ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

2次元

索引 2次元

2次元(にじげん、二次元)は、空間の次元が2であること。次元が2である空間を2次元空間と呼ぶ。 なおここでいう空間とは、物理空間に限らず、数学的な一般の意味での空間であり、さまざまなものがある(詳細は「次元」を参照)。.

35 関係: 多角形実在実数対義語平面二次曲面地図ライフゲームトゥーンレンダリングヒトフィギュアアイドルコスプレスカラーセル・オートマトン円 (数学)回転図面球面空間立体視絵画生モノ (同人)画像行列複素平面複素数視覚距離架空次元正多面体曲面2.5次元3次元

多角形

初等幾何学における多辺形または多角形(たかっけい、polygon; )は、閉あるいは閉曲線を成す、線分の閉じた有限鎖で囲まれた平面図形を言う。多角形を構成するこれら線分をその多角形の辺 (edge, side) と呼び、それらの二つの辺が交わる点をその多角形の頂点 (vertex, corner) と呼ぶ。 個の辺を持つ多角形は -辺形 (-gon) と呼ぶ。例えば三角形は三辺形である。多角形は、より一般の任意次元における超多面体の二次元の例になっている。 多角形に関する基本的な幾何学的概念は特定の目的に応じて様々な方法で適応されてきた。数学においてはしばしば有界な閉折れ線や自己交叉を持たないに限って問題にするため、そのようなもののみ多角形と呼ぶこともある。他方、多角形の境界が自分自身と交わることを許す流儀もあり、その場合星型多角形やその他のが形作られる。その他の多角形の一般化については後述。 多角形 (poly­gon) の語は、「多い」を意味するπολύς と「角」を意味するγωνία に由来する.

新しい!!: 2次元と多角形 · 続きを見る »

実在

実在(じつざい、reality)は、認識主体から独立して客観的に存在するとされるもの。 実在は認識主体により生み出されたものと区別される。表象を変化させる働きをし、事物の背後にあるとされる、不変の実体を意味する場合もある。 実在について西部邁(評論家)はこう述べている。「探し当てられるべきは実在(真理)なのだが、実在は言葉を住(す)み処(か)とし、そして自分という存在はその住み処の番人をしている、ということにすぎないのだ。言葉が歴史という名の草原を移動しつつ実在を運んでいると思われるのだが、自分という存在はその牧者(ぼくしゃ)にすぎない。その番人なり牧者なりの生を通じて徐々にわからされてくるのは、実在は、そこにあると指示されているにもかかわらず、人間に認識されるのを拒絶しているということである。それを「無」とよべば、人間は実在を求めて、自分が無に永遠に回帰するほかないと知る。つまりニーチェの「永劫回帰」である。それが死という無にかかわるものとしての人間にとっての実在の姿なのだ。.

新しい!!: 2次元と実在 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 2次元と実数 · 続きを見る »

対義語

対義語(たいぎご/ついぎご、antonym)とは、意味が反対となる語や、意味が対照的になっている語。アントニム。反義語、反意語、反義詞、反対語、対語などともいう。「対義語」の対義語は「類義語」、「同義語」などである。.

新しい!!: 2次元と対義語 · 続きを見る »

平面

平面(へいめん、plane)とは、平らな表面のことである広辞苑 第五版、p.2395「平面」。平らな面。 一般的には曲面や立体などと対比されつつ理解されている。.

新しい!!: 2次元と平面 · 続きを見る »

二次曲面

二次超曲面(にじちょうきょくめん、quadric surface)とは、円錐曲線の概念を一般次元ユークリッド空間 Rn に拡張したものであり、2次多項式の零点集合として表されるような超曲面のことをさす。3次元空間における二次超曲面は二次曲面ともよばれる。.

新しい!!: 2次元と二次曲面 · 続きを見る »

地図

地図(ちず、英:mapブリタニカ百科事典「地図」 マップ、chart チャート)とは、地球表面の一部または全部を縮小あるいは変形し、記号・文字などを用いて表した図。.

新しい!!: 2次元と地図 · 続きを見る »

ライフゲーム

ペンタデカスロンと呼ばれるパターン ライフゲーム は1970年にイギリスの数学者ジョン・ホートン・コンウェイ が考案した生命の誕生、進化、淘汰などのプロセスを簡易的なモデルで再現したシミュレーションゲームである。単純なルールでその模様の変化を楽しめるため、パズルの要素を持っている。 生物集団においては、過疎でも過密でも個体の生存に適さないという個体群生態学的な側面を背景に持つ。セル・オートマトンのもっともよく知られた例でもある。.

新しい!!: 2次元とライフゲーム · 続きを見る »

トゥーンレンダリング

トゥーンレンダリング(英:Cel shading)とは、3次元コンピュータグラフィックスの一種で、2次元の手描きアニメーション、あるいは漫画やイラスト風の作画(いわゆるアニメ絵)でレンダリングさせる技術である。 アニメのセル画で行われる影の塗り分けのように、平板で境界線のはっきりした陰影をつけるシェーディング(Shading)を行うことから、一般的には、「トゥーンシェイド」と呼ばれる。専門的には、「トゥーンシェーディング(Toon shading)」や「セルシェーディング(Cel shading)」とも呼ばれる。 また、これらの画像処理を実現するために使用されるシェーダーを、トゥーンシェーダー(Toon Shader)、あるいはセルシェーダー(Cel Shader)と呼ぶ。 出来上がった画像は、抽象化・単純化されたものであるが、その生成過程は非常に複雑である。.

新しい!!: 2次元とトゥーンレンダリング · 続きを見る »

ヒト

ヒト(人、英: human)とは、広義にはヒト亜族(Hominina)に属する動物の総称であり、狭義には現生の(現在生きている)人類(学名: )を指す岩波 生物学辞典 第四版 p.1158 ヒト。 「ヒト」はいわゆる「人間」の生物学上の標準和名である。生物学上の種としての存在を指す場合には、カタカナを用いて、こう表記することが多い。 本記事では、ヒトの生物学的側面について述べる。現生の人類(狭義のヒト)に重きを置いて説明するが、その説明にあたって広義のヒトにも言及する。 なお、化石人類を含めた広義のヒトについてはヒト亜族も参照のこと。ヒトの進化については「人類の進化」および「古人類学」の項目を参照のこと。 ヒトの分布図.

新しい!!: 2次元とヒト · 続きを見る »

フィギュア

フィギュア(英語: model figure)とは、人物・動物・キャラクターなどの形をうつした人形の事を指す。.

新しい!!: 2次元とフィギュア · 続きを見る »

アイドル

アイドルとは、「偶像」「崇拝される人や物」「あこがれの的」「熱狂的なファンをもつ人」を意味する英語(idol)に由来し、文化に応じて様々に定義される語である。 日本の芸能界における「アイドル」とは、成長過程をファンと共有し、存在そのものの魅力で活躍する人物を指す。.

新しい!!: 2次元とアイドル · 続きを見る »

コスプレ

プレとは漫画やアニメ、ゲームなどの登場人物やキャラクターに扮する行為を指す。それらのジャンルの愛好者や同人サークルが集まるコミックマーケット、同人誌即売会を始めとする各種イベント、また、ビジュアル系バンドのライブ会場等で見かけられる。コスプレを行う人をコスプレイヤー (cosplayer) と呼ぶ。 コスプレはコスチューム・プレイを語源とする和製英語だが、世界中で通用する単語であり、英語表記のcosplayは、イギリスの辞書に載っている英単語である。 近年は意味が拡大し、特定の職業で採用されている制服や特定の着衣を好む者が、その衣装を真似て作った服もしくは本物を着て、自らの意志でそのキャラクターになりきることもコスプレと呼ぶことがある。しかし、狭義のコスプレに限るべしとの意見もある。.

新しい!!: 2次元とコスプレ · 続きを見る »

スカラー

ラー、スカラ; scalar.

新しい!!: 2次元とスカラー · 続きを見る »

セル・オートマトン

Daniel Dennett (1995), ''Darwin's Dangerous Idea'', Penguin Books, London, ISBN 978-0-14-016734-4, ISBN 0-14-016734-X セル・オートマトン(cellular automaton、略称:CA)とは、格子状のセルと単純な規則による、離散的計算モデルである。計算可能性理論、数学、物理学、複雑適応系、数理生物学、微小構造モデリングなどの研究で利用される。非常に単純化されたモデルであるが、生命現象、結晶の成長、乱流といった複雑な自然現象を模した、驚くほどに豊かな結果を与えてくれる。 正確な発音に近いセルラ・オートマトンとも呼ばれることがある。セルは「細胞」「小部屋」、セルラは「細胞状の」、オートマトンは「からくり」「自動機械」を意味する。他に「セル空間」「埋め尽くしオートマトン」「homogeneous structure」「tessellation structure」「iterative array」といった呼称もある。 有限種類の(多くは2から数十種類の)状態を持つセル(細胞のような単位)によってセル・オートマトンは構成され、離散的な時間で個々のセルの状態が変化する。その変化は、ある時刻 t においてのセルの状態、および近傍のセルの内部状態によって、次の時刻t+1 、すなわち新たな「ジェネレーション」(世代)での各セルの状態が決定される。初期状態(時刻 t.

新しい!!: 2次元とセル・オートマトン · 続きを見る »

円 (数学)

数学において、円(えん)とは、平面(2次元ユークリッド空間)上の、定点 O からの距離が等しい点の集合でできる曲線のことをいう。ここで現れる定点 O を円の中心と呼ぶ。円には、その中心が1つあり、また1つに限る。中心から円周上の 1 点を結んだ線分を輻(や)とよび、その長さを半径というが、現在では輻のことを含めて半径と呼ぶことが多い。中心が点 O である円を、円 O と呼ぶ。定幅図形の一つ。 円が囲む部分、すなわち円の内部を含めて円ということもある。この場合は、曲線のことを円周という。これに対して、内部を含めていることを強調するときには円板という。また、三角形、四角形などと呼称を統一して、円形ということもある。 数学以外の分野ではこの曲線のことを「丸(まる)」という俗称で呼称することがある。 円: 中心、半径・直径、円周.

新しい!!: 2次元と円 (数学) · 続きを見る »

回転

回転(廻転、かいてん、rotation)は、大きさを持たない点または大きさを持つ物体が、ある点を中心としてあるいは直線を軸として、あるいは別の物体の周りを回る運動。この点を回転中心、この直線を回転軸という。回転中心や回転軸が回転する物体の内部にある場合を特に自転というときもある。まさに運動している状態を指す場合も、運動の始状態から終状態への変化や移動を指す場合もある。前者の意味を強調したい場合は回転運動ということもある。 転じて、資金などの供給・サービス業の客の出入りなどをこう称する場合がある。.

新しい!!: 2次元と回転 · 続きを見る »

図面

図面(ずめん)とは、何かの機能や構造、配置を描いた図。 多くは、電気・電子機器、機械や土木建築物の設計結果を記した設計図を指す。 図面は、設計成果だけではなく、実測図、地図といった現状を示した図面等もある。 設計図面は 、部分やオブジェクトといったある一連の図、建物や製造指示を、二次元ダイアグラムで記述し伝達するために用いられる。通常、紙に描画もしくは印刷されるものを指すが、現在はデジタルファイルの形態をとることもある。 設計図面は、アーキテクチャ、エンジニアリング、または計画といった技術的な事項においての伝達のために用いられている。これらの分野での目的は、サイト/敷地、建物、製品またはコンポーネントといった意図するものを幾何学的特徴で捉えることで伝達事項を正確かつ明確にすることである。 設計図面は、プレゼンテーションまたは配向の目的でおこなうこともある。 設計図面の目的は、既存の場所または物体を描写し建設または製造業者が施工もしくは製造を実現することを可能にする十分な情報を伝えることである。 設計図面の作製方法、及びそれらを作製する技術は、作図技術と呼ばれる。 設計図面は、より正確には正投影などの他は、物体を見下ろした平面図やフロアプランなどのように単一のビューで把握するために描写されている。 製作施工図は、土木図面や建築図面などの構造図、機械製図、電気図面や配管図面などでの製造図といった設計図面の一種で、エンジニアリング製品または建築物を建設に必要な設計図書の一部である。エンジニアリングでは、これらの図面は指定された寸法や角度を、製造するために必要なすべてのデータが表示されている。.

新しい!!: 2次元と図面 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: 2次元と球面 · 続きを見る »

空間

間(くうかん)とは、.

新しい!!: 2次元と空間 · 続きを見る »

立体視

両眼視差 立体視(りったいし)は、動物やそれを模した機械が、立体的な視覚を得る方法。立体感はさまざまな方法で得られ、脳内で総合的に判断される。ヒトなど両眼が前面に向いた動物が最大数百メートル以下の近距離を見るときは、両眼視差による両眼視差立体視が最も重要である。立体視による視覚は、完全な3次元の知覚ではなく、2次元の視覚に奥行き情報を追加した、2.5次元の知覚である。.

新しい!!: 2次元と立体視 · 続きを見る »

絵画

絵画(かいが)は、物体の形象を平面に描き出したもの広辞苑。 日本語では類語の絵が幅広く用いられ、絵画という語は、特に芸術作品としての絵を指す場合がある。ただし、絵と絵画を区別して用いるとは限らない。また画を後ろにつけて描写の技法や対象を示す用語もある(水墨画、静物画など)。 フランス語の peinture(パンチュール)、英語の painting(ペインティング)、日本語の雅言的表現で絵と呼ぶこともある。 文字などを「書く」ことより早く、絵画を「描く」行動は幼少期から見られる行動である。発達心理学などの分野では、14歳から18歳程度で完成期と呼ばれる時期を迎え、多くの人はその頃から、ほとんど描かなくなる。子どもの絵に関する社会科学的研究は豊富だが、大人の絵に関する同様の研究は少ない。その一方で、多くの人が描かなくなる年齢を過ぎても活動的に絵を描く人々が居る。歴史的に代表的なのは画家であると言えるが、現代ではより多くの業種に見出される傾向である。なお、人間の発達には個人差があり、柔軟な姿勢が必要である。.

新しい!!: 2次元と絵画 · 続きを見る »

生モノ (同人)

生モノ(なまもの)とは、同人誌などにおいて、タレントやスポーツ選手など、実在の人物・生き物(固有名称を持つもの)を題材にしていること、および題材にして制作された作品を指す隠語。特にやおいのジャンルで使われる。ナマモノという表記も行われる。 生きている人間を題材とするため、本人や関係者、ファンなどの目に触れないようにするなど、取り扱いに注意すべきという意味が込められているという。.

新しい!!: 2次元と生モノ (同人) · 続きを見る »

画像

画像(がぞう)とは、事象を視覚的に媒体に定着させたもので、そこから発展した文字は含まない(例:文字と画像、書画)。定着される媒体は主に2次元平面の紙であるが、金属、石、木、竹、布、樹脂や、モニター・プロジェクター等の出力装置がある。また、3次元の貼り絵、ホログラフィー等も含まれる。.

新しい!!: 2次元と画像 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 2次元と行列 · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: 2次元と複素平面 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 2次元と複素数 · 続きを見る »

視覚

視覚(しかく、)とは、眼を受容器とする感覚のこと。.

新しい!!: 2次元と視覚 · 続きを見る »

距離

距離(きょり、Entfernung)とは、ある2点間に対して測定した長さの量をいう。本項では日常生活および高校数学の範囲内で使われている距離について触れる。大学以上で扱うより専門的な距離については距離空間を参照。.

新しい!!: 2次元と距離 · 続きを見る »

架空

架空(かくう)とは、実在しない、実存しない、存在しないということ。.

新しい!!: 2次元と架空 · 続きを見る »

次元

次元(じげん)は、空間の広がりをあらわす一つの指標である。座標が導入された空間ではその自由度を変数の組の大きさとして表現することができることから、要素の数・自由度として捉えることができ、数学や計算機において要素の配列の長さを指して次元ということもある。自然科学においては、物理量の自由度として考えられる要素の度合いを言い、物理的単位の種類を記述するのに用いられる。 直感的に言えば、ある空間内で特定の場所や物を唯一指ししめすのに、どれだけの変数があれば十分か、ということである。たとえば、地球は3次元的な物体であるが、表面だけを考えれば、緯度・経度で位置が指定できるので2次元空間であるとも言える。しかし、人との待ち合わせのときには建物の階数や時間を指定する必要があるため、この観点からは我々は4次元空間に生きているとも言える。 超立方体正八胞体は四次元図形の例である。数学と無縁な人は「正八胞体は四つの次元を持つ」というような「次元」という言葉の使い方をしてしまうこともあるが、専門用語としての通常の使い方は「正八胞体は次元(として) 4 を持つ」とか「正八胞体の次元は 4 である」といった表現になる(図形の次元はひとつの数値であって、いくつもあるようなものではない)。 また、転じて次元は世界の構造を意味することがある。.

新しい!!: 2次元と次元 · 続きを見る »

正多面体

正多面体(せいためんたい、regular polyhedron)、またはプラトンの立体(プラトンのりったい、Platonic solid)とは、すべての面が同一の正多角形で構成されてあり、かつすべての頂点において接する面の数が等しい凸多面体のこと。正多面体には正四面体、正六面体、正八面体、正十二面体、正二十面体の五種類がある。 三次元空間の中に一つの頂点を取り、その周りに取ることが可能な正多角形に関する制限から、正多面体が先に示した五種類のみであることが証明できる。このことは、オイラーの多面体公式からも証明できる。しかし、条件を緩めることによって、正多面体の拡張を考えることができる(参照:星型正多面体、ねじれ正多面体、正平面充填形)。正多面体の構成面を正 p 角形、頂点に集まる面の数を q として のように表すことができる。これをシュレーフリ記号という。シュレーフリ記号は半正多面体(別名:アルキメデスの立体)にも拡張することができる。.

新しい!!: 2次元と正多面体 · 続きを見る »

曲面

数学、特に位相幾何学における曲面(きょくめん、surface)は二次元位相多様体である。最もよく知られた曲面の例は、古典的な三次元ユークリッド空間 R3 内の立体の境界として得られる曲面である。例えば、球体の境界としての球面はそのようなものの例になっている。他方でクラインの壷などの、特異点や自己交叉を持つことなしに三次元ユークリッド空間に埋め込み不可能な曲面というものも存在する。 曲面が「二次元」であるというのは、それが二次元の座標系を入れた「座標付きのきれはし」の貼り合せになっているということを指し示している。例えば、「地球の表面」は(理想的には)二次元球面であり、経線と緯線はその球面上の二次元座標系を与えている(ただし、両極を180度子午線で結んだ部分を除く)。.

新しい!!: 2次元と曲面 · 続きを見る »

2.5次元

2.5次元(にてんごじげん)は、物体の3次元的形状を、1つの方向から見える範囲で表したもの。2次元と3次元の中間という意味でこう呼ばれる。ただし、端数の0.5という値に正確な意味合いがあるわけではない。物体の裏側や内部に関する情報がないことで、3次元と区別される。 通常、2次元データに追加情報を付加した形で表される。奥行きを追加した距離画像が代表的だが、他にも法線ベクトルの向きを追加した法線マップなどがある。2次元座標に奥行き(高さ)情報を付加することを、掃引という。 建築・機械の設計などでは、人体・動物などのモデリングのように複雑な形状などを必要としない場合がある。こうした分野で用いられるCADソフトウェアには、2.5次元によって立体物を扱えるものが多い。 地理情報システム(GIS)の分野では、等高線で扱える起伏をもった地形を2.5次元という。トンネルやオーバーハングは扱えない。.

新しい!!: 2次元と2.5次元 · 続きを見る »

3次元

3次元(さんじげん、三次元)は、ある概念が直交あるいは独立な(しかし同等な)要素3つの組によって一意に決定可能な場合にしばしば用いられる術語である。.

新しい!!: 2次元と3次元 · 続きを見る »

ここにリダイレクトされます:

2次元空間二次元二次元空間

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »