ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

可逆元

索引 可逆元

数学、とくに代数学における可逆元(かぎゃくげん、invertible element)または単元(たんげん、unit)とは、一般に代数系の乗法と呼ばれる二項演算に対する逆元を持つ元のことをいう。.

29 関係: 半群単位的環二項演算二次体代数学代数的構造代数的整数モノイドディリクレの単数定理アメリカ数学会冪等剰余類環群 (数学)群の圏群環群準同型環 (数学)環の圏随伴関手行列環部分群関手逆元正則行列有限生成アーベル群斜体 (数学)数学整数1の冪根

半群

数学における半群(はんぐん、semigroup)は集合 S とその上の結合的二項演算とをあわせて考えた代数的構造である。言い換えれば、半群とは演算が結合的なマグマのことをいう。半群の名は、既存の群の概念に由来するものである。半群は、各元が必ずしも逆元を持たないこと(さらに、単位元すら持たないかもしれないこと)が、群と異なる。 半群の演算はほとんど乗法的に書かれる(順序対 (x, y) に対して演算を施した結果を x • y などで、あるいは単に xy で表す)。 半群についてきちんとした形での研究が行われるようになるのは20世紀の初めごろからである。半群は、「無記憶」系 ("memoryless" system) すなわち各反復時点でゼロから開始される時間依存系 (time-dependent system) の抽象代数的な定式化の基盤であるので、数学の各種分野において重要な概念である。応用数学においては、半群はの基本モデルである。また偏微分方程式論では、半群は空間発展的かつ時間非依存な任意の方程式に対応している。有限半群論は1950年代以降、有限半群と有限オートマトンとの間の自然な関連性から、理論計算機科学の分野で特に重要となった。確率論では半群はマルコフ過程に関連付けられている 。.

新しい!!: 可逆元と半群 · 続きを見る »

単位的環

数学、特に環論における単位的環(たんいてきかん、unital/unitary ring)、単位環(たんいかん、unit ring)あるいは単位元持つ環 (ring with unit/unity/identity) は、乗法単位元を持つ環のことを言う。.

新しい!!: 可逆元と単位的環 · 続きを見る »

二項演算

数学において、二項演算(にこうえんざん、binary operation)は、数の四則演算(加減乗除)などの 「二つの数から新たな数を決定する規則」 を一般化した概念である。二項算法(にこうさんぽう)、結合などともいう。.

新しい!!: 可逆元と二項演算 · 続きを見る »

二次体

二次体 (にじたい、quadratic field) は、有理数体上、2次の代数体のことである。任意の二次体は、平方因子を含まない 0, 1 以外の整数 d を用いて、\scriptstyle\mathbb(\sqrt) と表現される。もし、d > 0 である場合、実二次体 (real quadratic field)、d \mathbb(\sqrt) は、d.

新しい!!: 可逆元と二次体 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 可逆元と代数学 · 続きを見る »

代数的構造

数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。 また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。 なお、分野(あるいは人)によっては代数系そのもの、あるいは代数系のもつ算法族のことを代数的構造とよぶこともあるようである。 後者は、代数系の代数構造とも呼ばれる。 現代では、代数学とは代数系を研究する学問のことであると捉えられている。.

新しい!!: 可逆元と代数的構造 · 続きを見る »

代数的整数

数論において代数的整数(だいすうてきせいすう、algebraic integer)とは、整数係数モニック多項式の根となるような複素数のことを言う。代数的整数の全体 A は加法と乗法について閉じており、ゆえに複素数環 C の部分環をなす。この環 A は有理整数環 Z の C における整閉包となっている。 代数体 K の整数環 O は K ∩ A に等しく、また体 K の極大整環(order)となっている。全ての代数的整数はそれぞれ何らかの代数体の整数環に属している。x が代数的整数であることは、環 Z がアーベル群として有限生成(即ち有限生成 '''Z'''-加群)であることと同値である。.

新しい!!: 可逆元と代数的整数 · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 可逆元とモノイド · 続きを見る »

ディリクレの単数定理

数学において、ディリクレの単数定理(Dirichlet's unit theorem)は、ペーター・グスタフ・ディリクレ による代数的整数論の基本的な結果である。ディリクレの単数定理は、代数体 の代数的整数がなす環 \mathcal_K の単数群 \mathcal_K^\times の階数を決定する。単数基準(もしくは、レギュレイター(regulator)ともいう)は、どれくらい単数の「密度」があるかを決める正の実数である。 It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.-->.

新しい!!: 可逆元とディリクレの単数定理 · 続きを見る »

アメリカ数学会

アメリカ数学会(アメリカすうがくかい、英語:American Mathematical Society、略称:AMS)は、アメリカ合衆国の数学の学会である。現会員数は、32000人。 イギリス滞在中にロンドン数学会の影響を受けたトーマス・フィスクによって1888年に設立された。1894年7月に、現在の名前で再編成された。 AMS は組版処理ソフトウェア TeX の主唱者であり、AmS-TeX や AmS-LaTeX の開発を支援した。また、との合弁事業で MathJax オープンソースプロジェクトを管理している。.

新しい!!: 可逆元とアメリカ数学会 · 続きを見る »

冪等

数学において、冪等性(べきとうせい、idempotence 「巾等性」とも書くが読み方は同じ)は、大雑把に言って、ある操作を1回行っても複数回行っても結果が同じであることをいう概念である。まれに等冪(とうべき)とも。抽象代数学、特に射影(projector)や閉包(closure)演算子に見られる特徴である。"idempotence" という単語はラテン語の "idem"(同じ.

新しい!!: 可逆元と冪等 · 続きを見る »

剰余類環

数学において、自然数 を法とする合同類環(ごうどうるいかん)あるいは剰余(類)環(じょうよかん、n, n)は、整数を で割った「剰余」を抽象的な類別として捉えたものである。 本項は剰余類環 の代数的な定義と性質について述べる。合同類別に関するより平易な導入については整数の合同を参照のこと。.

新しい!!: 可逆元と剰余類環 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 可逆元と群 (数学) · 続きを見る »

群の圏

数学の一分野である圏論における群の圏(ぐんのけん、category of groups) は、群すべてからなる類を対象の類とし、群準同型を射とする圏である。作り方からこれはを成す。代数学における群論は、この圏の研究であるとみなすこともできる。.

新しい!!: 可逆元と群の圏 · 続きを見る »

群環

代数学において、与えられた群および環に対する群環(ぐんかん、group ring)は、与えられた群と環の構造を自然に用いて構成される。群環はそれ自身が、与えられた環を係数環とし与えられた群を生成系とする自由加群であって、なおかつ与えられた群の演算を生成元の間の演算として「線型に」延長したものを積とする環を成す。俗に言えば、群環は与えられた群の与えられた環の元を「重み」とする形式和の全体である。与えられた環が可換であるとき、群環は与えられた環上の多元環(代数)の構造を持ち、群多元環(ぐんたげんかん、group algebra; 群代数)(あるいは短く群環これは少々紛らわしいが、任意の群環は係数環の中心上の群多元環となるから、その文脈で何を係数環としているかが明らかならば混乱の虞は無いであろう。)と呼ばれる。 群環は、特に有限群の表現論において重要な役割を果たす代数的構造である。無限群の群環はしばしば位相を加味した議論を必要とするため位相群の群環の項へ譲り、本項は主に有限群の群環を扱う。また、より一般の議論は群ホップ代数を見よ。.

新しい!!: 可逆元と群環 · 続きを見る »

群準同型

数学、特に群論における群の準同型写像(じゅんどうけいしゃぞう、group homomorphism)は群の構造を保つ写像である。準同型写像を単に準同型とも呼ぶ。.

新しい!!: 可逆元と群準同型 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 可逆元と環 (数学) · 続きを見る »

環の圏

数学の特に圏論における(単位的・結合)環の圏(かんのけん、category of rings) は、すべての(単位元持つ)環を対象とし、すべての(単位元を保つ)環準同型を射とする圏である。他の多くの例と同じく、環の圏は大きい(すなわち、すべての環の成す類は集合でない真の類である)。.

新しい!!: 可逆元と環の圏 · 続きを見る »

随伴関手

数学の特に圏論における随伴(ずいはん、adjunction)は、二つの関手の間に考えることができる(ある種の双対的な)関係をいう。随伴の概念は数学に遍在し、最適化や効率に関する直観的概念を明らかにする。 最も簡潔な対称的定義において、圏 と の間の随伴とは、二つの関手 の対であって、全単射の族 が変数 に関して自然(あるいは函手的)となるものを言う。このとき、関手 を左随伴函手と呼び、他方 を右随伴函手と呼ぶ。また、「 は の左随伴である」 (同じことだが、「 は の右随伴である」)という関係を と書く。 以下では、この定義や他の定義を詳細化する。.

新しい!!: 可逆元と随伴関手 · 続きを見る »

行列環

抽象代数学において、行列環 (matrix ring) は、および行列の乗法のもとで環をなす、行列の任意の集まりである。別の環を成分に持つ n×n 行列全体の集合や無限次行列環 (infinite matrix ring) をなす無限次行列のある部分集合は行列環である。これらの行列環の任意の部分環もまた行列環である。 R が可換環のとき、行列環 Mn(R) は行列多元環 (matrix algebra) と呼ばれる結合多元環である。この状況において、M が行列で r が R の元であれば、行列 Mr は行列 M の各成分に r をかけたものである。 行列環は単位元をもたない環上作ることができるが、終始 R は単位元 1 ≠ 0 をもつ結合的環であると仮定する。.

新しい!!: 可逆元と行列環 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

新しい!!: 可逆元と部分群 · 続きを見る »

関手

圏論における関手(かんしゅ、functor)は、圏から圏への構造と両立する対応付けである。関手によって一つの数学体系から別の体系への組織的な対応が定式化される。関手は「圏の圏」における射と考えることもできる。 関手の概念の萌芽はエヴァリスト・ガロアによる群を用いた代数方程式の研究に見ることができる。20世紀はじめのエミー・ネーターらによる加群の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの代数的位相幾何学において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは(基本群のような)代数的対象が位相空間から導かれ、位相空間の間の連続写像は基本群の間の代数的準同型を導いている。その後アレクサンドル・グロタンディークらによる代数幾何学の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。.

新しい!!: 可逆元と関手 · 続きを見る »

逆元

逆元 (ぎゃくげん、)とは、数学、とくに抽象代数学において、数の加法に対する反数や乗法に関する逆数の概念の一般化で、直観的には与えられた元に結合してその効果を「打ち消す」効果を持つ元のことである。逆元のきちんとした定義は、考える代数的構造によって少し異なるものがいくつか存在するが、群を考える上ではそれらの定義する概念は同じものになる。.

新しい!!: 可逆元と逆元 · 続きを見る »

正則行列

正則行列(せいそくぎょうれつ、regular matrix)、非特異行列(ひとくいぎょうれつ、non-singular matrix)あるいは可逆行列(かぎゃくぎょうれつ、invertible matrix)とは行列の通常の積に関する逆元を持つ正方行列のこと、言い換えると逆行列が存在する行列のことである。 ある体上の同じサイズの正則行列の全体は一般線型群と呼ばれる群を成す。多項式の根として定められる部分群はあるいは行列群と呼ばれる代数群の一種で、その表現論が代数的整数論などに広い応用を持つ幾何学的対象である。.

新しい!!: 可逆元と正則行列 · 続きを見る »

有限生成アーベル群

抽象代数学において、アーベル群 (G,+) が有限生成 (finitely generated) であるとは、G の有限個の元 x1,...,xs が存在して、G のすべての元 x が n1,...,ns を整数として の形に書けるということである。この場合、集合 を G の生成系、生成集合 (generating set) あるいは x1,..., xs は G を 生成する (generate) という。 明らかに、すべての有限アーベル群は有限生成である。有限生成アーベル群はわりと単純な構造をもっており、完全に分類することができて、以下で説明される。.

新しい!!: 可逆元と有限生成アーベル群 · 続きを見る »

斜体 (数学)

斜体(しゃたい、skew field; 歪体, Schiefkörper, corps, corps gauche)は加減乗除が可能な代数系である。除法の可能な環であるという意味で可除環(かじょかん、, )ともいう。係数環を持ち、多元環の構造を持つことを強調する場合は、特に多元体(たげんたい、,; 可除多元環)と呼称することも多いいかなる斜体も、その中心を係数体として多元環と見ることができるので、この区別は文脈上で立場を明確にする必要のある場合を除いてはさほど重要ではない。非可換な積を持つ体を非可換体(ひかかんたい、, )という。.

新しい!!: 可逆元と斜体 (数学) · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 可逆元と数学 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 可逆元と整数 · 続きを見る »

1の冪根

1の冪根(いちのべきこん、root of unity)、または1の累乗根(いちのるいじょうこん)は、数学において、冪乗して 1 になる(冪単である)ような数のことである。すなわち、ある自然数 n が存在して となる z のことである。通常は複素数の範囲で考えるが、場合によっては ''p'' 進数のような他の数の体系内で考える場合もある。以下では主として複素数の場合について述べる。 自然数 n に対し、m (\zeta_n.

新しい!!: 可逆元と1の冪根 · 続きを見る »

ここにリダイレクトされます:

単元 (代数学)単元 (数学)単元 (環論)単元群単数群

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »