ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

離散数学

索引 離散数学

離散数学(りさんすうがく、英語:discrete mathematics)とは、原則として離散的な(言い換えると連続でない、とびとびの)対象をあつかう数学のことである。有限数学あるいは離散数理と呼ばれることもある。 グラフ理論、組み合わせ理論、最適化問題、計算幾何学、プログラミング、アルゴリズム論が絡む応用分野で、その領域を包括的・抽象的に表現する際に用いられることが多い。またもちろん離散数学には整数論が含まれるが、初等整数論を超えると解析学などとも関係し(解析的整数論)、離散数学の範疇を超える。.

35 関係: 帰納位相幾何学マルコフ連鎖プログラミング (コンピュータ)ビンパッキング問題デジタルアルゴリズムグラフ彩色グラフ理論ゲーム理論共立出版社会選択理論秋山仁組合せ (数学)組合せ数学順列行列証明計算幾何学記号学論理学英語集合連続 (数学)投票理論根上生也漸化式朝倉書店最適化問題数学数列数論

帰納

帰納(きのう、、)とは、個別的・特殊的な事例から一般的・普遍的な規則・法則を見出そうとする論理的推論の方法のこと。演繹においては前提が真であれば結論も必然的に真であるが、帰納においては前提が真であるからといって結論が真であることは保証されない。 なお数学的帰納法・構造的帰納法・整礎帰納法・完全帰納法・累積帰納法・超限帰納法などの帰納法は、名前と違い帰納ではなく演繹である。.

新しい!!: 離散数学と帰納 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: 離散数学と位相幾何学 · 続きを見る »

マルコフ連鎖

マルコフ連鎖(マルコフれんさ、Markov chain)とは、確率過程の一種であるマルコフ過程のうち、とりうる状態が離散的(有限または可算)なもの(離散状態マルコフ過程)をいう。また特に、時間が離散的なもの(時刻は添え字で表される)を指すことが多い(他に連続時間マルコフ過程というものもあり、これは時刻が連続である)。マルコフ連鎖は、未来の挙動が現在の値だけで決定され、過去の挙動と無関係である(マルコフ性)。各時刻において起こる状態変化(遷移または推移)に関して、マルコフ連鎖は遷移確率が過去の状態によらず、現在の状態のみによる系列である。特に重要な確率過程として、様々な分野に応用される。.

新しい!!: 離散数学とマルコフ連鎖 · 続きを見る »

プログラミング (コンピュータ)

ンピュータのプログラミング(programming)とは、コンピュータプログラムを作成することにより、人間の意図した処理を行うようにコンピュータに指示を与える行為である。.

新しい!!: 離散数学とプログラミング (コンピュータ) · 続きを見る »

ビンパッキング問題

ビンパッキング問題(ビンパッキングもんだい)とは、離散数学の組合せ論の中のNP困難問題で、与えられた「荷物(重さや個数がついている)」をつめる「箱(ビンやコンテナなど)」の最小数を見つけるものである。問題を解くためにビン型(筒状型)の模型を使うのでこのように呼ばれる。 様々な解決方法(アルゴリズム)が考案されているが、あらゆる場合の箱の最小数を効率的に見つけることができるような万能なアルゴリズムはない(NP困難問題)。.

新しい!!: 離散数学とビンパッキング問題 · 続きを見る »

デジタル

デジタル(digital, 。ディジタル)量とは、離散量(とびとびの値しかない量)のこと。連続量を表すアナログと反対の概念である。工業的には、状態を示す量を量子化・離散化して処理(取得、蓄積、加工、伝送など)を行う方式のことである。 計数(けいすう)という訳語もある。古い学術文献や通商産業省の文書などで使われている。digitalの語源はラテン語の「指 (digitus)」であり、数を指で数えるところから離散的な数を意味するようになった。.

新しい!!: 離散数学とデジタル · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: 離散数学とアルゴリズム · 続きを見る »

グラフ彩色

3色に頂点彩色(最適彩色)されたグラフ。ピーターセングラフの彩色数は3である。 グラフ彩色(英: Graph coloring)とは、グラフの何らかの要素に、ある制約条件を満たすように色を割り当てることである。最も単純なものは、隣接する頂点同士が同じ色にならないように全頂点に彩色する問題である。これを頂点彩色という。同様に辺彩色は、隣接する辺同士が同じ色にならないように全辺を彩色する問題、面彩色は、平面グラフの辺で囲まれた各領域(面)を隣接する面同士が同じ色にならないように彩色する問題である。.

新しい!!: 離散数学とグラフ彩色 · 続きを見る »

グラフ理論

ラフ理論(グラフりろん、graph theory)は、ノード(節点・頂点)の集合とエッジ(枝・辺)の集合で構成されるグラフに関する数学の理論である。グラフ (データ構造) などの応用がある。.

新しい!!: 離散数学とグラフ理論 · 続きを見る »

ゲーム理論

2007a。 ゲーム理論(ゲームりろん、)とは、社会や自然界における複数主体が関わる意思決定の問題や行動の相互依存的状況を数学的なモデルを用いて研究する学問である。数学者ジョン・フォン・ノイマンと経済学者オスカー・モルゲンシュテルンの共著書『ゲームの理論と経済行動』(1944年) によって誕生した 。元来は主流派経済学(新古典派経済学)への批判を目的として生まれた理論であったが、1980年代の「ゲーム理論による経済学の静かな革命」を経て、現代では経済学の中心的役割を担うようになった。 ゲーム理論の対象はあらゆる戦略的状況 (strategic situations)である。「戦略的状況」とは自分の利得が自分の行動の他、他者の行動にも依存する状況を意味し、経済学で扱う状況の中でも完全競争市場や独占市場を除くほとんどすべてはこれに該当する。さらにこの戦略的状況は経済学だけでなく経営学、政治学、法学、社会学、人類学、心理学、生物学、工学、コンピュータ科学などのさまざまな学問分野にも見られるため、ゲーム理論はこれらにも応用されている。 ゲーム理論の研究者やエンジニアはゲーム理論家(game theorist)と呼ばれる。.

新しい!!: 離散数学とゲーム理論 · 続きを見る »

共立出版

共立出版株式会社(きょうりつしゅっぱん)は、理工系の専門書を中心に刊行している出版社。自然科学書協会、日本理学書総目録刊行会に加盟している。大学の教科書としてもよく使用され、大学生協との取引も多い。.

新しい!!: 離散数学と共立出版 · 続きを見る »

社会選択理論

会選択理論(しゃかいせんたくりろん、social choice theory)は、個人の持つ多様な選好(preference)を基に、個人の集合体としての社会の選好の集計方法、社会による選択ルールの決め方、そして社会が望ましい決定を行なうようなメカニズムの設計方法のあり方を解明する理論体系である。経済学者と政治学者の両方により研究され、資源配分ルールや投票ルールの評価や設計は一貫して主要な課題となっている。.

新しい!!: 離散数学と社会選択理論 · 続きを見る »

秋山仁

秋山 仁(あきやま じん、1946年10月12日 - )は、日本の数学者。東海大学名誉教授、東京理科大学特任副学長 兼 理数教育研究センター長。専攻はグラフ理論、離散幾何学。理学博士。東京都武蔵野市出身。.

新しい!!: 離散数学と秋山仁 · 続きを見る »

線(せん)とは、細長く描かれたものや連続して細長いものをいう。なお、点により断続して描かれるものを点線(てんせん)といい、点線などに対して切れ目のない普通の線は実線と呼ぶ。.

新しい!!: 離散数学と線 · 続きを見る »

組合せ (数学)

数学において、組合せ(くみあわせ、combination, choose)とは、相異なる(あるいは区別可能な)いくつかの要素の集まりからいくつかの要素を(重複無く)選び出す方法である。あるいは選び出した要素をその“並べる順番の違いを区別せずに”並べたもののことである。組合せは組合せ論と呼ばれる数学の分野で研究される。卑近な例でいえば、デッキ(山札)から決まった数のカード(手札)を引くことや、ロトくじなどがその例である。.

新しい!!: 離散数学と組合せ (数学) · 続きを見る »

組合せ数学

組合せ数学(くみあわせすうがく、combinatorics)や組合せ論(くみあわせろん)とは、特定の条件を満たす(普通は有限の)対象からなる集まりを研究する数学の分野。特に問題とされることとして、集合に入っている対象を数えたり(数え上げ的組合せ論)、いつ条件が満たされるのかを判定し、その条件を満たしている対象を構成したり解析したり(組合せデザインやマトロイド理論)、「最大」「最小」「最適」な対象をみつけたり(極値組合せ論や組合せ最適化)、それらの対象が持ちうる代数的構造をみつけたり(代数的組合せ論)することが挙げられる。.

新しい!!: 離散数学と組合せ数学 · 続きを見る »

点(てん).

新しい!!: 離散数学と点 · 続きを見る »

順列

初等組合せ論における順列(じゅんれつ、sequence without repetition、arrangement)は、区別可能な特定の元から有限個を選んで作られる重複の無い有限列をいう。 初等組合せ論における「」はともに n-元集合から -個の元を取り出す方法として可能なものを数え上げる問題に関するものである。取り出す順番を勘案するのが -順列、順番を無視するのが -組合せである。.

新しい!!: 離散数学と順列 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 離散数学と行列 · 続きを見る »

証明

証明(しょうめい)とは、ある事柄が真理もしくは事実であることを明らかにすること。また、その内容。.

新しい!!: 離散数学と証明 · 続きを見る »

計算幾何学

計算幾何学(けいさんきかがく、英語:computational geometry)は、幾何学の言葉で述べることのできるアルゴリズムの研究をテーマとする計算機科学の一分野である。計算幾何学的アルゴリズムの研究から純幾何学的な問題が生じることもあり、またそのような問題は計算幾何学の一部であると考えられる。.

新しい!!: 離散数学と計算幾何学 · 続きを見る »

記号学

記号学(きごうがく、英: semiology)あるいは 記号論(きごうろん、英: semiotics)は、言語を始めとして、何らかの事象を別の事象で代替して表現する手段について研究する学問である。記号学でいう「記号」は semiosis(:en:Semiosis)で、専門用語などで「記号」と訳されることが多いいわゆるシンボルなどより広い。.

新しい!!: 離散数学と記号学 · 続きを見る »

論理学

論理学(ろんりがく、)とは、「論理」を成り立たせる論証の構成やその体系を研究する学問である。.

新しい!!: 離散数学と論理学 · 続きを見る »

辺(へん、二次元図形ではside、三次元図形ではedge(但し、円柱の辺の様に線分でないものはedgeと呼ばれない))は、特定の“図形”の中で 1 次元の“部分”となっている、両端に頂点と呼ばれる特別の点を 0 次元の“部分”として含むような線分である。辺は“線分”であり通常はまっすぐであるものを指すが、位相幾何学(トポロジー)的な文脈など、場合によっては曲がっていても構わずに辺と呼ぶことがある。 辺と呼ばれる“部分”を含むような“図形”としては例えば、多角形、グラフ理論におけるグラフ、単体的複体などを挙げることができる。 正確に辺の概念を考えるためには、頂点と呼ばれる点の集合 V の部分集合からなる集合族の族 D を図形として捉えて、V の二つの頂点 v, w に対して、D に含まれる の形(あるいはこれに空集合を含めた形)に表される集合、あるいは同じことではあるが、 の冪集合に順序同型なる集合が辺であるというのが適当である。ユークリッド空間内の点集合を図形と捉えるような立場では、このような D と図形とが一対一に対応すると考えることは望むべくもない。特に辺上には無数の点が乗っており、頂点を決めても辺が一意的に決まるわけではない。それでもなお、辺はこのような方法によって図形の中の“部分”として特徴付けられる。 Category:初等幾何学 Category:数学に関する記事.

新しい!!: 離散数学と辺 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 離散数学と英語 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 離散数学と集合 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 離散数学と連続 (数学) · 続きを見る »

投票理論

投票理論は投票の方式に関する数学である。現在では社会選択理論の一部として扱われることが多い。離散数学の組合せ論の考え方が多く使われる。 問題は大きく分けて2つある。 問題のひとつは、与えられた状況下で、できるだけ最適な投票の方式を見つけることである。よく知られているものには、絶対多数決方式と相対多数決方式などがある。あまり知られていないかもしれないが、ボルダ統計方式、コンドルセ・ウィナー方式などもある。このように多くの投票方式が存在する。ただし、これらの投票の方式は、必要十分条件を考えれば、起こりうる状況すべてで最適とは言えないだろう。 もうひとつの問題は、投票方式の各票の重みに関するものである。1人の人が複数の投票をできるような場合(例えば株式会社の中の株主)が該当する。投票する人の実際の力に対するその人の投票数を測るのに使われたりする。その人の持つ投票の力を示す指数としてシャープレイ=シュービック投票力指数やバンザフ指数などがある。.

新しい!!: 離散数学と投票理論 · 続きを見る »

根上生也

根上 生也(ねがみ せいや、1957年 - )は日本の数学者(理学博士)。横浜国立大学大学院環境情報研究院教授、理工学部数理科学EP担当。専門は、位相幾何学的グラフ理論、離散数学、トポロジー、数学教育。 東京工業大学理学部数学科卒業。同大学院理工学研究科情報科学博士課程中退。東京工業大学助手、横浜国立大学助教授を経て現職。東工大における指導教官は本間龍雄。 日本における位相幾何学的グラフ理論のパイオニアである。「根上多項式」や「平面被覆予想」の提唱者として有名。 2005年4月から9月まで、フジテレビで放送された教育番組『ガチャガチャポン!』にて「数学探偵セイヤ」として出演した。 2008年には、映画『容疑者Xの献身』の監修(数学)をした。.

新しい!!: 離散数学と根上生也 · 続きを見る »

漸化式

数学における漸化式(ぜんかしき、recurrence relation; 再帰関係式)は、各項がそれ以前の項の函数として定まるという意味で数列を再帰的に定める等式である。 ある種の漸化式はしばしば差分方程式 (difference equation) と呼ばれる。また、「差分方程式」という言葉を単に「漸化式」と同義なものとして扱うことも多い。 漸化式の例として、ロジスティック写像 が挙げられる。このような単純な形の漸化式が、しばしば非常に複雑な(カオス的な)挙動を示すことがあり、このような現象についての研究は非線型解析学などと呼ばれる分野を形成している。 漸化式を解くとは、 添字 n に関する非再帰的な函数として、一般項を表すの式を得ることをいう。.

新しい!!: 離散数学と漸化式 · 続きを見る »

朝倉書店

朝倉書店(あさくらしょてん)は、日本の出版社。 1929年(昭和4年)創業の賢文館が前身で、1944年(昭和19年)に株式会社朝倉書店設立。創業者は同文館出身の朝倉鑛造。 理学・工学・医学・農学・人文科学・家政学などの学術専門書および理工系の大学教科書を出版。.

新しい!!: 離散数学と朝倉書店 · 続きを見る »

最適化問題

最適化問題(さいてきかもんだい、optimization problem)とは、特定の集合上で定義された実数値関数または整数値関数についてその値が最小(もしくは最大)となる状態を解析する問題である。数理計画問題(すうりけいかくもんだい、mathematical programming problem, mathematical program)、数理計画とも呼ばれる。実世界の現象の数理的な解析に関わる問題や抽象的な理論の多くをこの最適化問題という一般的なくくりに入れることができる。物理学やコンピュータビジョンにおける最適化問題は、考えている関数をモデル化された系のエネルギーを表すものと見なすことによって、エネルギー最小化問題と呼ばれることもある。.

新しい!!: 離散数学と最適化問題 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 離散数学と数学 · 続きを見る »

数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

新しい!!: 離散数学と数列 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: 離散数学と数論 · 続きを見る »

ここにリダイレクトされます:

有限数学離散離散数理離散的

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »