ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

球面調和関数

索引 球面調和関数

球面調和関数(きゅうめんちょうわかんすう、)あるいは球関数(きゅうかんすう、)は以下のいずれかを意味する関数である:.

57 関係: 加群の直和培風館単位ベクトル単位球面可測関数学術用語集実数小出昭一郎九州大学ペンシルベニア大学ポッホハマー記号ポテンシャルポアソン核ラプラス作用素ラプラス方程式ルベーグ積分ルジャンドルの微分方程式ルジャンドル多項式ブリタニカ百科事典プリンストン大学出版局テンソル積ベクトル空間アナーレン・デア・フィジークガンマ関数クレブシュ–ゴルダン係数ケンブリッジ大学出版局ゲーゲンバウアー多項式シュレーディンガー方程式スレーター積分スツルム=リウヴィル型微分方程式回転群回転行列球対称球面座標系緯線点対称面積分裳華房複素数調和関数超幾何級数超球の体積超球面軌道角運動量関数量子力学量子数自乗可積分函数虚数単位正規直交基底...水素原子におけるシュレーディンガー方程式の解文部省斉次多項式族 (数学)日本物理学会3j記号6j記号 インデックスを展開 (7 もっと) »

加群の直和

抽象代数学における直和(ちょくわ、direct sum)は、いくつかの加群を一つにまとめて新しい大きな加群にする構成である。加群の直和は、与えられた加群を「不必要な」制約なしに部分加群として含む最小の加群であり、余積の例である。双対概念であると対照をなす。 この構成の最もよく知られた例はベクトル空間(体上の加群)やアーベル群(整数環 Z 上の加群)を考えるときに起こる。構成はバナッハ空間やヒルベルト空間をカバーするように拡張することもできる。.

新しい!!: 球面調和関数と加群の直和 · 続きを見る »

培風館

株式会社培風館(ばいふうかん)は、理学、工学、心理学などの大学向け教科書を中心とした出版社である。 創業者は山本慶治(1881-1963)。山本は兵庫県の豪農の家に生まれ、1908年東京高等師範学校英語科卒、1910年同教育研究科修了、奈良女子高等師範学校講師。岡本米蔵の紐育土地会社に勤務、その出版部門常務となり、1938年培風館として独立。当初は東京高等師範学校の教科書を刊行していた。1962年その長男の山本俊一(1910-2008、東大工学部卒)が社長となり、67年次男の山本健二(1912-93)が継ぐ。健二の死後その子の山本格が社長となる。.

新しい!!: 球面調和関数と培風館 · 続きを見る »

単位ベクトル

単位ベクトル(たんい-ベクトル、unit vector)とは、長さ(ノルム)が 1 のベクトルの事である。 二つのベクトル, があって、 が単位ベクトル( |\mathbf|.

新しい!!: 球面調和関数と単位ベクトル · 続きを見る »

単位球面

様々な単位球面 単位球面(たんいきゅうめん、英: unit sphere)とは、中心点からの距離が1の点の集合である。なお、ここでの距離とは一般的な距離の概念である。一方、単位球(たんいきゅう、英: unit ball)は、中心点からの距離が1以下の点の集合(閉単位球 (closed unit ball))、あるいは1未満の点の集合(開単位球 (open unit ball))である。通常、特に断らない限り、対象とする空間の原点を中心点とする。したがって英語で何の前置きもなく "the" をつけて書かれている場合は、原点を中心点とする単位球面や単位球を指す。 単純に言い換えれば、単位球面は半径が1の球面であり、単位球は半径が1の球である。任意の球面は平行移動と拡大・縮小によって単位球面に変換でき、この点が重要である。したがって、球面の研究は一般に単位球面を研究することに還元できる。.

新しい!!: 球面調和関数と単位球面 · 続きを見る »

可測関数

数学の、特に測度論の分野における可測関数(かそくかんすう、)とは、(積分論を展開する文脈として自然なものである)可測空間の間の、構造を保つ写像である。具体的に言えば、可測空間の間の関数が可測であるとは、各可測集合に対するその原像が可測であることを言う(これは位相空間の間の連続関数の定義の仕方と似ている)。 この定義は単純なようにも見えるが、σ-代数も併せて考えているということに特別な注意が払われなければならない。特に、関数 f: R → R がルベーグ可測であるといったとき、これは実際には f\colon (\mathbb, \mathcal) \to (\mathbb, \mathcal) が可測関数であることを意味する。すなわち、その定義域と値域は、同じ台集合上で異なる σ-代数を持つものを表している(ここで \mathcal はルベーグ可測集合全体の成す σ-代数であり、\mathcal は R 上のボレル集合族である)。結果として、ルベーグ可測関数の合成は必ずしもルベーグ可測とはならない。 慣例では、特に断りの無い限り、位相空間にはその開部分集合全体により生成されるボレル代数が与えられるものと仮定される。最もよくある場合だと、この空間として実数全体あるいは複素数全体からなる空間をとる。例えば、実数値可測関数とは、各ボレル集合の原像が可測となるような関数を言う。複素数値可測関数も同様に定義される。実用においては、ボレル集合族に関する実数値可測関数のみを指して可測関数という語を使用するものもある。関数の値が R や C の代わりに無限次元ベクトル空間に取られるのであれば、弱可測性やボホナー可測性などの、可測性に関する他の定義が用いられることが普通である。 確率論の分野において、σ-代数はしばしば、利用可能な情報すべてからなる集合を表し、ある関数(この文脈では確率変数)が可測であるとは、それが利用可能な情報に基づいて知ることの出来る結果(outcome)を表すことを意味する。対照的に、少なくとも解析学の分野においては、ルベーグ可測でない関数は一般に病的であると見なされる。.

新しい!!: 球面調和関数と可測関数 · 続きを見る »

学術用語集

学術用語集(がくじゅつようごしゅう)とは、.

新しい!!: 球面調和関数と学術用語集 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 球面調和関数と実数 · 続きを見る »

小出昭一郎

小出 昭一郎(こいで しょういちろう、1927年3月25日 - 2008年8月30日)は、日本の物理学者、東京大学名誉教授。.

新しい!!: 球面調和関数と小出昭一郎 · 続きを見る »

九州大学

記載なし。

新しい!!: 球面調和関数と九州大学 · 続きを見る »

ペンシルベニア大学

米国屈指の名門私立大学連合であるアイビー・リーグの1校である。USAトゥデイ米国大学ランキングで1位 、USニュース米国大学ランキングでトップ8位、Times米国大学ランキング(2017年)はトップ4位、Times2018年世界大学ランキングでトップ10位 (その他ランキング誌では世界4位から15位)にランクインし 米国及び世界を代表する屈指の名門大学として不動の地位を保っている。合格率9.4%(2016年入学者)と全米最難関大学の一つである。米国の有名総合大学としては比較的珍しく大都市に位置する都市型大学でもある。.

新しい!!: 球面調和関数とペンシルベニア大学 · 続きを見る »

ポッホハマー記号

解析学におけるポッホハマー記号(ポッホハマーきごう、Pochhammer symbol)はの名に因む特殊函数で、組合せ論および超幾何級数論にも応用を持つ。.

新しい!!: 球面調和関数とポッホハマー記号 · 続きを見る »

ポテンシャル

ポテンシャル(potential)は、潜在力、潜在性を意味する物理用語。 最初にポテンシャル(スカラーポテンシャル)の考え方を導入したのは、ジョゼフ=ルイ・ラグランジュである(1773年)。ラグランジュの段階ではポテンシャルとは言われておらず、これをポテンシャルと呼んだのは、ジョージ・グリーンである(1828年)。カール・フリードリヒ・ガウス、ウィリアム・トムソン、ペーター・グスタフ・ディリクレによってポテンシャル論における三つの基本問題として、ディリクレ問題、ノイマン問題、斜交微分の問題が注目されるようになった。 ポテンシャルエネルギー(位置エネルギー)のことをポテンシャルと呼ぶこともある。.

新しい!!: 球面調和関数とポテンシャル · 続きを見る »

ポアソン核

数学のポテンシャル論におけるポアソン核(ポアソンかく、)とは、単位円板上のディリクレ境界条件を伴う二次元ラプラス方程式を解く際に用いられるある積分核のことを言う。ラプラス方程式に対するグリーン函数の微分として解釈することが出来る。シメオン・ドニ・ポアソンの名にちなむ。 ポアソン核は制御理論や、静電気学の二次元問題への応用において広く用いられている。実際、ポアソン核の定義は n-次元問題まで拡張されることもしばしばある。.

新しい!!: 球面調和関数とポアソン核 · 続きを見る »

ラプラス作用素

数学におけるラプラス作用素(ラプラスさようそ、Laplace operator)あるいはラプラシアン(Laplacian)は、ユークリッド空間上の函数の勾配の発散として与えられる微分作用素である。記号では,, あるいは で表されるのが普通である。函数 の点 におけるラプラシアン は(次元に依存する定数の違いを除いて)点 を中心とする球面を半径が増大するように動かすときの から得られる平均値になっている。直交座標系においては、ラプラシアンは各独立変数に関する函数の二階(非混合)偏導函数の和として与えられ、またほかに円筒座標系や球座標系などの座興系においても有用な表示を持つ。 ラプラス作用素の名称は、天体力学の研究に同作用素を最初に用いたフランス人数学者のピエール=シモン・ド・ラプラス (1749–1827) に因んでいる。同作用素は与えられた重力ポテンシャルに適用すると質量密度の定数倍を与える。現在ではラプラス方程式と呼ばれる方程式 の解は調和函数と呼ばれ、自由空間において可能な重力場を表現するものである。 微分方程式においてラプラス作用素は電気ポテンシャル、重力ポテンシャル、熱や流体の拡散方程式、波の伝搬、量子力学といった、多くの物理現象を記述するのに現れる。ラプラシアンは、函数の勾配フローの流束密度を表す。.

新しい!!: 球面調和関数とラプラス作用素 · 続きを見る »

ラプラス方程式

ラプラス方程式(ラプラスほうていしき、Laplace's equation)は、2階線型の楕円型偏微分方程式 である。ここで、 はラプラシアン(ラプラス作用素、ラプラスの演算子)である。なお、∇ についてはナブラを参照。ラプラス方程式は、発見者であるピエール=シモン・ラプラスから名づけられた。ラプラス方程式の解は、電磁気学、天文学、流体力学など自然科学の多くの分野で重要である。ラプラス方程式の解についての一般理論はポテンシャル理論という一つの分野となっている。 の場合に標準座標を用いてラプラス方程式を書くと次のようになる: \phi(x,y,z) + \phi(x,y,z) + \phi(x,y,z).

新しい!!: 球面調和関数とラプラス方程式 · 続きを見る »

ルベーグ積分

数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、Lebesgue integral)は、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、「曲線の下部の面積」を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかしながら、より不規則な関数を考える必要が、例えば解析学や確率論において極限を考えるときに生じたため、より注意深い近似の手法が適切な積分を定義するために必要なことが明らかとなった。また、局所コンパクト群のような、実数直線よりも一般の空間上で積分をしたいことがある。ルベーグ積分はこの重要な仕事をするために必要な正しい抽象化を与える。例えば、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えると非常に繊細な議論が必要だが、ルベーグ積分では、積分と極限操作の交換が可能であるための簡単な十分条件が分かっている。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 ルベーグ積分 (Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線の部分集合上定義された関数を積分するという特定の場合を意味することもある。.

新しい!!: 球面調和関数とルベーグ積分 · 続きを見る »

ルジャンドルの微分方程式

ルジャンドルの微分方程式(るじゃんどるのびぶんほうていしき)とは、アドリアン=マリ・ルジャンドルにその名をちなむ、以下の形の常微分方程式の事である。 これはガウスの微分方程式において、α.

新しい!!: 球面調和関数とルジャンドルの微分方程式 · 続きを見る »

ルジャンドル多項式

ルジャンドル多項式(ルジャンドルたこうしき、Legendre polynomial)とは、ルジャンドルの微分方程式を満たすルジャンドル関数のうち次数が非負整数のものを言う。直交多項式の一種である。.

新しい!!: 球面調和関数とルジャンドル多項式 · 続きを見る »

ブリタニカ百科事典

ブリタニカ百科事典(ブリタニカひゃっかじてん、)は、英語で書かれた百科事典である。110人のノーベル賞受賞者と5人のアメリカ合衆国大統領を含む4,000人以上の寄稿者と専任の編集者約100人によって書かれており、学術的に高い評価を受けている。 英語の百科事典としては最古のものであり、今もなお製作されている。1768年から1771年にかけて、エディンバラで3巻の百科事典として発行されたのが始まりである。収録された記事は増えていき、巻数は第2版で10巻、第4版(1801年から1810年)では20巻となった。学術的な地位の向上は高名な寄稿者を招くのに役立ち、第9版(1875年から1889年)と第11版(1911年)は、文体と学術的知識において画期的なものとなった。版権が米国に移った第11版からは北米市場に売り込むため短く簡潔な記事となっていった。1933年、ブリタニカは百科事典としては初めて継続的な改訂が行われるようになった。2012年3月ブリタニカ社は、紙の書籍としての発行を取り止めオンライン版 に注力すると発表し、2010年に32巻で印刷されたものが紙の書籍としては最後となった。 1972年より日本語版もあり、『ブリタニカ国際大百科事典』(Britannica International Encyclopædia)として出版されている。 第15版からは三部構成となっている。短い記事(ほとんどが750語以下からなる)のマイクロペディア(小項目事典)12巻、長い記事(2~310ページ)のマクロペディア(大項目事典)19巻、そして知識を系統立てる、もしくは概観を示すプロペディア(総論・手引き)1巻である。マイクロペディアは簡単な調べ物やマクロペディアの手引書としての役割を担っている。記事の概観や詳細を知るためにはプロペディアを閲覧することが推奨されている。ブリタニカはおよそ50万の記事が約4000万語で記述されており、70年以上ほぼ一定に保たれている。1901年以降は米国を拠点に出版されてきたが、主にイギリス英語で書かれている。.

新しい!!: 球面調和関数とブリタニカ百科事典 · 続きを見る »

プリンストン大学出版局

プリンストン大学出版局(Princeton University Press)とは、独立系の出版社でプリンストン大学と近い関係を持っている。広大なや社会においてスカラーシップを広めることを目的にしている。 1905年にホイットニー・ダローによって設立された。その際にプリンストンコミュニティに印刷機を納品する形でチャールズ・スクリブナーが金融面で支援した。最初に出版した本はジョン・ウィザースプーン著「Lectures on Moral Philosophy」の新たな1912年版だった。.

新しい!!: 球面調和関数とプリンストン大学出版局 · 続きを見る »

テンソル積

数学におけるテンソル積(テンソルせき、tensor product)は、線型代数学で多重線型性を扱うための線型化を担う概念で、既知のベクトル空間・加群など様々な対象から新たな対象を作り出す操作の一つである。そのようないずれの対象に関しても、テンソル積は最もな双線型乗法である。 共通の体 上の二つの ベクトル空間 のテンソル積 (基礎の体 が明らかな時には とも書く)はふたたびベクトル空間を成す。ベクトル空間のテンソル積を繰り返して得られるテンソル空間は物理的なテンソルを数学的に定式化する。テンソル空間に種々の積を入れてさまざまな多重線型代数・クリフォード代数が定式化されるが、その基本となる演算がテンソル積である。.

新しい!!: 球面調和関数とテンソル積 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 球面調和関数とベクトル空間 · 続きを見る »

アナーレン・デア・フィジーク

アナーレン・デア・フィジーク (Annalen der Physik) は世界で最も古い物理学の学術雑誌の一つ(1799年創刊)。物理学に関する幅広い分野の査読済み原著論文を掲載している。 この雑誌は1790年から1794年まで発行されたJournal der Physikと、1795年から1797年まで発行されたNeues Journal der Physikの後継雑誌であるhttp://www.physik.uni-augsburg.de/annalen/history/history.html 。創刊以後、何度か名前を変えて出版されてきた。.

新しい!!: 球面調和関数とアナーレン・デア・フィジーク · 続きを見る »

ガンマ関数

1.

新しい!!: 球面調和関数とガンマ関数 · 続きを見る »

クレブシュ–ゴルダン係数

量子力学においてクレブシュ–ゴルダン係数(CG係数、Clebsch–Gordan coefficients)またはウィグナー係数は、角運動量の合成で生じる係数の組である。2つの角運動量の和によって出来た角運動量の固有状態を得るために必要となる。 より数学的にはCG係数は表現論、特にコンパクトリー群において、既約表現の数とタイプが抽象的に分かっており、既約表現のテンソル積を既約表現に直和分解する場合に使われる。 不変理論で同様の問題について研究したドイツの物理学者アルフレッド・クレブシュ(1833–1872)とポール・ゴルダン(1837–1912)にちなんで命名された。 古典力学では、CG係数やSO(3)群に関連するものは球面調和関数の乗算によってもっと直接的に定義される。量子力学的なスピンの導入はこのアプローチから行える。 クレブシュ–ゴルダン係数は全角運動量固有状態を結合していないテンソル積基底で展開したときの展開係数である。この定義の意味は角運動量演算子、角運動量固有状態、角運動量固有状態のテンソル積を定義することで明らかとなる。 角運動量の形式的な定義から、クレブシュ–ゴルダン係数における漸化式がわかる。係数の具体的な数値を定めるためには、位相則を選びださなければならない。 以下の定式化ではディラックのブラケット記法を使う。また位相則としてコンドン–ショートレーの位相則を用いる。.

新しい!!: 球面調和関数とクレブシュ–ゴルダン係数 · 続きを見る »

ケンブリッジ大学出版局

ンブリッジ大学出版局(Cambridge University Press)は、ケンブリッジ大学の出版事業を手がける出版社である。1534年、ヘンリー8世により特許状が発せられたのを起こりとする世界最古の出版社、かつ世界第2の規模の大学出版局であり、聖書や学術誌の出版も手掛けている。 「出版活動を通して、大学の理念である全世界における学問、知識、研究の促進を推し進めること」を使命として掲げている。これは、ケンブリッジ大学規約中の「Statute J」に規定されている。そして、「公益のため継続的に出版活動を行い、ケンブリッジという名前の評価を高めること」を目的としている。 ケンブリッジ大学出版局は、学術、教育分野の書籍の出版を行なっており、ヨーロッパ、中東、アフリカ、アメリカ、アジア太平洋といった地域で事業を展開している。世界中に50以上の事業所を持ち、2000人近くの従業員を抱え、4万以上のタイトルの書籍を発行している。その種類は、専門書、教科書、研究論文、参考書、 300近くに及ぶ学術誌、聖書、祈祷書、英語教育教材、教育ソフト、電子出版など、多岐にわたる。.

新しい!!: 球面調和関数とケンブリッジ大学出版局 · 続きを見る »

ゲーゲンバウアー多項式

数学において、ゲーゲンバウアー多項式(ケーゲンバウアーたこうしき、Gegenbauer polynomials)または超球多項式 (ultraspherical polynomials) C_n^(x) とは、 (1849–1903) にちなんで命名された、区間 上で定義される重み関数 (1-x^2)^ の直交多項式をいう。ゲーゲンバウアー多項式は、ルジャンドル多項式及びチェビシェフ多項式の一般事例であり、の特殊事例である。.

新しい!!: 球面調和関数とゲーゲンバウアー多項式 · 続きを見る »

シュレーディンガー方程式

ュレーディンガー方程式(シュレーディンガーほうていしき、Schrödinger equation)とは、物理学の量子力学における基礎方程式である。 シュレーディンガー方程式という名前は、提案者であるオーストリアの物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した。 シュレーディンガー方程式の解は一般的に波動関数と呼ばれる。波動関数はまた状態関数とも呼ばれ、量子系(電子など量子力学で取り扱う対象)の状態を表す。シュレーディンガー方程式は、ある状況の下で量子系が取り得る量子状態を決定し、また系の量子状態が時間的に変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。状態ベクトルによる記述は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。状態が時間変化するという考え方はシュレーディンガー描像と呼ばれる。 シュレーディンガー方程式はその形式によっていくつかの種類に分類される。ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式(time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素物理学の文献において作用素は演算子とも呼ばれる。以下では作用素の意味で演算子という語を用いる。である。 時間に依存しないシュレーディンガー方程式(time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。 シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式(non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式、グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。.

新しい!!: 球面調和関数とシュレーディンガー方程式 · 続きを見る »

スレーター積分

レーター積分(Slater integral)とは数学または数理物理学において用いられる、三つの球面調和関数積の積分である。三次元の回転変換した単位球面上の関数の正規直交基底関数を用いるときに現れる積分である。このような積分は球対称性をもつ原子の物性計算を行うときによく用いられる。数学的ないくつかの性質により、これらの積分は下記のように定義される。.

新しい!!: 球面調和関数とスレーター積分 · 続きを見る »

スツルム=リウヴィル型微分方程式

ツルム=リウヴィル型微分方程式(-がたびぶんほうていしき、Sturm–Liouville equation)とは、 (1803–1855) と ジョゼフ・リウヴィル (1809–1882) に由来する以下の形の2階の実数係数斉次線形微分方程式 のことである。ここで y は関数であり、x は実数変数である。実数係数関数 p (x) > 0, q (x), w (x) > 0 は予め与えられていて、 w は重み関数と呼ばれる。定数λは未定である。 y.

新しい!!: 球面調和関数とスツルム=リウヴィル型微分方程式 · 続きを見る »

回転群

(n 次の)回転群(かいてんぐん、rotation group)あるいは特殊直交群(とくしゅちょっこうぐん、special orthogonal group)とは、n行n列の直交行列であって、行列式が1のもの全体が行列の乗法に関してなす群をいう。SO(n) と書く。 SO(n) はコンパクトリー群であり、n.

新しい!!: 球面調和関数と回転群 · 続きを見る »

回転行列

線型代数において、回転行列(かいてんぎょうれつ、rotation matrix)とは、ユークリッド空間内における原点中心の回転変換の表現行列のことである。 二次元や三次元では、幾何学、物理学、コンピュータグラフィックスの分野での計算に非常によく使われている。大半の応用で扱うのは2次元や3次元の回転だが、一般の次元でも回転行列を定義することができる。 n 次元空間における回転行列は、実数を成分とする正方行列であって、行列式が 1 の n 次直交行列として特徴づけられる: n 次元の回転行列の全体は特殊直交群(あるいは回転群)と呼ばれる群をなす。.

新しい!!: 球面調和関数と回転行列 · 続きを見る »

球対称

初等幾何学における幾何学的対象が球対称(きゅうたいしょう、radial symmetric; 放射対称)あるいは回転不変(かいてんふへん、rotational invariant)であるとは、その対象が「任意の」回転変換(すなわち、対象の中心を通る任意の軸に対する任意角度の回転)に対して不変となることをいう。従って、球対称な対象を記述するための基準系は(方向成分は関係してこないため)原点の取り方のみが重要である。三次元空間内の回転に関する場合のみを「球対称」(spherical symmetry) と呼ぶ場合もある。三次元空間内の立体で球対称なものは球体に限る(中身が詰まっていないものも許すならば、同心球面の合併も入る)。 数学において適当な内積空間上で定義された函数が回転不変あるいは球対称(radial; 動径的)であるとは、その値が引数に対する任意の回転に関して不変となることを言う。例えば、函数 は原点周りの平面回転の下で不変である。より一般に、空間 上の変換あるいはそのような写像の成す写像空間上に作用する作用素に対しても、 における回転と両立する作用に関する意味で球対称性は定義できる。例えば二次元のラプラス作用素 は、任意の回転変換 に対して となる任意の写像 に対して を満たす(つまり写像に対する回転は単にそのラプラシアンに対する回転になる)という意味において球対称である。 物理学における場が球対称であるとき、放射状場 (radial field) などと呼ばれる。また物理的な系がその空間における向きに依らず同じ値を示すとき、そのラグランジアンは球対称になる。ネーターの定理によれば、物理的な系の(ラグランジアンに対する時間に関する積分の)作用は回転不変であり、従って角運動量は保存される。.

新しい!!: 球面調和関数と球対称 · 続きを見る »

球面座標系

球面座標系(きゅうめんざひょうけい、)とは、3次元ユークリッド空間に定まる座標系の一つで、一つの動径座標と二つの角度座標で表される極座標系である。第一の角度はある軸(通常は -軸を選ぶ)と動径がなす角度で、第二の角度は、その軸に垂直な平面にある別の軸(通常は -軸を選ぶ)とこの平面への動径の射影がなす角度である。通常は動径座標に記号 を用い、第一の角度座標には を、第二の角度座標には を用いて表される。動径座標は で与えられる。第二の角度座標を で与えられる。ここで は符号関数 である。-軸上 において特異性があり、分母がゼロとなるため が定まらない。さらに原点 においては も定まらない。 球面座標 から直交直線座標 への変換の式を微分すれば が得られて、ヤコビ行列とヤコビ行列式は となる。従って球面座標で表した体積素は となる。また、線素の二乗は となる。交叉項が現れないため、球座標は各点において動径が増減する方向と二つの角度が増減する方向がそれぞれに直交している直交座標系である。.

新しい!!: 球面調和関数と球面座標系 · 続きを見る »

緯線

緯線(いせん、circles of latitude)とは天体表面上の同一緯度の地点を結んだ仮想的な線である。平行圏 (parallels) とも称する。緯線は全ての子午線と交点で直交するが、ある一つの子午線に着目した際、当該子午線の交点から離れるに従い、当該子午線の接ベクトルと緯線の接ベクトルとのなす角は直角から異なっていく。この点で、線上の任意の接ベクトルが特定の子午線上の任意の接ベクトルと直交する卯酉線(ぼうゆうせん)すなわち東西圏とは異なる概念であり、注意を要する。 「緯」は織物の横糸の意味で、経緯線を織物に見立てたものである。 地図に表したとき、円筒図法では緯線は赤道に平行な直線となり、円錐図法では赤道と同心の円弧となる。 いくつかの緯線には特別の名称がつけられている。数値は地球のものである。.

新しい!!: 球面調和関数と緯線 · 続きを見る »

点対称

山梨県韮崎市の市章 点対称(てんたいしょう、point symmetry, point reflection)とは、対称性の一種である。点対称な図形は、対称点(対称中心)を中心とした反転に対し不変である。.

新しい!!: 球面調和関数と点対称 · 続きを見る »

面積分

ベクトル解析における面積分(めんせきぶん、surface integral)は、曲面上でとった定積分であり、二重積分として捉えることもできる。線積分は一次元の類似物にあたる。曲面が与えられたとき、その上のスカラー場やベクトル場を積分することができる。 面積分は物理学、特に電磁気学の古典論に応用がある。 面積分の定義は、曲面を小さな面素へ分解することによって成される。.

新しい!!: 球面調和関数と面積分 · 続きを見る »

裳華房

裳華房(しょうかぼう)は、日本の出版社。主に、数学、物理学、化学、生物学、工学といった自然科学関係の教科書や演習書、専門雑誌を出版し、理工系の学生や研究者、技術者、中学校や高等学校の理科教師にはなじみが深い。『ポピュラー・サイエンス』シリーズに代表される一般向けの科学啓蒙書の出版も手がけている。 創業は非常に古く、1700年代前半にはすでに仙台藩の御用板所として活動。当時より算術や暦、気象などに関する書物を出版していた。() 所在地は東京都千代田区四番町8-1。.

新しい!!: 球面調和関数と裳華房 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 球面調和関数と複素数 · 続きを見る »

調和関数

帯上で定義された調和関数 数学における調和関数(ちょうわかんすう、harmonic function)は、ラプラス方程式を満足する二回連続的微分可能な関数のことをいう。 調和関数に関する重要な問題はディリクレ問題である。ディリクレ問題の解決方法にはいくつかあるが、その中でも重要な一般的方法はディリクレの原理である。 20世紀には、、、小平邦彦らが調和積分論の発展の中心的な役割を果たした。.

新しい!!: 球面調和関数と調和関数 · 続きを見る »

超幾何級数

数学において、超幾何級数(ちょうきかきゅうすう、hypergeometric series)は、一般に の形式で表される級数である。但し、 (x)_0 &.

新しい!!: 球面調和関数と超幾何級数 · 続きを見る »

超球の体積

初等幾何学における球体は決められた点から決められた距離以内にある点の全体が空間において占める領域であった。同様のことを -次元ユークリッド空間で行って -次元超球体が定義される。-次元超球体の体積率は数学全般を通して現れる重要な定数の一種である。.

新しい!!: 球面調和関数と超球の体積 · 続きを見る »

超球面

数学において、 次元球面(-じげんきゅうめん、n-sphere, n 球面)は普通の球面の ''n'' 次元空間への一般化である。任意の自然数 n に対して、半径 r の n 次元球面は中心点から距離 r にある (n + 1) 次元ユークリッド空間における点の集合として定義される。ここで半径 r は任意の正の実数でよい。したがって、原点を中心とする n 次元球面は によって定義される。これは (n + 1) 次元ユークリッド空間内に存在する n 次元多様体である。 特に:.

新しい!!: 球面調和関数と超球面 · 続きを見る »

軌道角運動量

軌道角運動量(きどうかくうんどうりょう、)とは、特に量子力学において、位置とそれに共役な運動量の積で表される角運動量のことである。 例えば原子の中で電子は、原子核が周囲に作る軌道を運動する。電子の全角運動量のうち、電子がその性質として持つスピン角運動量を除く部分が軌道角運動量である。.

新しい!!: 球面調和関数と軌道角運動量 · 続きを見る »

関数

関数(かんすう)、函数.

新しい!!: 球面調和関数と関数 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 球面調和関数と量子力学 · 続きを見る »

量子数

量子力学において量子数 (りょうしすう、quantum number) とは、量子状態を区別するための数のこと。 量子数はただ1組とは限らず、原理的には多数存在しうる。状態を区別できるのであれば量子数はどのように選んでも良い。しかし系の物理量がとる値自身、またはそれを区別する数を量子数として採用するしか方法は無い。例えばN粒子系では、各粒子の位置\bold_1, \cdots, \bold_Nを量子数に選んでも良いし、運動量\bold_1, \cdots, \bold_Nを選ぶこともできる。このときは量子数は全部で3N個となる。また一次元調和振動子では、位置や運動量を選ぶこともできるが、エネルギー固有値E_nの番号nを選ぶこともできる。位置や運動量を量子数として選んだ場合は量子数は連続変数となるが、エネルギー固有値の番号を選んだ場合は量子数は離散値になる。.

新しい!!: 球面調和関数と量子数 · 続きを見る »

自乗可積分函数

自乗可積分函数(じじょうかせきぶんかんすう、square-integrable function)とは、実数値または複素数値可測函数で絶対値の自乗の積分が有限であるものである。すなわち ならば、f は実数直線 (−∞, +&infin) 上で自乗可積分である。場合によっては積分区間が のように有界区間のこともある。.

新しい!!: 球面調和関数と自乗可積分函数 · 続きを見る »

虚数単位

虚数単位(きょすうたんい、imaginary unit)とは、−1 の平方根(2乗して −1 になる数)である2つの数のうちの1つの数のことである(どちらかを特定することはできない)。そのような数を記号で i または \sqrt で表す。 任意の実数の2乗は0以上なので、虚数単位は実数でない。数の概念を複素数に拡張すると登場する数である。 虚数単位の記号 i は imaginary の頭文字から採られている。ただし、i を別の意味(電流など)の記号として使う場合は、虚数単位を j などで表すことがある(どの文字を用いるかは自由である。その場合にはどの文字を用いるかを初めに必ず宣言する)。 積の交換法則が成り立たないことを許容すると、異なる3個以上の虚数単位からなる数の体系(非可換体)を考えることができる。3個の虚数単位の場合は i,j,k、7つ以上の虚数単位の組には i_1,i_2,\cdots といったように一つずつ添字を付けて表すことが多い。.

新しい!!: 球面調和関数と虚数単位 · 続きを見る »

正規直交基底

数学において、特に線型代数学において、有限次元内積空間 V の正規直交基底(せいきちょっこうきてい、orthonormal basis)とは、正規直交系を成すような V の基底をいう。例えば、ユークリッド空間 Rn の標準基底は、ベクトルの点乗積を内積としての正規直交基底である。また、標準基底の回転や鏡映(一般に任意の直交変換)による像もまた正規直交基底であり、なおかつ Rn の任意の正規直交基底はこの方法で得られる。 一般の内積空間 V に対して、その正規直交基底は V 上の正規化された直交座標系を定めるのに利用できる。そのような座標系のもとでは内積をベクトルの点乗積と同一視することができるから、正規直交基底の存在については(一般の有限次元内積空間を調べるのではなくて)点乗積を伴う Rn の場合を調べれば十分である。従って任意の有限次元内積空間は正規直交基底を持つが、実際にこれを得るには任意の基底にグラム・シュミットの正規直交化法を用いればよい。 函数解析学では、正規直交基底の概念を一般の(必ずしも有限次元でない)内積空間(前ヒルベルト空間)に対しても定義することができる。前ヒルベルト空間 H が与えられたとき、H の正規直交基底とは、H の正規直交系であって、H を位相的に生成するものをいう。即ち、H の各ベクトルが、基底に属するベクトルの''無限''線型結合として一意に表される。この場合の正規直交基底を、H のヒルベルト基底と呼ぶこともある。この意味での正規直交基底は、無限線型結合を用いることから、一般にはベクトル空間としての基底(ハメル基底)でないことに注意すべきである。よりはっきり述べれば、正規直交基底によって張られる部分空間(正規直交基底に属するベクトルの有限線型結合全体)は全空間 H において稠密ではあるが、全空間 H に一致するとは限らない。.

新しい!!: 球面調和関数と正規直交基底 · 続きを見る »

水素原子におけるシュレーディンガー方程式の解

本項、水素原子におけるシュレーディンガー方程式の解(すいそげんしにおけるシュレーディンガーほうていしきのかい)では、ハミルトニアンが と書ける二粒子系の時間非依存なシュレーディンガー方程式の厳密解を解く(式中の記号の意味は後述)。 物理学的にはこれは、.

新しい!!: 球面調和関数と水素原子におけるシュレーディンガー方程式の解 · 続きを見る »

文部省

文部省(もんぶしょう、Ministry of Education, Science and Culture)は、かつて存在した日本の行政機関の1つで、教育、文化、学術などを担当していた。2001年(平成13年)の中央省庁再編にともない、総理府の外局であった科学技術庁と統合し文部科学省となった。日本以外の国で教育行政を担当する官庁は、文部省と訳されることがある。しかし、多くは「教育」と訳されることが多く「文部」が使われることはない(教育省を参照)。.

新しい!!: 球面調和関数と文部省 · 続きを見る »

斉次多項式

数学において、斉次多項式(せいじたこうしき、homogeneous polynomial)あるいは同次多項式(どうじたこうしき)、あるいは略して斉次式、同次式とは、非零項がすべて同じ次数であるような多項式のことである。例えば、x^5 + 2 x^3 y^2 + 9 x y^4 は2変数の5次の斉次多項式である。各項の指数の和は常に5だからである。多項式 x^3 + 3 x^2 y + z^7 は斉次ではない。項によって指数の和が異なるからである。多項式が斉次であることと斉次関数を定義することは同値である。(代数的)形式 ((algebraic) form) とは、斉次多項式によって定まる関数のことである。binary form とは二変数の形式である。形式はベクトル空間上定義される、任意の基底上座標の斉次関数として表せる関数でもある。 0次多項式は常に斉次である。これは単に係数の体や環の元であり、通常定数やスカラーと呼ばれる。1次の形式は線型形式である。2次の形式は二次形式である。幾何学において、ユークリッド距離は二次形式の平方根である。 斉次多項式は数学や物理学のいたるところであらわれる。斉次多項式は代数幾何学において基本的な役割を果たす。射影代数多様体は斉次多項式のある集合の共通零点全体の集合として定義されるからである。.

新しい!!: 球面調和関数と斉次多項式 · 続きを見る »

族 (数学)

数学における族(ぞく、family)は、添字付けされた元(要素)の(一般には非可算無限個の)集まりで、対、n-組、列などの概念の一般化である。系(けい、collection)と呼ぶこともある。元がどのような対象であるかによって、点族、集合族(集合系)、関数族(関数系)などと呼ばれる。.

新しい!!: 球面調和関数と族 (数学) · 続きを見る »

日本物理学会

一般社団法人日本物理学会(いっぱんしゃだんほうじんにほんぶつりがっかい)は、1877年(明治10年)に創立された学会である。.

新しい!!: 球面調和関数と日本物理学会 · 続きを見る »

3j記号

ウィグナーの3j記号あるいは3jm記号は、クレブシュ-ゴルダン係数を用いて次のように表される係数である。 \begin \end \equiv \frac \langle j_1 m_1 j_2 m_2 | j_3 \, (-m_3) \rangle.

新しい!!: 球面調和関数と3j記号 · 続きを見る »

6j記号

ウィグナーの6j記号は、1940年にユージン・ウィグナーによって定義され、1965年に発表された。ラカー係数と次のような関係にある。 ラカー係数よりも高い対称性を持っている。.

新しい!!: 球面調和関数と6j記号 · 続きを見る »

ここにリダイレクトされます:

球面調和函数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »