽しむために、樹木を植えたり、噴水・花壇を作ったりなど、人工的に整備された施設。日本では、自然を模して川・池・築山などが作られ、木や草が植えられているものもある。.

新しい!!: 空間と庭園 · 続きを見る »

広場空間

広場空間(ひろばくうかん)とは、広場機能を有した空間を指すが、文化、時代、気候風土、立地、地形条件により果たす役割が異なり、形態、物理的構成もさまざまである。 周囲を建物等に閉まれている、軸線上でランドマークが配置されている、中核に求心性のあるモニュメントがある、複数広場が連続している等の特徴を有する。 古くは古代ギリシャのアゴラ、教会、寺院等前面の広場がある。また現代では美術館等の施設前、道路ロータリー部分の広場・空地、公開空地やショッピングモール内やペデストリアンデッキ上の広場等がある。 Category:不動産 Category:都市計画 Category:広場 Category:建築 Category:造園.

新しい!!: 空間と広場空間 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 空間と代数幾何学 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: 空間と代数的位相幾何学 · 続きを見る »

仮説

仮説(かせつ、hypothesis)とは、真偽はともかくとして、何らかの現象や法則性を説明するのに役立つ命題のこと。.

新しい!!: 空間と仮説 · 続きを見る »

建造環境

間の実質的包摂の結果として生産された空間編成のうち、可視的な地物として地表に刻み付けられたものは、その全体が空間システムを構成する。このような総体を、建造環境(けんぞうかんきょう、built environment)という。.

新しい!!: 空間と建造環境 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 空間と位相空間 · 続きを見る »

位相空間 (物理学)

物理学における位相空間(いそうくうかん、phase space)とは、力学系の位置と運動量を座標(直交軸)とする空間のことである。数学における位相空間()と区別するために、相空間と呼ぶ流儀もある。 ハミルトン形式においては位置と運動量が力学変数となり、力学変数の関数として表される物理量は位相空間上の関数となる。 1個の質点の運動の状態は、その位置と運動量を指定することで定まる。-次元空間における運動では、位置と運動量がそれぞれ 成分あり、合わせて 成分となる。これらを座標とする 次元の空間が位相空間である。1個の質点の運動の状態は位相空間上の1個の点として表現され、これは状態点と呼ばれる。運動方程式に従って位置と運動量は時間変化し、時間の経過とともに状態点は1本の軌跡を描く。 -次元空間を運動する 個の質点系の運動の状態は 次元位相空間上の 個の状態点の分布として表現され、時間とともにその分布が変化する。 質点系は上記の分布による表現だけではなく、 個の質点の各々の位置と運動量のすべてを座標とする -次元の位相空間を考えることができる。質点系の運動の状態はこの -次元空間上の1個の状態点として表現され、時間の経過とともに1本の軌跡を描く。.

新しい!!: 空間と位相空間 (物理学) · 続きを見る »

位相空間論

数学における位相空間論(いそうくうかんろん、general topology; 一般位相幾何学)または点集合トポロジー(てんしゅうごうトポロジー、point-set topology; 点集合論的位相幾何)は、位相空間の性質やその上に定義される構造を研究対象とする位相幾何学の一分野である。位相幾何学のほかの分野が多様体などの特定の構造や具体的な構造を前提とすることと異なり、現れる位相空間としては病的なものも含めた極めて広範かつ一般のものを扱い、その一般論を形成するのが位相空間論の主目的である。.

新しい!!: 空間と位相空間論 · 続きを見る »

形而上学

形而上学(けいじじょうがく、μεταφυσικά、Metaphysica、Metaphysics、métaphysique、Metaphysik)は、感覚ないし経験を超え出でた世界を真実在とし、その世界の普遍的な原理について理性的な思惟によって認識しようとする学問ないし哲学の一分野である『岩波哲学小事典』「形而上学」の項目。世界の根本的な成り立ちの理由(世界の根本原因)や、物や人間の存在の理由や意味など、見たり確かめたりできないものについて考える。対立する用語は唯物論である『岩波哲学小事典』「形而上学」の項目。他に、実証主義や不可知論の立場から見て、客観的実在やその認識可能性を認める立場『岩波哲学小事典』「形而上学」の項目や、ヘーゲル・マルクス主義の立場から見て弁証法を用いない形式的な思考方法のこと『岩波哲学小事典』「形而上学」の項目。.

新しい!!: 空間と形而上学 · 続きを見る »

作用素環論

作用素環論(さようそかんろん、)とは、作用素環とよばれるクラスの位相線型環を主に研究する数学の分野である。研究対象の直接的な定義からは複素数体上無限次元の線型代数学と言え、普通関数解析学に分類されている。しかし、その手法や応用はいわゆる代数学・幾何学・解析学の諸分野に幅広くわたり、アラン・コンヌが提唱する非可換幾何の枠組みを与えていることでも特筆される。 作用素環とは普通ヒルベルト空間上の有界線型作用素(連続な線型写像)のなす複素数体上の線型環に適当なノルムによる位相を定めたもので、随伴作用とよばれる対合変換で閉じたもののことを指す。この随伴作用は複素行列の共役転置作用をヒルベルト空間上の作用素について考えたものであり、有限次元の線型代数学と同様に自己共役作用素やユニタリ作用素が理論の展開に重要な役割をはたす。主要な作用素環のクラスとしては、局所コンパクト空間上の複素数値連続関数環の「量子化」を与えていると考えられるC*-環や、可測関数環に対応するフォン・ノイマン環があげられる。それ以外にも、考える作用素環の無限性をとらえる非有界(自己共役)作用素も決定的な役割を果たしているし、多様体上の微分構造に対応するより繊細な構造の位相環と、それらに対するド・ラームコホモロジーの類似物なども研究されている。 このような作用素環が可換になったり I 型とよばれる簡単な構造を持つ場合にさまざまな(作用素環以前の)古典的な対象が現れ、作用素環の構造が複雑になるほど古典的な数学では捉えにくい複雑な状況が表されていると考えられる。作用素環論の主な目標として、このように作用素環によって「非可換」化・量子化された幾何的対象を表現し、通常の図形と(可分)位相群などとを統一的に理解することや、それらに対するホモロジー・コホモロジー的な理論(K理論)の構成と理解などが挙げられる。 1930年代のとフォン・ノイマンのフォン・ノイマン環に関する一連の論文や、1940年代のイズライル・ゲルファントとによるC*-環に関する研究が作用素環論の始まりだといわれている。可換環と局所コンパクト空間の圏の同値性を与えるゲルファント・ナイマルクの定理はアレクサンドル・グロタンディークによるスキームの概念にも影響を与えている。1970年代に冨田・竹崎理論を駆使してコンヌが III 型フォン・ノイマン環の分類をほぼ完成させた。1980年代にはヴォーン・ジョーンズによって部分因子環の理論と、その派生物としてトポロジーにおける結び目の不変量を与えるようなジョーンズ多項式が得られた。一方で作用素環はそのはじめから数理物理(特に量子力学)の定式化に使われることが意識されており、現在でも物理学とのあいだに活発な交流がある。 日本の作用素環論の研究者で1994年以降、ICMで全体講演をしたものはいないが、招待講演者の中には小沢登高、泉正己がいる。.

新しい!!: 空間と作用素環論 · 続きを見る »

土地利用

アメリカ東部 ポトマック川流域の土地利用図、1997年 土地利用(とちりよう、land use、land utilization)とは、土地の状態や用途といった利用状況のこと、あるいは土地を利用すること自体を表す概念である。 「森林」「水田」「市街地」といったおよその分類を用いて、その地域の土地の利用を広範囲でみるものから、「有料道路」「市役所」「灯台」といった細かい分類を用いて、それぞれの利用状況を見るものまであり、さまざまである。一口に「土地利用」と言っても、目的に合った土地利用の資料でなければ、適切な情報を得ることは難しい。.

新しい!!: 空間と土地利用 · 続きを見る »

地理学

地理学(ちりがく、、、)は、空間ならびに自然と、経済・社会・文化等との関係を対象とする学問の分野。地域や空間、場所、自然環境という物理的存在を対象の中に含むことから、人文科学、社会科学、自然科学のいずれの性格も有する。自然地理学は地球科学の一分野でもある。広範な領域を網羅することから、「地理学と哲学は諸科学の母」と称される。 元来は農耕や戦争、統治のため、各地の情報を調査しまとめるための研究領域として成立した。しかし現在は、自然科学ないし人文科学、社会科学の一分野として、。.

新しい!!: 空間と地理学 · 続きを見る »

地理空間情報

地理空間情報(ちりくうかんじょうほう、geospatial information)とは、地理・空間に関係づけられた情報を指す。「地理情報」、「空間情報」もほぼ同義である。 日本では平成19年8月29日に施行された、地理空間情報活用推進基本法(平成19年法律第63号)第2条第1項に定義されている用語で、次の情報を指す。.

新しい!!: 空間と地理空間情報 · 続きを見る »

園(その、えん).

新しい!!: 空間と園 · 続きを見る »

包摂

包摂(ほうせつ、subsumption)とは、経済・社会が、その本来の諸関係にとって外生的な存在を取り込む過程をいう。はじめ、マルクスの論文「直接的生産過程の諸結果」において、「労働の形式的・実質的包摂」としてこの用語が用いられ、後に、労働(技術)以外の外生的な要素を取り込む場合の概念に拡張された。 経済・社会は、捨象して抽象化することが可能な人間相互の関係である。他方、現実の経済・社会は、自然科学の法則を合目的的にシステム化した技術、生物としてのヒト、自然環境、空間など、さまざまの外生的な存在を取り込まない限り存続することができない。 これらはいずれも、自然的存在であり、自然科学が究明する独自の運動法則をもつ統一体である。経済や社会は、このような自然的存在のうち有用な性質のみを取り込んで(包摂して)活用しようとするが、自然は統一体として存在している以上、経済・社会にとって障害となる要素も同時に包摂せざるを得ないことを意味する。その結果、この障害となる要素が、経済・社会にさまざまの否定的帰結をもたらす。これが、経済・社会にとって外生的なものの形式的包摂 (formal subsumption) である。 そこで、経済・社会の主体は、この自然の存在が障害をもたらさないよう、自然を人間の都合に合わせて作り変えようとする。これは、経済・社会による人為的な自然の生産過程である。人為的自然が適切に生産されれば、形式的包摂に際して存在していた障害は消滅する。これにより、経済・社会は、外生的な自然を実質的包摂 (real subsumption) したことになる。 マルクスが用いた具体例は、マニュファクチュア期の熟練技術が資本主義の生産様式に形式的包摂されると、技術を自己の身体に体化している熟練労働者は資本に対し高い地位を保有し、頑固な熟練労働者の言うことに経営者が従わない限り、生産は出来ない。また、熟練労働者は容易に養成できないため、拡大再生産が困難で、資本蓄積の障害となる。そこで、技術体系そのものを作り直し、熟練を排除した機械制大工業(工場制機械工業)のシステムが構築される。これが、労働(技術)の実質的包摂である。機械を用いれば未熟練労働者でも生産が出来るようになり、機械に設備投資さえすれば任意に生産規模を拡大できる。これによって資本(経営側)の労働(被雇用者)に対する優越性は確保され、資本蓄積の障害は解消する。すなわち、テーラーシステムのようなコンベア(ベルトコンベア・ローラーコンベア)を用いた大量生産の過程は、労働(技術)の実質的包摂の帰結である、と言うものである。アメリカの労働経済学者ブレイヴァマンはこれを、「訓練されたゴリラでも出来る」作業であり「労働の低質化」だと指摘した。 ほうせつ ほうせつ ほうせつ.

新しい!!: 空間と包摂 · 続きを見る »

ミンコフスキー空間

ミンコフスキー空間(ミンコフスキーくうかん、Minkowski space)とは、非退化で対称な双線型形式を持つ実ベクトル空間である。ドイツの数学者のヘルマン・ミンコフスキーに因んで名付けられている。アルベルト・アインシュタインによる特殊相対性理論を定式化する枠組みとして用いられる。この特定の設定の下では空間に時間を組み合わせた時空を表現するため、物理学の文脈ではミンコフスキー時空とも呼ばれる。.

新しい!!: 空間とミンコフスキー空間 · 続きを見る »

ミシェル・ド・セルトー

ミシェル・ド・セルトー(Michel de Certeau, 1925年 - 1986年1月9日)は、フランスの歴史家、社会理論家、哲学者。サヴォワ県に生まれ、1950年にイエズス会士に、1986年に他界するまでカトリック教会の司祭を務めた。パリ・カトリック学院、パリ第7大学、パリ第8大学で教えたのち、カリフォルニア大学サンディエゴ校教授、パリ社会科学高等研究学院教授を歴任。1986年にパリで没する。.

新しい!!: 空間とミシェル・ド・セルトー · 続きを見る »

ノルム線型空間

数学におけるノルム線型空間(ノルムせんけいくうかん、normed vector space; ノルム付きベクトル空間、ノルム付き線型空間)または短くノルム空間は、ノルムの定義されたベクトル空間を言う。 各成分が実数の、二次元あるいは三次元のベクトルからなる空間では、直観的にベクトルの「大きさ」(長さ)の概念が定義できる。この直観的アイデアを任意有限次元の実数ベクトル空間 に拡張するのは容易い。ベクトル空間におけるそのようなベクトルの大きさは以下のような性質を持つ.

新しい!!: 空間とノルム線型空間 · 続きを見る »

マニュエル・カステル

マニュエル・カステル(Manuel Castells、1942年2月9日 - )は、スペイン生まれの社会学者。専門は、情報社会学、都市社会学。.

新しい!!: 空間とマニュエル・カステル · 続きを見る »

マイケルソン・モーリーの実験

マイケルソン・モーリーの実験(マイケルソン・モーリーのじっけん、Michelson-Morley experiment)とは、1887年にアルバート・マイケルソンとエドワード・モーリーによって行なわれた光速に対する地球の速さの比 の二乗 を検出することを目的とした実験であるなお、この実験は現在のケース・ウェスタン・リザーブ大学で行なわれた。。 マイケルソンは、この業績により1907年にノーベル賞を受賞したこの実験は、エーテル理論を初めて否定した物理学史における重要な役割を果たしたものとして知られている。同時に、「第二次科学革命の理論面の端緒」ともされている。 Earl R. Hoover, Cradle of Greatness: National and World Achievements of Ohio’s Western Reserve (Cleveland: Shaker Savings Association, 1977).

新しい!!: 空間とマイケルソン・モーリーの実験 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: 空間とマクスウェルの方程式 · 続きを見る »

ハウスドルフ空間

数学におけるハウスドルフ空間(ハウスドルフくうかん、Hausdorff space)とは、異なる点がそれらの近傍によって分離できるような位相空間のことである。これは分離空間(separated space)またはT2 空間とも呼ばれる。位相空間についてのさまざまな分離公理の中で、このハウスドルフ空間に関する条件はもっともよく仮定されるものの一つである。ハウスドルフ空間においては点列(あるいはより一般に、フィルターやネット)の極限の一意性が成り立つ。位相空間の理論の創始者の一人であるフェリックス・ハウスドルフにちなんでこの名前がついている。ハウスドルフによって与えられた位相空間の公理系にはこのハウスドルフ空間の公理も含まれていた。.

新しい!!: 空間とハウスドルフ空間 · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: 空間とバナッハ空間 · 続きを見る »

ユークリッド幾何学

ユークリッド幾何学(ユークリッドきかがく、Euclidean geometry)は、幾何学体系の一つであり、古代エジプトのギリシア系・哲学者であるエウクレイデスの著書『ユークリッド原論』に由来する。詳しい説明は『ユークリッド原論』の記事にある。.

新しい!!: 空間とユークリッド幾何学 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 空間とユークリッド空間 · 続きを見る »

リーマン幾何学

リーマン幾何学(リーマンきかがく、Riemannian geometry)とは、リーマン計量や擬リーマン計量と呼ばれる距離の概念を一般化した構造を持つ図形を研究する微分幾何学の分野である。このような図形はリーマン多様体、擬リーマン多様体とよばれる。ドイツの数学者ベルンハルト・リーマンに因んでこの名前がついている。1850年代に確立された。 楕円・放物・双曲の各幾何学は、リーマン幾何学では、曲率がそれぞれ正、0、負の一定値をとる空間(それぞれ球面、ユークリッド空間、双曲空間)上の幾何学と考えられる。なお、楕円幾何学のことをリーマン幾何と呼ぶことがあるが、本稿で述べるリーマン幾何学はそれとは異なるものである。 アルベルト・アインシュタインは、重力、即ち、一様ではなく湾曲した時空を記述するのに擬リーマン多様体の枠組みが有効であることを見いだし、リーマン幾何学を数学的核心とした一般相対性理論を構築した。 3.

新しい!!: 空間とリーマン幾何学 · 続きを見る »

リゾート

リゾート (resort) とは、大勢の人が休暇・余暇を過ごす場所のこと。行楽地。.

新しい!!: 空間とリゾート · 続きを見る »

ルネ・デカルト

ルネ・デカルト(René Descartes、1596年3月31日 - 1650年2月11日)は、フランス生まれの哲学者、数学者。合理主義哲学の祖であり、近世哲学の祖として知られる。.

新しい!!: 空間とルネ・デカルト · 続きを見る »

レクリエーション

レクリエーション(リクリエーション)は、英語で2通りの意味を持つ言葉である(正確にはそれぞれ異なる単語であるが、前者は後者から派生した)。.

新しい!!: 空間とレクリエーション · 続きを見る »

ヴィラ

Villa Medici in Fiesole(フィエーゾレにあるメディチ家のヴィラ) ヴィラまたはヴィッラ(villa)は、本来は上流階級のカントリー・ハウスを意味し、古代ローマが起源だが、ヴィラの概念と機能は時代と共に発展してきた。共和政ローマが終焉を迎えるとヴィラは小さな要塞化された農場の複合家屋となっていったが、中世を通して徐々に再発展し、贅沢な上流階級のカントリー・ハウスとなっていった。現代では、特定の種類の一戸建て郊外住宅を指す。.

新しい!!: 空間とヴィラ · 続きを見る »

ボストンコモン

ボストン・コモン または ザ・コモン (Boston Common, the Common)は、アメリカ合衆国マサチューセッツ州ボストン市中心部にある公園。「ボストン・コモン'''ズ'''(Boston Commons)」は誤りである。1634年に創立された、アメリカ最古の都市公園である。トレモント、パーク、ビーコン、チャールズ、ボイルストンの各通りに囲まれ、面積は20.2万m2である。ザ・コモンの南からロクスバリーのフランクリン・パークまで広がるエメラルド・ネックレスの一部となっている。ボストン観光案内所がトレモント・ストリート沿いにある。 ボイルストン・ストリート沿いにセントラル埋葬地があり、画家のギルバート・ステュアートや作曲家のウィリアム・ビリングスなどが埋葬されている。またアメリカの初期の詩人であるサミュエル・スプレグおよび息子のチャールズ・スプレグもここに埋葬されている。サミュエル・スプレグはボストン茶会事件に参加し、アメリカ独立戦争で戦った。 1977年、ボストン・ランドマーク委員会からボストン・ランドマークに認定された。.

新しい!!: 空間とボストンコモン · 続きを見る »

トポス

トポス(τόπος)とは、ギリシア語で「場所」を意味する語であり、以下の用法がある。.

新しい!!: 空間とトポス · 続きを見る »

ヘンドリック・ローレンツ

ヘンドリック・アントーン・ローレンツ(Hendrik Antoon Lorentz、1853年7月18日 - 1928年2月4日)は、オランダの物理学者。ゼーマン効果の発見とその理論的解釈により、ピーター・ゼーマンとともに1902年のノーベル物理学賞を受賞した。ローレンツ力、ローレンツ変換などに名を残し、特に後者はアルベルト・アインシュタインが時空間を記述するのに利用した。.

新しい!!: 空間とヘンドリック・ローレンツ · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: 空間とヒルベルト空間 · 続きを見る »

ヒッグス粒子

ヒッグス粒子(ヒッグスりゅうし、 ヒッグス・ボソン)とは、1964年にピーター・ヒッグスが提唱したヒッグス機構において要請される素粒子である。 ヒッグス自身は「so-called Higgs boson(いわゆる ヒッグス粒子と呼ばれているもの)」と呼んでおり、他にも様々な呼称がある。 本記事では便宜上ヒッグス機構・ヒッグス粒子の双方について説明する。質量の合理的な説明のために、ヒッグス機構という理論体系が提唱されており、その理論内で「ヒッグス場」や「ヒッグス粒子」が言及されているという関係になっているためである。.

新しい!!: 空間とヒッグス粒子 · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

新しい!!: 空間とビッグバン · 続きを見る »

デヴィッド・ハーヴェイ

デヴィッド・ハーヴェイ(David Harvey、1935年10月31日 - )は、イギリスの地理学者である。専門は人文地理学・社会理論・政治経済学。.

新しい!!: 空間とデヴィッド・ハーヴェイ · 続きを見る »

ディラックの海

対論的量子力学において、ディラックの海(ディラックのうみ、Dirac sea)とは、真空状態が負のエネルギーを持つ電子によって完全に占められている状態であるというモデル。 ディラック方程式の解が負のエネルギー状態を持つことによって生じる問題を回避すべく、英国の物理学者ポール・ディラックが空孔理論の中で提唱した。ディラックは、電子が満たす相対論的な量子力学の基礎方程式として、ディラック方程式を導いたが、この方程式は負のエネルギーの解を持つ。 この負のエネルギーに下限はなく、電子はよりエネルギーが低い状態に落ち込んでいくため、安定な状態をとりえない。すなわち、エネルギーの基底状態となる安定な真空状態が存在しないことになる。こうした問題を解決すべく、ディラックは真空状態はすべての負のエネルギー状態が電子によって、埋め尽くされた状態とするディラックの海の概念を提唱した。パウリの排他律によれば、既に占有されている負のエネルギー状態に電子が入ることはできず、すべての負のエネルギー状態が埋まっているディラックの海では、より低いエネルギー状態に落ち込むことはない。 但し、こうした説明が可能となるのは、パウリの排他律を満たすフェルミ粒子についてだけであり、ボーズ粒子には適用できないという問題がある。その後、空孔理論が抱える問題は現代的な場の量子論の形成により解決されたため、ディラックの海の概念は不要となった。.

新しい!!: 空間とディラックの海 · 続きを見る »

デカルト主義

デカルト主義(デカルトしゅぎ、Cartesianism)とは、ルネ・デカルトによる哲学的教説(もしくはそれに連なる学派)を指す言葉である。デカルトはしばしば、理性の使用こそが自然科学の発展に繋がると強調した最初の思想家であると考えられている。彼にとって、哲学とはあらゆる知識を具現化する思考体系であり、それを自らの著書において表現したのである。 デカルト主義者は精神と身体は全く別の存在であると考える。そして、感覚と知覚は虚偽や幻覚の源泉であり、確かな真理は形而上学的な存在である精神の内部でのみ得られるとされる。精神は身体と相互に作用することができるが、身体の中にあるわけでもなければ、身体と同じ次元に存在するわけでもない。 一般的に、デカルト主義は世界を次の3つの存在領域に分類するとされている。.

新しい!!: 空間とデカルト主義 · 続きを見る »

フランス

フランス共和国(フランスきょうわこく、République française)、通称フランス(France)は、西ヨーロッパの領土並びに複数の海外地域および領土から成る単一主権国家である。フランス・メトロポリテーヌ(本土)は地中海からイギリス海峡および北海へ、ライン川から大西洋へと広がる。 2、人口は6,6600000人である。-->.

新しい!!: 空間とフランス · 続きを見る »

フローの空間

フローの空間(ふろーのくうかん、英:space of flows)は、都市社会学者マニュエル・カステルが提示した分析概念。.

新しい!!: 空間とフローの空間 · 続きを見る »

ニュートン力学

ニュートン力学(ニュートンりきがく、)は、アイザック・ニュートンが、運動の法則を基礎として構築した、力学の体系のことである『改訂版 物理学辞典』培風館。。 「ニュートン力学」という表現は、アインシュタインの相対性理論、あるいは量子力学などと対比して用いられる。.

新しい!!: 空間とニュートン力学 · 続きを見る »

ホモトピー

数学におけるホモトピー (homotopy)とは、点や線や面などの幾何学的対象、あるいはそれらの間の連続写像が連続的に移りあうということを定式化した位相幾何学における概念のひとつである。位相幾何学では、2 つの対象 A と X との関係のうち、連続的な変形によって保たれるものを問題とすることが多い。これらの関係はふつう連続写像 A → X を通して定義され、ホモトピーの概念は連続的に変形する連続写像の族によって定式化される。ホモトピー的な種々の不変量は位相幾何学の研究における基本的な道具となる。 考察している幾何学的対象に「穴」が開いていれば、端を固定された曲線はそれを越えて連続的に変形することができない。したがって、ホモトピーによって「穴」の有無や、単純な構成要素に分解したときのそれらの組み合わせ的なつながり具合といった構造を調べることができる。ホモトピーが威力を発揮するのは、空間や写像といった幾何学的な対象に対し群や準同型などという代数的な対象を対応づけることであり、またそのような代数的な対象がしばしばもとの幾何学的な対象よりも単純化されているということにある。 このように、代数的な道具によって空間と写像の位相的性質を調べるという方法をとる幾何学は、代数的位相幾何学と呼ばれる。.

新しい!!: 空間とホモトピー · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 空間とベクトル空間 · 続きを見る »

ベクトル解析

ベクトル解析(ベクトルかいせき、英語:vector calculus)は空間上のベクトル場やテンソル場に関する微積分に関する数学の分野である。 多くの物理現象はベクトル場やテンソル場として記述されるため、ベクトル解析は物理学の様々な分野に応用を持つ。 物理学では3次元ユークリッド空間上のベクトル解析を特によく用いられるが、ベクトル解析は一般のn次元多様体上で展開できる。.

新しい!!: 空間とベクトル解析 · 続きを見る »

ベクトル束

数学において、ベクトル束(べくとるそく、vector bundle; ベクトルバンドル)は、ある空間 (例えば、 は位相空間、多様体、代数多様体等)により径数付けられたベクトル空間の族を作るという方法で与えられる幾何学的構成である。.

新しい!!: 空間とベクトル束 · 続きを見る »

別荘

別荘(べっそう、英語:cottage、villa、ラテン語:vīlla)とは、普段生活している家とは別に、比較的短期的な避暑・避寒・保養・休養などの目的で気候や風景のよい土地、温泉地などに作られた一戸建ての家。本質は日常生活を送る住居ではなく、余暇のためのレジャー施設である。 現代日本語の場合、集合住宅の形をとる別荘をリゾートマンションと呼ぶ。.

新しい!!: 空間と別荘 · 続きを見る »

分離公理

数学の位相空間論周辺分野において、考えたい種類の位相空間を割り出すための様々な制約条件が知られている。そういった制約のうちのいくつかが分離公理(ぶんりこうり、separation axioms)と呼ばれる条件によって与えられる。に因んで、チホノフの分離公理とも呼ばれる。 分離公理が「公理」であるのは、位相空間に関する概念を定義するときに、これらの条件を余分な公理として追加して、位相空間がどのようなものかによってより制限された概念を得るという意味においてのみである。現代的なアプローチでは、きっぱりと位相空間を公理化してしまってから位相空間の「種類」について述べるという形になっているが、「分離公理」の語が定着している。いくつかの分離公理に "T" が付くのは「分離公理」を意味するドイツ語の Trennungsaxiom に由来する。 分離公理に関する用語の正確な意味は時とともに変化してきた。特に、古い文献を参照する際には、そこで述べられているそれぞれの条件の定義が、自分がそうだと思っている語の意味と一致しているかどうか確認しておくべきである。.

新しい!!: 空間と分離公理 · 続きを見る »

アメリカ合衆国

アメリカ合衆国(アメリカがっしゅうこく、)、通称アメリカ、米国(べいこく)は、50の州および連邦区から成る連邦共和国である。アメリカ本土の48州およびワシントンD.C.は、カナダとメキシコの間の北アメリカ中央に位置する。アラスカ州は北アメリカ北西部の角に位置し、東ではカナダと、西ではベーリング海峡をはさんでロシアと国境を接している。ハワイ州は中部太平洋における島嶼群である。同国は、太平洋およびカリブに5つの有人の海外領土および9つの無人の海外領土を有する。985万平方キロメートル (km2) の総面積は世界第3位または第4位、3億1千7百万人の人口は世界第3位である。同国は世界で最も民族的に多様かつ多文化な国の1つであり、これは多くの国からの大規模な移住の産物とされているAdams, J.Q.;Strother-Adams, Pearlie (2001).

新しい!!: 空間とアメリカ合衆国 · 続きを見る »

アリストテレス

アリストテレス(アリストテレース、Ἀριστοτέλης - 、Aristotelēs、前384年 - 前322年3月7日)は、古代ギリシアの哲学者である。 プラトンの弟子であり、ソクラテス、プラトンとともに、しばしば「西洋」最大の哲学者の一人とされ、その多岐にわたる自然研究の業績から「万学の祖」とも呼ばれる。特に動物に関する体系的な研究は古代世界では東西に類を見ない。イスラーム哲学や中世スコラ学、さらには近代哲学・論理学に多大な影響を与えた。また、マケドニア王アレクサンドロス3世(通称アレクサンドロス大王)の家庭教師であったことでも知られる。 アリストテレスは、人間の本性が「知を愛する」ことにあると考えた。ギリシャ語ではこれをフィロソフィア()と呼ぶ。フィロは「愛する」、ソフィアは「知」を意味する。この言葉がヨーロッパの各国の言語で「哲学」を意味する言葉の語源となった。著作集は日本語版で17巻に及ぶが、内訳は形而上学、倫理学、論理学といった哲学関係のほか、政治学、宇宙論、天体学、自然学(物理学)、気象学、博物誌学的なものから分析的なもの、その他、生物学、詩学、演劇学、および現在でいう心理学なども含まれており多岐にわたる。アリストテレスはこれらをすべてフィロソフィアと呼んでいた。アリストテレスのいう「哲学」とは知的欲求を満たす知的行為そのものと、その行為の結果全体であり、現在の学問のほとんどが彼の「哲学」の範疇に含まれている立花隆『脳を究める』(2001年3月1日 朝日文庫)。 名前の由来はギリシア語の aristos (最高の)と telos (目的)から 。.

新しい!!: 空間とアリストテレス · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: 空間とアルベルト・アインシュタイン · 続きを見る »

アルジュン・アパデュライ

アルジュン・アパデュライ(Arjun Appadurai、அர்ஜுன் அப்பாதுரை、1949年 - )は、インド生まれの文化人類学者。グローバル化に関する文化論的研究で知られる。.

新しい!!: 空間とアルジュン・アパデュライ · 続きを見る »

アンリ・ルフェーヴル

アンリ・ルフェーヴル(Henri Lefebvre、1901年6月16日 - 1991年6月29日)は、フランスのマルクス主義社会学者、知識人、哲学者。.

新しい!!: 空間とアンリ・ルフェーヴル · 続きを見る »

アフィン空間

数学において、アフィン空間(あふぃんくうかん、affine space, アファイン空間とも)または擬似空間(ぎじくうかん)とは、幾何ベクトルの存在の場であり、ユークリッド空間から絶対的な原点・座標と標準的な長さや角度などといった計量の概念を取り除いたアフィン構造を抽象化した幾何学的構造である。(代数的な)ベクトル空間からどの点が原点であるかを忘れたものと考えることもできる。 1次元のアフィン空間はアフィン直線、2次元のアフィン空間はと呼ばれる。.

新しい!!: 空間とアフィン空間 · 続きを見る »

アドレス空間

情報処理において、アドレス空間 (Address Space) とは、メモリアドレスが意味を成すコンテキストを定義したもの。あるいは、一連のメモリアドレスによってアクセス可能なメモリ空間を意味する。 メモリアドレスはコンピュータのメモリ内の物理的位置を識別するものであり、住所とある意味で類似している。アドレスはデータが格納されている位置を指すが、それはちょうど人間の住所がその人の居住地を指すのと同じである。人間の住所とのアナロジーで言えば、「アドレス空間」とは、町や市や国といったある範囲の地域に対応すると考えることができる。2つのアドレスが数値的に同じでも、それぞれ異なるアドレス空間内のアドレスであれば、異なる位置を指していると言える。これは2つの市に「××町○丁目△-□」という住所が存在したとき、それらが別の場所を指すのと同じことである。 アドレス空間の例:.

新しい!!: 空間とアドレス空間 · 続きを見る »

アドホックな仮説

アドホックな仮説(アドホックなかせつ、Ad hoc hypothesis)とは、ある理論が反証されたときに、その反証を否定するためにその理論に後から付け加えられる補助仮説のことである。.

新しい!!: 空間とアドホックな仮説 · 続きを見る »

アイザック・ニュートン

ウールスソープの生家 サー・アイザック・ニュートン(Sir Isaac Newton、ユリウス暦:1642年12月25日 - 1727年3月20日、グレゴリオ暦:1643年1月4日 - 1727年3月31日ニュートンの生きていた時代のヨーロッパでは主に、グレゴリオ暦が使われ始めていたが、当時のイングランドおよびヨーロッパの北部、東部ではユリウス暦が使われていた。イングランドでの誕生日は1642年のクリスマスになるが、同じ日がグレゴリオ暦では1643年1月4日となる。二つの暦での日付の差は、ニュートンが死んだときには11日にも及んでいた。さらに1752年にイギリスがグレゴリオ暦に移行した際には、3月25日を新年開始の日とした。)は、イングランドの自然哲学者、数学者、物理学者、天文学者。 主な業績としてニュートン力学の確立や微積分法の発見がある。1717年に造幣局長としてニュートン比価および兌換率を定めた。ナポレオン戦争による兌換停止を経て、1821年5月イングランド銀行はニュートン兌換率により兌換を再開した。.

新しい!!: 空間とアイザック・ニュートン · 続きを見る »

イマヌエル・カント

イマヌエル・カント(Immanuel Kant、1724年4月22日 - 1804年2月12日)は、プロイセン王国(ドイツ)の哲学者であり、ケーニヒスベルク大学の哲学教授である。『純粋理性批判』、『実践理性批判』、『判断力批判』の三批判書を発表し、批判哲学を提唱して、認識論における、いわゆる「コペルニクス的転回」をもたらした。フィヒテ、シェリング、そしてヘーゲルへと続くドイツ古典主義哲学(ドイツ観念論哲学)の祖とされる。彼が定めた超越論哲学の枠組みは、以後の西洋哲学全体に強い影響を及ぼしている。.

新しい!!: 空間とイマヌエル・カント · 続きを見る »

イギリス

レートブリテン及び北アイルランド連合王国(グレートブリテンおよびきたアイルランドれんごうおうこく、United Kingdom of Great Britain and Northern Ireland)、通称の一例としてイギリス、あるいは英国(えいこく)は、ヨーロッパ大陸の北西岸に位置するグレートブリテン島・アイルランド島北東部・その他多くの島々から成る同君連合型の主権国家である。イングランド、ウェールズ、スコットランド、北アイルランドの4つの国で構成されている。 また、イギリスの擬人化にジョン・ブル、ブリタニアがある。.

新しい!!: 空間とイギリス · 続きを見る »

イタリア

イタリア共和国(イタリアきょうわこく, IPA:, Repubblica Italiana)、通称イタリアは南ヨーロッパにおける単一国家、議会制共和国である。総面積は301,338平方キロメートル (km2) で、イタリアではロスティバル(lo Stivale)と称されるブーツ状の国土をしており、国土の大部分は温帯に属する。地中海性気候が農業と歴史に大きく影響している。.

新しい!!: 空間とイタリア · 続きを見る »

エルンスト・マッハ

ルンスト・ヴァルトフリート・ヨーゼフ・ヴェンツェル・マッハ(、 1838年2月18日 - 1916年2月19日)は、オーストリアの物理学者、科学史家、哲学者。 オーストリア帝国モラヴィア州ヒルリッツ Chirlitz(現チェコのモラヴィア、フルリツェ Chrlice)出身のモラヴィア・ドイツ人である。.

新しい!!: 空間とエルンスト・マッハ · 続きを見る »

エヴァンジェリスタ・トリチェリ

ヴァンジェリスタ・トリチェリ(Evangelista Torricelli、グレゴリオ暦1608年10月15日 - グレゴリオ暦1647年10月25日)は、イタリアの物理学者。ガリレオ・ガリレイの弟子。 ファエンツァに生まれ、ローマに出て最初は数学者ベネデット・カステリの秘書をした。1641年からはガリレイの弟子となり、ガリレイの死まで研究をともにした。その後はトスカーナ大公フェルディナンド2世に数学者・哲学者として招かれて、ピサ大学の数学の教授に任命された。1647年、腸チフスのため39歳の若さで没した。.

新しい!!: 空間とエヴァンジェリスタ・トリチェリ · 続きを見る »

エーテル (物理)

ーテル は、主に19世紀までの物理学で、光が伝播するために必要だと思われた媒質を表す術語である。現代では特殊相対性理論などの理論がエーテルの概念を用いずに確立されており、エーテルは廃れた物理学理論の一部であると考えられている。 このエーテルの語源はギリシア語のアイテール であり、ラテン語を経由して英語になった。アイテールの原義は「燃やす」または「輝く」であり、古代ギリシア以来、天空を満たす物質を指して用いられた。英語ではイーサーのように読まれる。.

新しい!!: 空間とエーテル (物理) · 続きを見る »

エドウィン・ハッブル

ドウィン・パウエル・ハッブル(Edwin Powell Hubble, 1889年11月20日 - 1953年9月28日)は、アメリカ合衆国の天文学者。我々の銀河系の外にも銀河が存在することや、それらの銀河からの光が宇宙膨張に伴って赤方偏移していることを発見した。近代を代表する天文学者の一人であり、現代の宇宙論の基礎を築いた人物である。.

新しい!!: 空間とエドウィン・ハッブル · 続きを見る »

オカルト

ルト(occult)は、秘学・神秘(的なこと)・超自然的なもの。.

新しい!!: 空間とオカルト · 続きを見る »

カシミール効果

ミール効果(カシミールこうか)は物理現象の一つ。 非常に小さい距離を隔てて設置された二枚の平面金属板が真空中で互いに引き合う現象を、静的カシミール効果という。また、二枚の金属板を振動させると光子が生じる。これを動的カシミール効果という。以下では、静的カシミール効果について述べる。 金属板どうしの距離が大きいと効果は極端に小さくなるが、距離が小さければ効果は測定可能な大きさとなる。例えば、距離が 10nm(原子の大きさの100倍程度)のとき、カシミール効果は一気圧と同じ力を与える。正確な値は表面の幾何学的構造や他の因子に依存する。 カシミール効果は物体仮想粒子の相互作用として表現することができる。効果の大きさは物体の間に介在する量子化された場の零点エネルギーを使って計算できる。現在の理論物理学では、カシミール効果は chiral bag model において重要な役割を果たしている。また応用物理学では、非常に小さい部品を扱うナノテクノロジーの分野でますます重要になっている。.

新しい!!: 空間とカシミール効果 · 続きを見る »

クラウディオス・プトレマイオス

André_Thevet作。 クラウディオス・プトレマイオス(Κλαύδιος Πτολεμαῖος, Claudius Ptolemaeus, 83年頃 - 168年頃)は、数学、天文学、占星学、音楽学、光学、地理学、地図製作学など幅広い分野にわたる業績を残した古代ローマの学者。エジプトのアレクサンドリアで活躍した。『アルマゲスト』、『テトラビブロス』、『ゲオグラフィア』など、古代末期から中世を通して、ユーラシア大陸の西半分のいくつかの文明にて権威とみなされ、また、これらの文明の宇宙観や世界観に大きな影響を与えた学術書の著者である。英称はトレミー (Ptolemy)。.

新しい!!: 空間とクラウディオス・プトレマイオス · 続きを見る »

コモンズの悲劇

東北地方のコモンズ。牛飼いは、脇道に生えている草を牛に食ませる。ローカル・コモンズを利用し管理する現地住民は、草の根民活として評価できる。 コモンズの悲劇(コモンズのひげき、Tragedy of the Commons)とは、多数者が利用できる共有資源が乱獲されることによって資源の枯渇を招いてしまうという経済学における法則。共有地の悲劇ともいう。 アメリカの生物学者、ギャレット・ハーディンが1968年に『サイエンス』に論文「The Tragedy of the Commons」を発表したことで一般に広く認知されるようになったが、発表後多くの研究者も反論を唱えた。.

新しい!!: 空間とコモンズの悲劇 · 続きを見る »

コルモゴロフ空間

数学の位相空間論関連分野におけるコルモゴロフ空間(コルモゴロフくうかん、Kolmogorov space)あるいは T0-空間は、任意の二点に対して少なくともその一方が他方を含まぬ開近傍を持つような位相空間である。この条件は分離公理と呼ばれるものの一種で、T0-分離公理などと呼ばれ、直観的には空間の各点が位相的に識別可能であることを意味する。名称はアンドレイ・コルモゴロフの名に因む。.

新しい!!: 空間とコルモゴロフ空間 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: 空間とコンパクト空間 · 続きを見る »

コホモロジー

数学、とくにホモロジー論と代数トポロジーにおいて、コホモロジー (cohomology) はコチェイン複体から定義されるアーベル群の列を意味する一般的な用語である。つまり、コホモロジーはコチェイン、コサイクル、そしてコバウンダリの抽象的な研究として定義される。コホモロジーは、を、ホモロジーがもっているよりも洗練された代数的構造をもつ位相空間に割り当てる手法と見ることができる。コホモロジーはホモロジーの構成の代数的な双対から生じる。より抽象的でない言葉で言えば、基本的な意味でのコチェインは'量'をホモロジー論のチェインに割り当てる。 位相幾何学におけるその起源から、このアイデアは20世紀後半の数学において主要な手法となった。チェインについての位相的不変関係としてのホモロジーの最初の考えから、ホモロジーとコホモロジーの理論の応用の範囲は幾何学と抽象代数学に渡って拡がった。用語によって、多くの応用においてコホモロジー、反変理論、がホモロジーよりも自然であるという事実が隠されがちである。基本的なレベルではこれは幾何学的な状況において関数とを扱う。空間 X と Y、そして Y 上のある種の関数 F が与えられたとすると、任意の写像 f: X → Y に対して、f との合成は X 上の関数 F o f を引き起こす。コホモロジー群はまたしばしば自然な積、カップ積をもっており、環の構造を与える。この特徴のために、コホモロジーはホモロジーよりも強い不変量である。ホモロジーでは区別できないある種の代数的対象を区別できるのである。.

新しい!!: 空間とコホモロジー · 続きを見る »

ゴルフ場

戸ゴルフ倶楽部 ゴルフ場(ゴルフじょう、golf course)とは、スポーツの一種であるゴルフを競技するために設計された施設をいう。ゴルフコース、ゴルフクラブなどとも呼ばれる。.

新しい!!: 空間とゴルフ場 · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: 空間とゴットフリート・ライプニッツ · 続きを見る »

ジュリアン・バーバー

ュリアン・バーバー(Julian Barbour、1937年 - )は、イギリスの物理学者であり、量子重力理論と科学史の専門家である。 1968年にケルン大学からアインシュタインの一般相対性理論の基礎に関する論文で博士号を取得した。バーバーは、自由な研究を望むために大学には籍をおかず、パートタイムの翻訳業で経済的な糧を得ながら、妻と3人の子供を養い、しかも優れた学術論文を発表した。約30年以上にわたり時間の研究を続け、その成果を科学雑誌ネイチャー等に30以上の科学論文を公表した。時間論においてユニークな理論を提唱しており、著書であるThe End of Time にて、宇宙には時間は存在しておらず、時間とはあくまで人類の感覚としての幻想だと主張した。彼はイングランドのバンバァリイ(Banbury)近郊に居を構えている。.

新しい!!: 空間とジュリアン・バーバー · 続きを見る »

スペイン

ペイン王国(スペインおうこく、Reino de España)、通称スペインは、南ヨーロッパのイベリア半島に位置し、同半島の大部分を占める立憲君主制国家。西にポルトガル、南にイギリス領ジブラルタル、北東にフランス、アンドラと国境を接し、飛地のセウタ、メリリャではモロッコと陸上国境を接する。本土以外に、西地中海のバレアレス諸島や、大西洋のカナリア諸島、北アフリカのセウタとメリリャ、アルボラン海のアルボラン島を領有している。首都はマドリード。.

新しい!!: 空間とスペイン · 続きを見る »

スキー場

レンデとリフト スキー場遠景 スキー場(スキーじょう)とは、スキーやスノーボードなどで雪斜面を滑降する目的で山肌を切り開き、斜面上部へ利用者を運ぶ何らかの動力運搬手段を常備し、滑走に適するよう常時圧雪整備されている雪面である。 クロスカントリーコースやジャンプ台を持つ例もあるが、これらのみの施設の場合スキー場と呼ばれることはない。.

新しい!!: 空間とスキー場 · 続きを見る »

タプル

タプルまたはチュープル(tuple)とは、複数の構成要素からなる組を総称する一般概念。 数学や計算機科学などでは通常、順序付けられた対象の並びを表すために用いられる。個別的には、n 個でできた組を英語で「n-tuple」と書き、日本語に訳す場合は通常「n 組」としている。タプルの概念そのものも組と呼ばれる場合がある。なお、 n-tuple は数学のタプルを意味するほか、同様に double、triple などの拡張として倍数詞の表現にも利用される(詳細は「倍#西洋数学における n 倍を表す表現」を参照)。.

新しい!!: 空間とタプル · 続きを見る »

内井惣七

内井 惣七(うちい そうしち、1943年2月3日 - )は、日本の哲学者(科学哲学)・科学史家である。京都大学名誉教授。Ph.D.(ミシガン大学、1971年)。香川県高松市生まれ。.

新しい!!: 空間と内井惣七 · 続きを見る »

商空間

商空間(しょうくうかん).

新しい!!: 空間と商空間 · 続きを見る »

入会地

入会地(いりあいち)とは、村や部落などの村落共同体で総有した土地で、薪炭・用材・肥料用の落葉を採取した山林である入会山と、まぐさや屋根を葺くカヤなどを採取した原野・川原である草刈場の2種類に大別される。.

新しい!!: 空間と入会地 · 続きを見る »

公園

代々木公園(東京都渋谷区) 公園(こうえん)とは、公衆が憩いまたは遊びを楽しむために公開された場所(区域)。従って公共性の高い団体・組織によって供され運営されることが多い。対象となる場所は目的に適したように整備されるが、元々の自然状態を保つことが優先される場合もある。 歴史的に庭園や遊園地と重なるあるいは包含する概念である。 公園には、次のようなものがある。.

新しい!!: 空間と公園 · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: 空間と光 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: 空間と光速 · 続きを見る »

前後

背中はヒトの体の後側にある 前後(ぜんご、まえうしろ)とは、六方位(六方)の名称の一つで、縦や奥行を指す方位の総称。この内、進む方向を前(まえ)、これと対蹠に退く方向を後(うしろ)という。 古くは「まへ」「しりへ」とも呼ばれた。「へ」は方向を指し、「まへ」は目の方向、「しりへ」は背の方向である。.

新しい!!: 空間と前後 · 続きを見る »

図形

図形(ずけい、shape)は、一定の決まりによって定められる様々な形状のことであり、様々な幾何学における基本的な対象である。 ものの視覚認識によって得られる直観的な「かたち」を、まったく感覚によらず明確な定義と公理のみを用いて、演繹的に研究する論理的な学問としての幾何学の一つの典型は、ユークリッドの原論に見られる。ユークリッド幾何学においては、図形は定木とコンパスによって作図され、点、直線と円、また平面や球、あるいはそれらの部分から構成される。 1872年、クラインによって提出されたエルランゲン目録は、それまでの古典的なユークリッド幾何学、非ユークリッド幾何学、射影幾何学などの種々の幾何学に対して、変換という視点を通して統一的に記述することを目的とした。クラインのこの立場からは、図形は運動あるいは変換と呼ばれる操作に関して不変であるような性質によって記述される点集合のことであると言うことができる。 同時期にリーマンは、ガウスによって詳しく研究されていた曲面における曲率などの計量を基礎に、曲面をそれが存在する空間に拠らない一つの幾何学的対象として扱うことに成功し、リーマン幾何学あるいはリーマン多様体の概念の基礎を築いた。この立場において図形は、空間内の点集合という概念ではなく(一般には曲がったり重なったりした)空間そのものを指すと理解できる。.

新しい!!: 空間と図形 · 続きを見る »

国立公園

国立公園(こくりつこうえん、)とは、国が指定し、その保護・管理を行う自然公園である。.

新しい!!: 空間と国立公園 · 続きを見る »

国際連合教育科学文化機関

フランス、パリのユネスコ本部庁舎と平和の庭園(日本庭園) 日本ユネスコ国内委員会が入居する東京都の霞が関コモンゲート東館(右側) 国際連合教育科学文化機関(こくさいれんごうきょういくかがくぶんかきかん、Organisation des Nations unies pour l'éducation, la science et la culture、United Nations Educational, Scientific and Cultural Organization, UNESCO ユネスコ)は、国際連合の経済社会理事会の下におかれた、教育、科学、文化の発展と推進を目的とした専門機関である。 1945年11月に44カ国の代表が集い、イギリス・ロンドンで開催された国連会議 "United Nations Conference for the establishment of an educational and cultural organization" (ECO/CONF)において11月16日に採択された 「国際連合教育科学文化機関憲章」(ユネスコ憲章)に基づいて1946年11月4日に設立された。 分担金(2016年現在)の最大の拠出国はアメリカ合衆国(22%)、2位は日本(9%)である(米国は拠出金支払いを全額停止しているため、実質的に最大の拠出国は日本であるなおアメリカは2018年12月31日付でのユネスコ脱退を表明している。)。.

新しい!!: 空間と国際連合教育科学文化機関 · 続きを見る »

四元素

四元素(よんげんそ、Τέσσερα στοιχεία)とは、この世界の物質は、火・空気(もしくは風)『ユーナニ医学入門 イブン・シーナーの「医学規範」への誘い』 サイード・パリッシュ・サーバッジュー(著)ベースボールマガジン社(1997年)・水・土の4つの元素から構成されるとする概念である。四元素は、日本語では四大元素、四大、四元、四原質ともよばれる。古代ギリシア・ローマ、イスラーム世界、および18~19世紀頃までのヨーロッパで支持された。古代インドにも同様の考え方が見られる。中国の五行説と類比されることも多い。 エンペドクレスの説がよく知られるが、アラビア・ヨーロッパの西洋文化圏で広く支持されたのはアリストテレスの説であり、四元素を成さしめる「熱・冷・湿・乾」の4つの性質を重視するため、四性質ともいわれる。4つの元素は、土や水など、実際にその名でよばれている具体物を指すわけではなく、物質の状態であり、様相であり『錬金術』 セルジュ・ユタン(著), 有田忠郎 白水社(1978年)、それぞれの物質を支える基盤のようなものだとされた『図解 錬金術』 草野巧(著) 新紀元社 (2008年)。.

新しい!!: 空間と四元素 · 続きを見る »

理論物理学者

論物理学者(りろんぶつりがくしゃ)とは、物理学において主に数理的な手段を用いて物理学理論を研究する物理学者である。.

新しい!!: 空間と理論物理学者 · 続きを見る »

確率空間

率空間(かくりつくうかん、probability space)とは、可測空間 に確率測度 を入れた測度空間 を言う。アンドレイ・コルモゴロフによる確率論の公理的構成から、現代においては、確率論は確率空間における確率測度の理論として展開される。.

新しい!!: 空間と確率空間 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: 空間と磁場 · 続きを見る »

社会学

会学(しゃかいがく、sociology)は、社会現象の実態や、現象の起こる原因に関するメカニズム(因果関係)を解明するための学問である。その研究対象は、行為、行動、相互作用といったミクロレベルのものから、家族、コミュニティなどの集団、組織、さらには、社会構造やその変動(社会変動)などマクロレベルに及ぶものまでさまざまである。思想史的に言えば、「同時代(史)を把握する認識・概念(コンセプト)」を作り出そうとする学問である。.

新しい!!: 空間と社会学 · 続きを見る »

社会集団

会集団(しゃかいしゅうだん、social group、Soziale Gruppe)は、人間において、相互行為や相互関係に規則性と持続性が見られる集団を指す。血縁関係に基づく家族、同一言語の使用に基づく民族がこれに当たる。また、公衆・群衆などの非組織集団もこれに含まれる。 拉致問題や離散家族の問題を持ち出す以前にも、家族の紐帯は日常的に考えても固いが、東ドイツが社会主義を放棄した途端、ドイツ統一が実現するなど、民族の紐帯も固い。 人類だけでなく、チンパンジーにも、家族・民族に相当する社会集団が存在することが確認されている。.

新しい!!: 空間と社会集団 · 続きを見る »

(かみ)は、信仰の対象として尊崇・畏怖  されるもの。 一般的には「古代ギリシア語:Θεός テオス、ラテン語:deus、Deus デウス、英:god、God」にあたる外来語の訳語として用いられるが、これらの意味と日本語における「神」は厳密には意味が異なるとされる。詳細は下記を参照。また、英語において、多神教の神々はGodではなく、頭文字を小文字にしてgod、複数形:gods、もしくはdeity、複数形:deitiesと区別する。.

新しい!!: 空間と神 · 続きを見る »

空 (仏教)

仏教における空(くう、śūnya またはśūnyatā 、suññatā )とは、一切法は因縁によって生じたものだから我体・本体・実体と称すべきものがなく空しい(むなしい)こと。空は仏教全般に通じる基本的な教理である。.

新しい!!: 空間と空 (仏教) · 続きを見る »

空間 (数学)

数学における空間(くうかん、space)は、集合に適当な数学的構造を加味したものをいう。 現代数学における「空間」の扱いは、古典的な扱いと比べると、極めて異なる。 数学的空間は(ある空間のクラスが基となる空間のクラスの特徴を全て受け継ぐという意味で)しばしば階層構造を示す。例えば、任意の内積空間は、‖x‖2.

新しい!!: 空間と空間 (数学) · 続きを見る »

空間充填

間充填(くうかんじゅうてん)、空間分割(くうかんぶんかつ)(英:Space-filling)とは、空間内を図形で隙間なく埋め尽くす操作である。単に充填ともいう。広義のテセレーション (tessellation) とも言うが、テセレーションとは(特にデザイン分野で)2次元ユークリッド空間の充填、つまり平面充填のことを指すのが本来の意味であり、これをより高次の次元にまで当てはめたものが空間充填である。 空間充填によって構成された立体を空間充填立体(英:Space-filling polyhedron)と言い、空間充填によって埋め尽くされた空間を空間充填形という。定義からいえば空間はどんな空間でもよいが、単に空間充填・空間分割といえば、3次元ユークリッド空間の充填であることが多い。 n 次元超球面の多胞体による充填は、n + 1 次元多胞体とみなすことができる。そのため、超球面以外でも n 次元の空間充填は n + 1 次元多胞体と共通点が多く、便宜上多胞体に含めて論ずることもある。.

新しい!!: 空間と空間充填 · 続きを見る »

空間編成

間編成(くうかんへんせい)とは、経済・社会の手が加わっていない原初的空間を経済・社会が実質的に包摂して生産された空間の諸要素がからみあった、空間システムの総体をいう。 絶対空間の包摂は、有界化を通じて境界とそれに取り囲まれた領域を生産する。また、相対空間の包摂は、距離の物理的絶滅を図る集積ならびに交通・通信のネットワークを生産し、それぞれの地点を場所として異質化する。これらが全体として地表上で連関しあうと、空間編成となる。空間編成が地表に刻み込まれ可視的となった部分は、特に建造環境と呼ばれる。 この空間包摂のありさまは、支配的な経済・社会組織が異なれば、当然に異なってくる。それゆえ、空間が編成されるありさまもまた、支配的な経済・社会組織のあり方の変化とともに変化する。 空間編成は、もともと英国出身の社会・経済地理学者デヴィッド・ハーヴェイによって提唱された概念であり、日本の経済地理学研究によってさらに彫琢されてきた。空間編成の概念は、日本の経済地理学会の中心的な人々が唱導する地域構造のように、空間的異質性の記述ないしせいぜい既存の立地論を援用しただけの静態的概念ではなく、経済・社会による空間の実質的包摂という空間的社会過程に裏付けられた動態性をはらむところに、その特徴と概念上の優位性がある。.

新しい!!: 空間と空間編成 · 続きを見る »

空間群

間群(くうかんぐん、)は、結晶構造の対称性を記述するのに用いられる群である。群の元となる対称操作は、点群での対称操作(恒等操作、回転操作、鏡映操作、反転操作、回映操作、回反操作)に加え、並進操作(すべての点を平行に移動させる操作)である。 空間群は全部で230種類あり、すべての結晶はそのうちの1つに属している。ただし、原子の配列は原子の性質や化学結合によるため、大半の結晶構造は100種類程度の空間群に含まれる。 空間群を記述する方法には、ヘルマン・モーガン記号(Hermann-Mauguin)とシェーンフリース記号(Schoenflies)の2つがある。.

新しい!!: 空間と空間群 · 続きを見る »

空間統合

間統合(くうかんとうごう、spatial integration)は、経済地理学でいう、相対空間を実質的に包摂する空間的社会過程。 原初的な相対空間は、距離の性質を有しており、この距離を絶滅(克服)するには費用や時間がかかる。これが、空間にまたがる経済・社会組織の統合を困難にする。このため、経済・社会の主体は相互に寄り集まって(集積)空間を物理的になくすか、さもなくば交通・通信施設を設けて、位置が離れた主体相互間にある距離を仮想的に絶滅しなければならない。 空間統合が完璧に行われれば、空間は、あたかも経済学が当初前提していた「一点世界」のように物理的に収斂する。しかし実際には、交通・通信は線分の集合を通じて平面を統合するネットワークを構築しなければならないので、空間統合が、交通路の結節点とそこから離れた場所という新たな空間的不均等を生産することになる。また、空間統合がおこなわれても距離そのものがなくなったわけではないから、距離に応じた相互作用の強度の違いはなお存続する。唯一の例外はインターネットのように思えるが、インターネット自体は有線通信であり、そのルートサーバの位置は極端に偏倚していることが知られている。 ある国家主権の下に統治された領域は同質化への性向を有する。だが、空間統合が行われないかぎり、この同質化の性向は一つの抽象的可能性にすぎない。このため、近代国家はどこも、交通・通信体系の急速な整備をその初期に重要な目標として掲げ、現実の空間統合を図った。これを安価に達成するため、しばしば低廉な外国人労働力や囚人労働などが使われた。.

新しい!!: 空間と空間統合 · 続きを見る »

精神

精神(せいしん)は、心、意識、気構え、気力、理念といった意味を持つ言葉。.

新しい!!: 空間と精神 · 続きを見る »

線型位相空間

数学における線型位相空間(せんけいいそうくうかん、)とは、ベクトル空間の構造(線型演算)とその構造に両立する位相構造を持ったもののことである。係数体は実数体 R や複素数体 C などの位相体であり、ベクトルの加法やスカラー倍などの演算が連続写像になっていることが要請される。線型位相空間においては、通常のベクトル空間におけるような代数的な操作に加えて、興味のあるベクトルを他のベクトルで近似することが可能になり、関数解析学における基本的な枠組みが与えられる。 ベクトル空間の代数的な構造はその次元のみによって完全に分類されるが、特に無限次元のベクトル空間に対してその上に考えられる位相には様々なものがある。有限次元の実・複素ベクトル空間上の、意義のある位相はそれぞれの空間に対して一意的に決まってしまうことから、この多様性は無限次元に特徴的なものといえる。.

新しい!!: 空間と線型位相空間 · 続きを見る »

線型部分空間

数学、とくに線型代数学において、線型部分空間(せんけいぶぶんくうかん、linear subspace)または部分ベクトル空間(ぶぶんベクトルくうかん、vector subspace)とは、ベクトル空間の部分集合で、それ自身が元の空間の演算により線型空間になっているもののことである。 ベクトル空間のある部分集合が、それ自身ある演算に関してベクトル空間の構造を持っていたとしても、その演算がもとの空間の演算でないならば部分線型空間とは呼ばない、ということに注意されたい。また、文脈により紛れの恐れのない場合には、線型部分空間のことを単に部分空間と呼ぶことがある。.

新しい!!: 空間と線型部分空間 · 続きを見る »

緑地

水路沿いにある小規模な緑道 緑地(りょくち)とは、都市計画・法律用語としては、「交通や建物など特定の用途によって占有されない空地を空地のまま存続させることを目的に確保した土地」を意味する。 一般には樹木、草花などの緑で覆われた土地を指す(国語辞典などでは「植物に被われた土地」の意味で掲載されている)が、実際は農地などの裸の土の地面や水面も含むことが多く、そのため空地(くうち)=オープンスペースとほぼ同義である。この意味の緑地には、公園・広場・墓園などが含まれ、必ずしも植物が生えている必要はない。もちろん、関東大震災において緑化植栽のなされていなかった被服工廠跡地で多数の死者が出たことに学び、この語の成立時にはすでに空地は植物におおわれている火除地であれば、なお良いとされている。緑地を確保し、市民に貸し与えて、市民農園(分区園:de:Kleingarten)のようにして使うこともできる。 また、河川沿い(暗渠化跡含む)や廃線跡などのスペースを活用した歩行者専用道路(遊歩道)、自転車専用道路などは一般的に緑道(りょくどう)と呼称されている(後節参照)。 立法府・行政府において専門用語の緑地と一般用語の緑地が混用されている結果、比較的新しい法律や条例、各種行政刊行物などでは何を意味しているのか判読不能なことが多い。.

新しい!!: 空間と緑地 · 続きを見る »

緑空間

緑空間(みどりくうかん)樹木、樹帆竹林、草地、芝生地などを含む緑の存在が、その場所の性質を決定づけているような空間。一群の緑でなくても、1本の高木(こうぼく)が緑空間をつくる場合もある。.

新しい!!: 空間と緑空間 · 続きを見る »

縦と横

画の「たて」 筆画の「よこ」 縦(たて)は主に垂直や前後の方向を、横(よこ)は主に水平や左右の方向を指す語である。 縦と横は対義語である。.

新しい!!: 空間と縦と横 · 続きを見る »

真空

真空(しんくう、英語:vacuum)は、物理学の概念で、圧力が大気圧より低い空間状態のこと。意味的には、古典論と量子論で大きく異なる。.

新しい!!: 空間と真空 · 続きを見る »

統一場理論

統一場理論(とういつばりろん)とは、場の理論において種々の相互作用力を一種類に統一する理論である。自然界の四つの力を全て統一することが到達点で、この全ての力を統一した理論のことを万物の理論と呼ぶ。現在、万物の理論の候補は、超弦理論のみであると考えられている。.

新しい!!: 空間と統一場理論 · 続きを見る »

絶対時間と絶対空間

絶対時間(ぜったいじかん、absolute time)と絶対空間(ぜったいくうかん、absolute space)はアイザック・ニュートンが『自然哲学の数学的諸原理』(, 1687年刊)で初めて導入した概念で、古典力学が発展するための理論的基盤となった。ニュートンによれば、絶対時間と絶対空間はそれぞれ何物にも依存しない客観的実在の一部であるIn Philosophiae Naturalis Principia Mathematica See the Principia on line at 。 絶対的な・真の・数理的な時間とは、外部と一切かかわりなく、おのずとその本質に基づいて一律に流れていくものである。これをデュレーション(duration.)という別名で呼ぶ。相対的な・見かけ上の・日常的な時間とは、運動の観察を通じて得られる、デュレーションの実用的かつ外的な物差し(正確であれ、不正確であれ)である。一般に用いられているのは真の時間ではなくこちらである。...

新しい!!: 空間と絶対時間と絶対空間 · 続きを見る »

経済地理学

経済地理学(けいざいちりがく、economic geography)は、経済諸活動の分布や空間的差異、空間的相互作用を対象とする学問分野である。農業・製造業・商業・金融業・観光業など諸産業の立地や集積の形成、財の流通・分配における空間的流動、消費局面における空間的差異などが、おもな研究課題となるが、これに対するアプローチには多様なものがある。.

新しい!!: 空間と経済地理学 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 空間と環 (数学) · 続きを見る »

環境問題

水質汚染により泡が浮かんだ河川 酸性雨により溶けた石像 大気汚染の原因となる排煙 環境問題(かんきょうもんだい、Environmental threats, Environmental issues, Environmental problems)は、人類の活動に由来する周囲の環境の変化により発生した問題の総称であり、これは、地球のほかにも宇宙まで及んでいる問題である。.

新しい!!: 空間と環境問題 · 続きを見る »

点 (数学)

数学における点(てん、point)の概念は、今日では非常に広範な意味を持つものとして扱われる。歴史的には、「点」というものは、古代ギリシアの幾何学者が想定したように、直線・平面・空間を形作る根元的な「構成要素」、「原子」となるべきものであり、直線、平面、空間は点からなる集合(点集合)ということになる。しかし、19世紀の終わりごろにゲオルク・カントールによる集合論の創始と、それに続く数多くの「数学的構造」の出現があって以降は、その文脈で「空間」と呼ぶことにした任意の集合における任意の元という意味で「点」という用語が用いられる(例えば、距離空間の点、位相空間の点、射影空間の点、など)。古代ギリシア人は「点」と「数」とを区別して扱ったが、それとは対照的に、この文脈では「数(実数)」は実数直線上の点であるという言い回しを用いることができる。 つまり数学者にとって最も一般の意味での「点」とは、集合が「空間」と捉えられかつ公理によって規定される特定の性質を備えているという状況さえあれば十分で、そのような「空間」の任意の元がすなわち「点」なのである。したがって、今日における術語「空間」は全体集合に、また術語「点」は元に、ほぼ同義である。考えている問題がもはや幾何学とは何の関係もないような場合でさえ、何らかの示唆的な期待によって「点」や「空間」という語が用いられている。.

新しい!!: 空間と点 (数学) · 続きを見る »

無形文化遺産

無形文化遺産(むけいぶんかいさん、)は、民族文化財、フォークロア、口承伝統などの無形文化財を保護対象とした、国際連合教育科学文化機関(ユネスコ)の事業の一つ。2006年に発効した無形文化遺産の保護に関する条約に基づく。無形文化遺産に対して、ユネスコの世界遺産は建築物など有形文化財を対象とする。関係して2001年から3回行われた傑作宣言による90件を引き継いて含まれる。 これまでに対象とされた無形文化遺産は、各国の音楽、舞踏、祭り、儀式のほか、インドのヨーガ(2016年)、日本の和紙(2014年)、和食(2013年)など伝統習慣、工芸など多岐にわたる。.

新しい!!: 空間と無形文化遺産 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: 空間と無限 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: 空間と特殊相対性理論 · 続きを見る »

狩猟

イノシシ狩りを描いた絵画 鹿を仕留める源経基を描いた『貞観殿月』(月岡芳年「月百姿」) 狩猟(しゅりょう、英: hunting)とは、野生動物、特に鳥類・哺乳類を捕獲する人間の行為のことである。.

新しい!!: 空間と狩猟 · 続きを見る »

直観

観(ちょっかん、Intuition)とは、知識の持ち主が熟知している知の領域で持つ、推論など論理操作を差し挾まない直接的かつ即時的な認識の形式である。 また直観は、合理的かつ分析的な思考の結果に概念化された知識の実体が論理的に介在する(すなわち思考や、概念という仲介物が知識の持ち主と対象の間に論理的に置かれる)ようなすべての知識の形式、とは異なっている。 パースの言うアブダクションという仮説形成の操作にも直観作業が用いられている、と考えられている。この場合、経験や知識と前提への理解が無意識に落とし込められるほど強い場合、意識せずとも正しい認識に至ること。 簡潔に言えば直観というものを完全否定していたパースでさえ自らの考え方に直観の能力を使っていたということである。 アントニオ・ダマシオのソマティック・マーカー仮説において説明される、内臓感覚としての情報の展開・操作・認識も直観の一部と言える。 直観は本能とは異なっている。本能は必ずしも経験的な要素を必要としない。直観的な基礎による見解を持つ人間は、その見解に至った理由を即座に完全には説明できないかもしれない。しかしながら、人間は時間をかければ、その直観が有効である理由をより組織化して説明するべく論理の繋がりを構築することで、直観を合理的に説明できることもある。 付け加えるならば直観を前提として具体的な問題を正しく説明したり解決に導くためには多くの経験と知識、理解が必要でもある。 なお、日本語の直観(ちょっかん)は、仏教用語のप्रज्ञा(プラジュニャー、般若)の訳語の一つである直観智に由来する。直観智は分析的な理解である分別智に対する直接的かつ本質的な理解を指し、無分別智とも呼ばれる。 また、整理整頓などでも洞察力や判断力よりも直観を必要とされることが多い。 直感とは感覚的に物事を感じとることで、勘(で答える)のような日常会話での用語を指す。.

新しい!!: 空間と直観 · 続きを見る »

相同性

同性(そうどうせい)、ホモロジー (homology).

新しい!!: 空間と相同性 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: 空間と相対性理論 · 続きを見る »

相関空間

関空間(そうかんくうかん、relational space)とは、以下の1と2、ならびにAとBという2つの空間における相関関係をまとめて規定する経済地理学の用語である。.

新しい!!: 空間と相関空間 · 続きを見る »

銀河

銀河(ぎんが、galaxy)は、恒星やコンパクト星、ガス状の星間物質や宇宙塵、そして重要な働きをするが正体が詳しく分かっていない暗黒物質(ダークマター)などが重力によって拘束された巨大な天体である。英語「galaxy」は、ギリシア語でミルクを意味する「gála、γᾰ́λᾰ」から派生した「galaxias、γαλαξίας」を語源とする。英語で天の川を指す「Milky Way」はラテン語「Via Lactea」の翻訳借用であるが、このラテン語もギリシア語の「galaxías kýklos、γαλαξίας κύκλος」から来ている。 1,000万 (107) 程度の星々で成り立つ矮小銀河から、100兆 (1014) 個の星々を持つ巨大なものまであり、これら星々は恒星系、星団などを作り、その間には星間物質や宇宙塵が集まる星間雲、宇宙線が満ちており、質量の約90%を暗黒物質が占めるものがほとんどである。観測結果によれば、すべてではなくともほとんどの銀河の中心には超大質量ブラックホールが存在すると考えられている。これは、いくつかの銀河で見つかる活動銀河の根源的な動力と考えられ、銀河系もこの一例に当たると思われる。 歴史上、その具体的な形状を元に分類され、視覚的な形態論を以って考察されてきたが、一般的な形態は、楕円形の光の輪郭を持つ楕円銀河である。ほかに渦巻銀河(細かな粒が集まった、曲がった腕を持つ)や不規則銀河(不規則でまれな形状を持ち、近くの銀河から引力の影響を受けて形を崩したもの)等に分類される。近接する銀河の間に働く相互作用は、時に星形成を盛んに誘発しながらスターバースト銀河へと発達し、最終的に合体する場合もある。特定の構造を持たない小規模な銀河は不規則銀河に分類される。 観測可能な宇宙の範囲だけでも、少なくとも1,700億個が存在すると考えられている。大部分の直径は1,000から100,000パーセクであり、中には数百万パーセクにもなるような巨大なものもある。は、13当たり平均1個未満の原子が存在するに過ぎない非常に希薄なガス領域である。ほとんどは階層的な集団を形成し、これらは銀河団やさらに多くが集まった超銀河団として知られている。さらに大規模な構造では、銀河団は超空洞と呼ばれる銀河が存在しない領域を取り囲む銀河フィラメントを形成する。.

新しい!!: 空間と銀河 · 続きを見る »

遊園地

観覧車とメリーゴーランド。神戸ハーバーランドモザイクガーデンにて 遊園地の遊具の定番、回転ブランコ 遊園地(ゆうえんち、、)は、乗り物などの遊具を設けた施設。 かつては遊具に関係なく、単に公園や運動場などの意味でも用いられた神戸市の東遊園地、横浜市の児童遊園地など。また、デパートなどの屋上遊園地を指すこともある。レジャーランドという呼び方もある。.

新しい!!: 空間と遊園地 · 続きを見る »

非可換幾何

数学における非可換幾何(ひかかんきか、noncommutative geometry)とは可換性が成り立たない(「積」について xy と yx が一致しない)ような代数構造に対する空間的・幾何学的な解釈を研究する分野である。通常の幾何学では様々な関数の積に関して可換性が要求されるが、その条件を外すことによってどんな現象がとらえられるかが追求される。.

新しい!!: 空間と非可換幾何 · 続きを見る »

計量ベクトル空間

線型代数学における計量ベクトル空間(けいりょうベクトルくうかん、metric vector space)は、内積と呼ばれる付加的な構造を備えたベクトル空間であり、内積空間(ないせきくうかん、inner product space)とも呼ばれる。この付加構造は、空間内の任意の二つのベクトルに対してベクトルの内積と呼ばれるスカラーを対応付ける。内積によって、ベクトルの長さや二つのベクトルの間の角度などの直観的な幾何学的概念に対する厳密な導入が可能になる。また内積が零になることを以ってベクトルの間の直交性に意味を持たせることもできる。内積空間は、内積として点乗積(スカラー積)を備えたユークリッド空間を任意の次元(無限次元でもよい)のベクトル空間に対して一般化するもので、特に無限次元のものは函数解析学において研究される。 内積はそれに付随するノルムを自然に導き、内積空間はノルム空間の構造を持つ。内積に付随するノルムの定める距離に関して完備となる空間はヒルベルト空間と呼ばれ、必ずしも完備でない内積空間は(内積の導くノルムに関する完備化がヒルベルト空間となるから)前ヒルベルト空間 (pre-Hilbert space) と呼ばれる。複素数体上の内積空間はしばしばユニタリ空間 (unitary spaces) とも呼ばれる。.

新しい!!: 空間と計量ベクトル空間 · 続きを見る »

高速道路

速道路(こうそくどうろ、日本における英語表記はExpressway)とは迅速な交通移動を達成することを主目的にした道路であり主に自動車が高速かつ安全に走行できるような構造になっている。国や地域の道路網の中で基幹的な役割を担うことが多い。.

新しい!!: 空間と高速道路 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: 空間と質量 · 続きを見る »

超自然

水上を歩くイエス・キリスト 超自然(ちょうしぜん、ラテン語: supernātūrālis)とは、自然界の法則を超えたこと、理性では説明のつかない神秘的なものごとデジタル大辞泉。 元のラテン語は、supraスープラ(= ~を超えた)+ naturalis ナートゥーラーリス(=自然)という構成になっている。この語は15世紀中葉に、副詞的に用いれていたことが確認されており、自然を超えた より高い領域で、という意味であった。現代英語では形容詞的にはsupernatural、名詞的にはthe supernaturalとされる。 スコラ哲学などでも超自然に関して考察が行われた。 説明のつかない事象の存在を認め、これを超自然的な力や神の啓示や奇跡などによって説明しようとする立場のことを超自然主義と言う。.

新しい!!: 空間と超自然 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: 空間と距離空間 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 空間と関数 (数学) · 続きを見る »

関数空間

関数空間(かんすうくうかん、、函数空間)とは、特定の空間上で、ある性質を持つ関数の全体を幾何学的な考察の対象として捉えたものである。.

新しい!!: 空間と関数空間 · 続きを見る »

閉集合

閉集合(へいしゅうごう、closed set)は、その補集合が開集合となる集合のこと。距離空間の場合はその部分集合の元からなる任意の収束点列の極限がその部分集合の元であることと一致するので、それを定義としてもよい。 例えば、数直線上で不等式 0 ≤ x ≤ 1 によって定まる集合は閉区間と呼ばれるが、これは閉集合である。なぜならば、その補集合である x < 0 または x > 1 を満たす区間が開集合となるからである。 不等式を 0 < x < 1 としたものや 0 ≤ x < 1 としたものは、閉集合ではない。 また、連続関数 f(x,y) を使って、\ と表される集合は平面の閉集合である。円周も平面の閉集合である。 次の性質を満たす集合 X の部分集合の族 F があると、 F の元が閉集合であるような位相が X に定まる。.

新しい!!: 空間と閉集合 · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

新しい!!: 空間と開集合 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: 空間と重力 · 続きを見る »

重力を説明する古典力学的理論

重力を説明する古典力学的理論(じゅうりょくをせつめいするこてんりきがくてきりろん、)では、天体の運行を支配する力の起源である重力を古典力学の理論で説明しようとして提案された、16世紀から19世紀の科学者たちの理論について概説する。これらのエーテルを仮定する理論は現代では支持されておらず、重力は一般相対性理論により説明される。.

新しい!!: 空間と重力を説明する古典力学的理論 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 空間と量子力学 · 続きを見る »

自由空間

電磁気学において、自由空間(じゆうくうかん、free space)とは一切の物質が存在しない仮想的な空間である。真空中の光速および、真空の透磁率、真空の誘電率といった物理定数により定義される。.

新しい!!: 空間と自由空間 · 続きを見る »

自然哲学

自然哲学(しぜんてつがく、羅:philosophia naturalis)とは、自然の事象や生起についての体系的理解および理論的考察の総称であり、自然を総合的・統一的に解釈し説明しようとする形而上学である「自然哲学 physica; philosophia naturalis」『ブリタニカ国際大百科事典」。自然学(羅:physica)と呼ばれた。自然、すなわちありとあらゆるものごとのnature(本性、自然 英・仏: nature、Natur)に関する哲学である。しかし同時に人間の本性の分析を含むこともあり、神学、形而上学、心理学、道徳哲学をも含む。自然哲学の一面として、自然魔術(羅:magia naturalis)がある。自然哲学は、学問の各分野の間においても宇宙の様々な局面の間でも、事物が相互に結ばれているという感覚を特徴とする。 現在では、「自然科学」とほぼ同義語として限定された意味で用いられることもあるが、その範囲と意図はもっと広大である。「自然哲学」は、主にルネサンス以降の近代自然科学の確立期から19世紀初頭までの間の諸考察を指すといったほうが良いだろう。自然哲学的な観点が、より専門化・細分化された狭い「科学的な」観点に徐々に取って代わられるのは、19世紀になってからである。 自然哲学の探求者の多くは宗教的な人間であり、抑圧的な宗教者と科学者の戦いという図式ではなかった。世界は「自然という書物」であり、神のメッセージだと考えられていたのである。ヨーロッパでは近代まで、ほとんど全ての科学思想家はキリスト教を信じ実践しており、神学的真実と科学的真実の間の相互連結に疑いはなかった。ジョンズ・ホプキンス大学教授は、科学の探求に無神論的な視点が必要であるという考え方は、20世紀に作られた神話にすぎないと指摘している。.

新しい!!: 空間と自然哲学 · 続きを見る »

自然哲学の数学的諸原理

ニュートン自身が所有していたプリンキピアの初版。ニュートン自身によって手書きで文字が書き込んである。第二版で修正・加筆する箇所の指示である。 『自然哲学の数学的諸原理』(しぜんてつがくのすうがくてきしょげんり、Philosophiæ Naturalis Principia Mathematica)は、アイザック・ニュートンの著書のひとつで、ニュートンの力学体系を解説した書。1687年刊、全3巻。古典力学の基礎を築いた画期的な著作で、近代科学における最も重要な著作の1つ。運動の法則を数学的に論じ、天体の運動や万有引力の法則を扱っている。Principia という略称でもよく知られている。日本語では『自然哲学の数学的原理』、『プリンキピア』、あるいは『プリンシピア』とも表記される(岡邦雄訳、春秋社、1930年や、中野猿人訳、講談社、1977年等々)。.

新しい!!: 空間と自然哲学の数学的諸原理 · 続きを見る »

自然公園

自然公園 (natural park, nature park)は、都市計画や農耕地から保護された領域を指す。こうした景観地は所在する自治体によって維持・管理が行われ、重要な観光資源となっている。 よく似た概念に国立公園があるが、こちらは国際自然保護連合 (IUCN)の定義による。.

新しい!!: 空間と自然公園 · 続きを見る »

長さ

長さ(ながさ、length)とは、.

新しい!!: 空間と長さ · 続きを見る »

色空間

加法混合 スペクトル (色収差) 減法混合 色空間(いろくうかん、)は、立方的に記述される色の空間である。カラースペースともいう。色を秩序立てて配列する形式であり、色を座標で指示できる。色の構成方法は多様であり、色の見え方には観察者同士の差異もあることから、色を定量的に表すには、幾つかの規約を設けることが要請される。また、色空間が表現できる色の範囲を色域という。色空間は3種類か4種類の数値を組み合わせることが多い。色空間が数値による場合、その変数はチャンネルと呼ばれる。 色空間の形状はその種類に応じ、円柱や円錐、多角錐、球などの幾何形体として説明され、多様である。.

新しい!!: 空間と色空間 · 続きを見る »

離散空間

数学の位相空間論周辺分野における離散空間(りさんくうかん、discrete space)は、その点がすべてある意味で互いに「孤立」しているような空間で、位相空間(またはそれと同様の構造)の非常に単純で極端な例の一つを与える。.

新しい!!: 空間と離散空間 · 続きを見る »

離散群

数学において,位相群 の離散部分群(りさんぶぶんぐん,discrete subgroup)とは,部分群 であって, の開被覆で任意の開部分集合が の元をちょうどひとつ含むようなものが存在するものである.言い換えると, の における部分空間位相は離散位相である.例えば,整数の全体 は実数の全体 (標準的な距離位相をいれる)の離散部分群であるが,有理数の全体 は離散部分群ではない.離散群とは離散位相を備えた位相群である. 任意の群には離散位相を与えることができる.離散空間からの任意の写像は連続であるから,離散群の間の位相的準同型はちょうどその群の間の群準同型である.したがって,群の圏と離散群の圏の間には同型がある.離散群はしたがってその(抽象)群と同一視できる. 位相群あるいはリー群に「自然に逆らって」離散位相を入れると有用な場合がある.例えばの理論やリー群の群コホモロジーにおいてである. 離散は距離空間の任意の点に対して等長変換のもとでの点の像の集合が離散集合であるような等長変換群である.離散は離散等長変換群である対称変換群である..

新しい!!: 空間と離散群 · 続きを見る »

零空間

数学、とくに関数解析学において、線型作用素 A: V → W の零空間(ぜろくうかん、れいくうかん、null space)あるいは核空間(かくくうかん、kernel space)とは、 のことである。Nul(A) は N(A) や Ker(A) などとも書かれる。とくに Ker は零空間が線型写像としての A の核 (kernel) にあたることを意味するのであるが、零空間という語を用いる文脈においては、核ということばを熱核 などの積分核に対して用いていることがほとんどであろうから注意されたい。 また、零空間という語をもちいる文脈においては、線型写像の像 は値域 と呼ばれ、線型作用素 A の値域は Ran(A) や R(A) と綴るのが通例のようである。 零空間は、ベクトル空間 V の部分空間である。さらに、 商空間 V/(Ker A) は、 A の像 Ran(A) に同型である; 特に次元について が成り立つ。 Nul A.

新しい!!: 空間と零空間 · 続きを見る »

電磁場

電磁場(でんじば,, EMF)、あるいは電磁界(でんじかい)は、電場(電界)と磁場(磁界)の総称。 電場と磁場は時間的に変化する場合には、互いに誘起しあいながらさらにまた変化していくので、まとめて呼ばれる。 電磁場の変動が波動として空間中を伝播するとき、これを電磁波という。 電場、磁場が時間的に一定で 0 でない場合は、それぞれは分離され静電場、静磁場として別々に扱われる。 電磁場という用語を単なる概念として用いる場合と、物理量として用いる場合がある。 概念として用いる場合は電場の強度と電束密度、あるいは磁場の強度と磁束密度を明確に区別せずに用いるが、物理量として用いる場合は電場の強度と磁束密度の組であることが多い。 また、これらの物理量は電磁ポテンシャルによっても記述され、ラグランジュ形式などで扱う場合は電磁ポテンシャルが基本的な物理量として扱われる。このような場合には電磁ポテンシャルを指して電磁場という事もある。 電磁場のふるまいは、マクスウェルの方程式、あるいは量子電磁力学(QED)によって記述される。マクスウェルの方程式を解いて、電磁場のふるまいについて解析することを電磁場解析と言う。.

新しい!!: 空間と電磁場 · 続きを見る »

造園計画

造園計画(ぞうえんけいかく).

新しい!!: 空間と造園計画 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: 空間と連結空間 · 続きを見る »

逆格子空間

逆格子空間(ぎゃくこうしくうかん、reciprocal lattice space)は逆格子ベクトルによって構成される空間のこと。実空間の周期性が反映される。逆空間、運動量空間、波数空間、k空間と言うこともある。 実空間と逆格子空間の関係は数学的にはフーリエ変換そのものであり、格子たとえば結晶の周期性を見ることができる。また物理的には位置と運動量、あるいは位置と波数の関係になっている。 光やX線の散乱は固体の結晶面の間隔とブラッグの法則で決まるが、逆格子空間を使うと便利なことがある。たとえば逆格子点の位置に光の強め合うスポットができるなど。 また固体中の電子の動きを見る場合、重要なのは位置よりも運動量の二乗に比例するエネルギーであるため、固体物理学での逆格子空間の用途は広い。 結晶では原子の周期的配列による並進対称性のため、一電子の固有関数(ブロッホ関数)、結晶格子の基準振動、そのほかの集団運動のモードなどが全て、波数で指定される平面波e^に似た形を持ち、対応するエネルギーまたは振動数も波数についての関数であるため、波数空間は特に重要な意味を持つ。 バンド理論では、ポテンシャルの周期性の影響を調べるのに逆格子空間を用いると便利である。.

新しい!!: 空間と逆格子空間 · 続きを見る »

LF空間

数学における LF-空間(エルエフくうかん、LF-space)は、ベクトル空間の一類で、一口に言えばシュヴァルツ超函数の構成法を抽象化するものである。LF-空間の名は、それがフレシェ空間の増大列の合併(正確には、狭義の可算帰納極限と呼ばれるもの)になっていることに由来する (inductive Limit of F-space)。.

新しい!!: 空間とLF空間 · 続きを見る »

T1空間

数学の位相空間論周辺分野における T1-空間(T1-くうかん、T1 space)は、相異なる二点を選べば必ず、その各々の点がもう一方の点を含まない開近傍を持つ位相空間を言う。同じことが位相的に識別可能な二点についてのみ成り立つ場合は R0-空間と言う。条件 T1 および R0 は分離公理の例である。.

新しい!!: 空間とT1空間 · 続きを見る »

接ベクトル空間

多様体上の接ベクトル空間(せつベクトルくうかん、英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。.

新しい!!: 空間と接ベクトル空間 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 空間と極限 · 続きを見る »

渦 水流が岩(石)にぶつかり発生している渦 航空機の作る渦(カラースモークで着色) 宇宙から見た台風 NASA/ESA) 渦(うず)とは、流体やそれに類する物体が回転して発生する螺旋状のパターンのこと。渦巻き(うずまき)などとも言う。.

新しい!!: 空間と渦 · 続きを見る »

渦動説

デカルトの『哲学の原理』第3版(1647年)に掲載されている、エーテルの渦と天体の図 渦動説(かどうせつ、cartesian vortex theory)とは、ルネ・デカルト(1596 - 1650)が提唱した、天体などの運動の原理を説明するための学説。.

新しい!!: 空間と渦動説 · 続きを見る »

有界

上が有界集合、下が非有界集合を模式的に表したもの。ただし、下のほうは枠を超えて右方へ延々と続くものとする。 数学において集合が有界(ゆうかい、bounded)である、または有界集合(ゆうかいしゅうごう、bounded set)であるとは、ある種の「差渡しの大きさ」に関する有限性をそれが持つときにいう。有界でない集合は非有界(ひゆうかい、unbounded)であるという。 単純閉曲線はそれを境界として平面 '''R'''2 を有界(内側)および非有界(外側)な二つの領域に分ける。.

新しい!!: 空間と有界 · 続きを見る »

有界化

経済地理学において、有界化(ゆうかいか)とは絶対空間の実質的包摂において行われる空間的社会過程をいう。 絶対空間は、原初的に物体や経済・社会諸主体の容器として機能するが、連続性をもち、その中にあるすべての物体や市場主体間の相互作用を許容して、均質化してしまう。だがこれでは、物体や市場主体の独立性・固有にもつ性格を維持できないので、絶対空間に仕切り(境界)を設け、相互作用が出来ないようにする。これを、有界化(bounding)という。有界化は、家屋の部屋相互の仕切り、敷地間の塀、国家の間の国境線など、数多くの空間スケールにおいて行われる。有界化されることによって絶対空間はその無限の連続性を失い、領域として分断され、絶対空間の連続性や均質化は、領域内でのみ作用することとなる。 とはいえ、経済・社会主体は、主体相互の相互関係を持たなければ存続できないから、この有界化は、境界の透過性(porosity of boundary)によって、制限つきで破られざるを得ない。どれだけの透過性を境界に許容するかは、その境界によって取り囲まれた領域を支配する権力の意思によって規定される。敷地に門を設けて鍵を持つ家族や会社の関係者のみが出入りできるようにしたり、国境で査証や関税による出入国管理・輸出入管理を行って国内の労働力需給や財の需給を調節したりするのは、この透過性が操作されている例である。このように、有界化においては、「閉鎖」のベクトルと「開放」のベクトルがせめぎ合っている。この弁証法を巧みに使い、矛盾の空間的・時間的先送りをするのが、空間的回避である。.

新しい!!: 空間と有界化 · 続きを見る »

有限群

数学および抽象代数学において、有限群(ゆうげんぐん、finite group)とは台となっている集合Gが有限個の元しか持たないような群のことである。20世紀の間数学者は、特に有限群のや、可解群や冪零群 の理論などといった、有限群の理論のさまざまな面を深く研究していた。全ての有限群の構造の完全な決定は余りに遠大な目標だった: あり得る構造の数はすぐに圧倒的に大きくなった。しかし、単純群の完全な分類という目標は達成された。つまり任意の有限群の「組み立て部品」は現在では完全に知られている(任意の有限群は組成列を持つ)。 20世紀の後半には、シュヴァレーやといった数学者によってや関連する群の有限類似の理解が深まった。それらの群の族の一つには有限体上の一般線型群がある。 有限群は、ある数学的・物理的対象の構造を保つ変換が有限個しかない場合に、その対象の対称性を考えるときに出て来る群である。他方で、""を扱っているようにもみなせるリー群の理論は、関連するワイル群の影響を強く受ける。有限次ユークリッド空間に作用する鏡映によって生成される有限群も存在する。それゆえ、有限群の特性は、理論物理学や化学などの分野で役目を持つ。.

新しい!!: 空間と有限群 · 続きを見る »

新幹線

500系、300系 E1系 旅客用時刻表に付属した、1964年10月1日より有効の英語版国鉄路線図。東海道新幹線が赤色の線で示されている 新幹線(しんかんせん)は、JRグループ各社当初はJR東日本、JR東海、JR西日本のみ。2004年(平成16年)からはJR九州、2016年(平成28年)からはJR北海道も運営開始。JR四国は新幹線を運営していない。が運営している日本の高速鉄道である。1987年(昭和62年)までは日本国有鉄道(国鉄)が運営していた。.

新しい!!: 空間と新幹線 · 続きを見る »

日本

日本国(にっぽんこく、にほんこく、ひのもとのくに)、または日本(にっぽん、にほん、ひのもと)は、東アジアに位置する日本列島(北海道・本州・四国・九州の主要四島およびそれに付随する島々)及び、南西諸島・伊豆諸島・小笠原諸島などから成る島国広辞苑第5版。.

新しい!!: 空間と日本 · 続きを見る »

日本建築学会

一般社団法人日本建築学会(いっぱんしゃだんほうじんにほんけんちくがっかい、英称:Architectural Institute of Japan、略称 AIJ)は、建築に関する学術・技術・芸術の進歩発達をはかることを目的とし、1886年(明治19年)に設立された日本の学会。日本学術会議協力学術研究団体。.

新しい!!: 空間と日本建築学会 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 空間と数学 · 続きを見る »

数学的構造

数学における構造(こうぞう、mathematical structure)とは、ブルバキによって全数学を統一的に少数の概念によって記述するために導入された概念である。集合に、あるいは圏の対象に構造を決めることで、その構造に対する準同型が構造を保つ写像として定義される。数学の扱う対象は、基本的には全て構造として表すことができる。.

新しい!!: 空間と数学的構造 · 続きを見る »

慣性系

慣性系(かんせいけい、ガリレイ系とも、inertial frame of reference)は、慣性の法則(運動の第1法則)が成立する座標系である。 例えば、等速運動する座標系では、物体は外力を受けない限り等速直線運動を行うので、慣性系の1つである。 次に減速している車での座標系では、物体は外力を受けていないのに、前向きに運動を行う。よって慣性の法則が成立しないので、減速している車の座標系は慣性系ではない。.

新しい!!: 空間と慣性系 · 続きを見る »

手紙

手紙(てがみ)とは、特定の相手に対して情報を伝達するための文書のこと。信書(しんしょ)、書簡・書翰(しょかん)、書状(しょじょう)などとも呼ばれる。古くは消息(しょうそく、しょうそこ)、尺牘(せきとく)とも呼ばれた。 広義には封書(封筒に入れて送る書状)、はがき(封筒に入れずに送る書状)、特定の人に向けて回覧する紙片の全般を含むが、狭義には封書のみを指して用いることも多い。英語では封書を意味する"letter"、あるいは郵便物を意味する"mail"をあてるのが一般的である。.

新しい!!: 空間と手紙 · 続きを見る »

景観

京都・祇園 景観(けいかん)とは、日常生活において風景や景色の意味で用いられる言葉である中村ほか 編 (1991): 42ページ。植物学者がドイツ語のLandschaft(ラントシャフト)の学術用語としての訳語としてあてたもので、後に地理学において使用されるようになった。辻村太郎『景觀地理學講話』によれば、三好学が与えた名称である。字義的にも一般的な用法としても「景観」は英語のlandscape(ランドスケープ)のことであるが、概念としてはドイツを中心としたヨーロッパのLandschaftgeographie(景観地理学)の学派のものを汲んでいる。 田村明によると、都市の景(街並み)や村落の景(例えば屋敷森や棚田、漁港)など人工的な(人間の手が加わった)景を指すことが多いとしている。使用領域に関して見ると、「景観」の語は行政・司法や学術的な用語として使われることが多い鳥越ほか (2009): 1ページ。日本では2004年に景観法が制定されたが、法律上「景観とは何か」は定義されていない。学術上は、前述の地理学や、ランドスケープデザイン学、都市工学、土木工学、社会工学、造園学、建築学等で扱われることが多い。また、コーンウォールと西デヴォンの鉱山景観のように、世界遺産レベルで取りこまれる場合もある。.

新しい!!: 空間と景観 · 続きを見る »

時空

時空(じくう、spacetime)は、時間と空間を合わせて表現する物理学の用語、または、時間と空間を同時に、場合によっては相互に関連したものとして扱う概念である。時空間()とも。.

新しい!!: 空間と時空 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: 空間と時間 · 続きを見る »

1539年

記載なし。

新しい!!: 空間と1539年 · 続きを見る »

2次元

2次元(にじげん、二次元)は、空間の次元が2であること。次元が2である空間を2次元空間と呼ぶ。 なおここでいう空間とは、物理空間に限らず、数学的な一般の意味での空間であり、さまざまなものがある(詳細は「次元」を参照)。.

新しい!!: 空間と2次元 · 続きを見る »

3次元

3次元(さんじげん、三次元)は、ある概念が直交あるいは独立な(しかし同等な)要素3つの組によって一意に決定可能な場合にしばしば用いられる術語である。.

新しい!!: 空間と3次元 · 続きを見る »

4次元

4次元(よじげん、四次元)は、次元が4であること。次元が4である空間を4次元空間と呼ぶ。 なおここでいう空間とは、物理空間に限らない。数学においてはユークリッド空間をはじめとしてベクトル空間や多様体など次元を考え得る空間や対象は様々ある(詳細は「次元」および「次元 (数学)」を参照)。.

新しい!!: 空間と4次元 · 続きを見る »

ここにリダイレクトされます:

造園空間

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »