ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

抵抗変化型メモリ

索引 抵抗変化型メモリ

ReRAM(resistive random access memory)は電圧の印加による電気抵抗の変化を利用した半導体メモリー。RRAM、抵抗変化型メモリなどとも呼ばれる。なおRRAMはシャープの登録商標である。 ReRAMは電圧印加による電気抵抗の大きな変化(電界誘起巨大抵抗変化、CER効果)を利用しており、.

60 関係: 半導体メモリ十倉好紀単結晶富士通巨大磁気抵抗効果中央大学会社更生法強相関電子系待機電力ナノペロブスカイト構造マンガンマイクロンメモリジャパンマイクロン・テクノロジチタン酸ストロンチウムチタン酸鉛(II)バイポーラトランジスタメモリスタプラセオジムパナソニックビットテレビデバイスフラッシュメモリフィリップスインテルオランダカルシウムクロムケルビンシャープセルシウス度ソリッドステートドライブサムスン電子商標元素窒化チタン絶対値界面直列白金Dynamic Random Access Memory薄膜金属酸化チタン(IV)酸化ニッケル(II)酸化物...酸化銅酸素電圧電界効果トランジスタ電極電気抵抗IBMNAND型フラッシュメモリ消費電力3D XPoint インデックスを展開 (10 もっと) »

半導体メモリ

揮発性メモリの一種、DDR2 SDRAMを搭載したノートPC用のメモリ、SO-DIMM 半導体メモリ(はんどうたいメモリ)は、半導体素子(特に、もっぱら集積回路)によって構成された記憶装置(メモリ)である。.

新しい!!: 抵抗変化型メモリと半導体メモリ · 続きを見る »

十倉好紀

十倉 好紀(とくら よしのり、1954年3月1日 - )は、日本の物理学者。東京大学大学院工学系研究科物理工学専攻教授・理化学研究所 創発物性科学研究センター(CEMS)センター長。 専門は物性物理学である。電子型高温超伝導体の発見、酸化物巨大磁気抵抗(CMR)効果の発見と機構解明、マルチフェロイックスの巨大電気磁気効果の発見、磁気スキルミオンの観測と物性解明など多数の顕著な業績を挙げている。 同僚の樽茶清悟とは大学時代の同級生である。実兄の十倉雅和は住友化学代表取締役社長。兵庫県西脇市高田井町出身。.

新しい!!: 抵抗変化型メモリと十倉好紀 · 続きを見る »

単結晶

単結晶(たんけっしょう、single crystal, monocrystal)とは結晶のどの位置であっても、結晶軸の方向が変わらないものをいう。単結晶の集合体が多結晶である。多結晶中の個々の単結晶を結晶粒という。.

新しい!!: 抵抗変化型メモリと単結晶 · 続きを見る »

富士通

富士通株式会社(ふじつう、Fujitsu Limited)は、日本の総合エレクトロニクスメーカーであり、総合ITベンダーである。ITサービス提供企業として収益で国内1位、世界4位(2015年)ITサービスを提供する世界の企業の収益(revenue)順位、1位「IBM」、2位「HP」、3位「アクセンチュア」、4位「富士通」「」HfS Research 2015。通信システム、情報処理システムおよび電子デバイスの製造・販売ならびにそれらに関するサービスの提供を行っている。.

新しい!!: 抵抗変化型メモリと富士通 · 続きを見る »

巨大磁気抵抗効果

巨大磁気抵抗効果(GMR:Giant Magneto Resistive effect)とは、磁気抵抗効果の特殊事例である。 普通の金属の磁気抵抗効果(物質の電気抵抗率が磁場により変化する現象)は数%だが、1nm程度の強磁性薄膜(F層)と非強磁性薄膜(NF層)を重ねた多層膜には数十%以上の磁気抵抗比を示すものがある。このような現象を巨大磁気抵抗効果と呼ぶ。 1987年にドイツのペーター・グリューンベルク、フランスのアルベール・フェールらによって発見された。 巨大磁気抵抗効果は、多層膜の磁気構造が外部磁場によって変化するために生じる。 磁気多層膜以外においても、ペロブスカイト型マンガン酸化物においても見られる。 巨大磁気抵抗効果を応用した磁気ヘッドの登場によって、HDDの容量が飛躍的に増大した。 グリューンベルクとフェールはこの発見によって、2007年のノーベル物理学賞を受賞している。.

新しい!!: 抵抗変化型メモリと巨大磁気抵抗効果 · 続きを見る »

中央大学

記載なし。

新しい!!: 抵抗変化型メモリと中央大学 · 続きを見る »

会社更生法

会社更生法(かいしゃこうせいほう)は、経営困難である株式会社について、事業の更生を目的としてなされる更生手続を定めるために制定された日本の倒産法の一つ。最終改正は2006年(平成18年3月31日法律第10号)。なお、会社更生法に基づく更生手続のことを、「会社更生手続」と呼ぶことが多い。.

新しい!!: 抵抗変化型メモリと会社更生法 · 続きを見る »

強相関電子系

強相関電子系(きょうそうかんでんしけい、英:)とは固体物理学の用語で、物質の中でも電子どうしの間に働く有効なクーロン相互作用が強いものをこのように呼び表す。.

新しい!!: 抵抗変化型メモリと強相関電子系 · 続きを見る »

待機電力

待機電力(たいきでんりょく)あるいは待機時消費電力(たいきじしょうひでんりょく、Stand-by power)とは、コンセントに接続された家電製品が、電源の切れている状態でも消費する電力のこと。待機電力を多く消費する機器の代表的な例は、給湯器、エアコン、オーディオ・ビデオ機器、などである。平成20年度(2008年度)の経済産業省 資源エネルギー庁の資料では、現在の一般家庭の平均的な待機電力量は全電力量の約6%としている(但し、待機電力の定義は明確ではなく、給湯器・冷蔵庫・電話機・タイマー予約時など、人が実際に使用していなくても必要な消費電力を含む場合があり、数値はその範囲により大きく変動する)。待機電力は、家電製品の種類によって大きく異なり一つの機器で最大で10w程度消費しているが、機器によっては全く待機電力を消費しないものも多い。家電新製品(特に日本製)の消費電力は年々省エネルギー化が進み、使用時の電力だけでなく待機電力も低く抑えられている。.

新しい!!: 抵抗変化型メモリと待機電力 · 続きを見る »

ナノ

ナノ(nano, 記号: n)は国際単位系 (SI) における接頭辞の一つで、以下のように、基礎となる単位の 10−9倍(.

新しい!!: 抵抗変化型メモリとナノ · 続きを見る »

ペロブスカイト構造

ペロブスカイト構造 ペロブスカイト構造(ペロブスカイトこうぞう)とは、結晶構造の一種である。ペロフスカイト構造とも。ペロブスカイト(perovskite、灰チタン石)と同じ結晶構造をペロブスカイト構造と呼ぶ。例えば、BaTiO3(チタン酸バリウム)のように、RMO3 という3元系から成る遷移金属酸化物などが、この結晶構造をとる。.

新しい!!: 抵抗変化型メモリとペロブスカイト構造 · 続きを見る »

マンガン

マンガン(manganese 、manganum)は原子番号25の元素。元素記号は Mn。日本語カタカナ表記での名称のマンガンは Mangan をカタカナに変換したもので、日本における漢字表記の当て字は満俺である。.

新しい!!: 抵抗変化型メモリとマンガン · 続きを見る »

マイクロンメモリジャパン

マイクロンメモリジャパン (MMJ) は、半導体メモリのDRAMの研究開発・設計・製造・販売を事業とする半導体メーカーで、日本における唯一のDRAM専業メーカーでもある。 なお、同社は、マイクロンジャパン (MJP) と共にマイクロン·テクノロジ (MTI) の傘下であり、同一人物(木下嘉隆)が両社の代表取締役を務めているが、それぞれ別の法人である。.

新しい!!: 抵抗変化型メモリとマイクロンメモリジャパン · 続きを見る »

マイクロン・テクノロジ

マイクロン・テクノロジ(Micron Technology)は、アメリカ合衆国アイダホ州ボイシ市に本社を置く、半導体製造の多国籍企業である。 なお、ナスダックで上場されている同社の株式はナスダック100指数の銘柄の一つにも成っている。.

新しい!!: 抵抗変化型メモリとマイクロン・テクノロジ · 続きを見る »

チタン酸ストロンチウム

チタン酸ストロンチウム(チタンさんストロンチウム、SrTiO3)はストロンチウムとチタンの複合酸化物で、ペロブスカイト構造をとる化合物である。三酸化チタン(IV)ストロンチウムともいい、天然鉱物として産出するものはタウソン石 (Tausonite) と呼ばれる。.

新しい!!: 抵抗変化型メモリとチタン酸ストロンチウム · 続きを見る »

チタン酸鉛(II)

チタン酸鉛(II)(チタンさんなまり に、lead(II) titanate)は、化学式が PbTiO3 と表される鉛のチタン酸塩である。三酸化チタン(IV)鉛(II)とも表記され、略称は PT。天然には産出しない。.

新しい!!: 抵抗変化型メモリとチタン酸鉛(II) · 続きを見る »

バイポーラトランジスタ

代表的な小信号用バイポーラトランジスタ2SC1815 バイポーラトランジスタ(Bipolar transistor)、またはバイポーラジャンクショントランジスタ(英: Bipolar junction transistor; BJT)は、トランジスタの一種である。N型とP型の半導体がP-N-PまたはN-P-Nの接合構造を持つ3端子の半導体で、電流増幅・スイッチング機能を持つ。電界効果トランジスタなどのユニポーラトランジスタと異なり、正・負両極のキャリアをもつためバイポーラと呼ばれる。 バイポーラトランジスタという呼び名(区分名称)は後に電界効果トランジスタが登場したことによるレトロニムであるが、その経緯通り最初に広く使われたトランジスタであったため、単にトランジスタと言えばバイポーラトランジスタを指すことが多い。.

新しい!!: 抵抗変化型メモリとバイポーラトランジスタ · 続きを見る »

メモリスタ

メモリスタ (またはメモリスター。memristor) は、通過した電荷を記憶し、それに伴って抵抗が変化する受動素子である。 抵抗器、キャパシタ、インダクタに次ぐ新たな受動素子であるので、“第4の回路素子” と呼ばれる。 過去に流れた電流を記憶する抵抗器であることからメモリスタ (memristor) と名づけられた。.

新しい!!: 抵抗変化型メモリとメモリスタ · 続きを見る »

プラセオジム

プラセオジム(praseodymium)は原子番号59の元素。元素記号は Pr。希土類元素の一つ(ランタノイドにも属す)。 和名のプラセオジムとは、ドイツ語の praseodym からきている。なお、プラセオジウムと呼ばれたり記述することもあるが、これは間違った呼称である。.

新しい!!: 抵抗変化型メモリとプラセオジム · 続きを見る »

パナソニック

パナソニック株式会社()は、大阪府門真市に拠点を置く電機メーカー。白物家電などのエレクトロニクス分野をはじめ、住宅分野や車載分野などを手がける。国内電機業界では日立製作所、ソニーに次いで3位。.

新しい!!: 抵抗変化型メモリとパナソニック · 続きを見る »

ビット

ビット (bit, b) は、ほとんどのデジタルコンピュータが扱うデータの最小単位。英語の binary digit (2進数字)の略であり、2進数の1けたのこと。量子情報科学においては古典ビットと呼ばれる。 1ビットを用いて2通りの状態を表現できる(二元符号)。これらの2状態は一般に"0"、"1"と表記される。 情報理論における選択情報およびエントロピーの単位も「ビット」と呼んでいるが、これらの単位は「シャノン」とも呼ばれる(詳細は情報量を参照)。 省略記法として、バイトの略記である大文字の B と区別するために、小文字の b と表記する。.

新しい!!: 抵抗変化型メモリとビット · 続きを見る »

テレビ

テレビは、テレビジョン及び「テレビ受像機(テレビジョンセット、television set)」の略語。一般には次のような文脈で用いられる。.

新しい!!: 抵抗変化型メモリとテレビ · 続きを見る »

デバイス

デバイス (device).

新しい!!: 抵抗変化型メモリとデバイス · 続きを見る »

フラッシュメモリ

フラッシュメモリ (Flash Memory) は、FETでホットエレクトロンを浮遊ゲートに注入してデータ記録を行う不揮発性メモリである。舛岡富士雄が東芝在籍時に発明した。発表に際し、消去が「ぱっと一括して」できる機能から、写真のフラッシュの印象でフラッシュメモリと命名した。.

新しい!!: 抵抗変化型メモリとフラッシュメモリ · 続きを見る »

フィリップス

ーニンクレッカ フィリップス(Koninklijke Philips N.V. 、英文正式表記:Royal Philips 、, )は、ヘルスケア製品・医療関連機器を中心とする電気機器関連機器メーカーで、オランダのアムステルダムに本拠を置く多国籍企業である。 日本法人である株式会社フィリップス・ ジャパンは、東京都港区港南に所在。(日本法人については、2017年10月に株式会社フィリップスエレクトロニクスジャパンから株式会社フィリップス・ジャパンに社名を変更した。).

新しい!!: 抵抗変化型メモリとフィリップス · 続きを見る »

インテル

インテル(英:Intel Corporation)は、アメリカ合衆国カリフォルニア州に本社を置く半導体素子メーカーである。 社名の由来はIntegrated Electronics(集積されたエレクトロニクス)の意味である。.

新しい!!: 抵抗変化型メモリとインテル · 続きを見る »

オランダ

ランダ(Nederland 、; Nederlân; Hulanda)は、西ヨーロッパに位置する立憲君主制国家。東はドイツ、南はベルギーおよびルクセンブルクと国境を接し、北と西は北海に面する。ベルギー、ルクセンブルクと合わせてベネルクスと呼ばれる。憲法上の首都はアムステルダム(事実上の首都はデン・ハーグ)。 カリブ海のアルバ、キュラソー、シント・マールテンと共にオランダ王国を構成している。他、カリブ海に海外特別自治領としてボネール島、シント・ユースタティウス島、サバ島(BES諸島)がある。.

新しい!!: 抵抗変化型メモリとオランダ · 続きを見る »

カルシウム

ルシウム(calcium、calcium )は原子番号 20、原子量 40.08 の金属元素である。元素記号は Ca。第2族元素に属し、アルカリ土類金属の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)である。.

新しい!!: 抵抗変化型メモリとカルシウム · 続きを見る »

クロム

ム(chromium 、Chrom 、chromium、鉻)は原子番号24の元素。元素記号は Cr。クロム族元素の1つ。.

新しい!!: 抵抗変化型メモリとクロム · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: 抵抗変化型メモリとケルビン · 続きを見る »

シャープ

ャープ株式会社(SHARP、Sharp Corporation、夏普電器有限公司「夏普」 は音訳)は、日本・大阪府堺市に拠点を置く鴻海精密工業傘下の電機メーカー。.

新しい!!: 抵抗変化型メモリとシャープ · 続きを見る »

セルシウス度

ルシウス度(セルシウスど、、記号: )は、温度の単位である。その単位の大きさはケルビンと同一である。国際単位系 (SI) では、次のように定義されている『国際単位系(SI)』2.1.1.5 熱力学温度の単位(ケルビン)、pp.24-25。 すなわち、「セルシウス度」()は単位の名称であり、ケルビンの大きさに等しい温度間隔を表す。一方、「セルシウス温度」()は量の名称であり、(ケルビンで計った値と273.15だけ異なる)温度の高さを表す。しかし、一般にはこの違いが意識されず、混同されることが多い。.

新しい!!: 抵抗変化型メモリとセルシウス度 · 続きを見る »

ソリッドステートドライブ

リッドステートドライブ(solid state drive, SSD)とは記憶装置として半導体素子メモリを用いたストレージ(特に、ディスクドライブ)として扱うことのできるデバイスである。 シリコンドライブ、半導体ドライブ、メモリドライブ、擬似ディスクドライブなどとも呼ばれる。.

新しい!!: 抵抗変化型メモリとソリッドステートドライブ · 続きを見る »

サムスン電子

ムスン電子(サムスンでんし、삼성전자 三星電子、Samsung Electronics Co., Ltd.)は、大韓民国の会社であり、韓国国内最大の総合家電・電子部品・電子製品メーカーで、サムスングループの中核企業である。スマートフォンとNAND型フラッシュメモリにおいては、ともに世界シェア1位。.

新しい!!: 抵抗変化型メモリとサムスン電子 · 続きを見る »

商標

商標(しょうひょう)は、商品や役務を提供される需要者に、提供者を伝達する標識。本記事はおもに商取引上の意味を記す。.

新しい!!: 抵抗変化型メモリと商標 · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

新しい!!: 抵抗変化型メモリと元素 · 続きを見る »

(びょう、記号 s)は、国際単位系 (SI) 及びMKS単位系、CGS単位系における時間の物理単位である。他の量とは関係せず完全に独立して与えられる7つのSI基本単位の一つである。秒の単位記号は、「s」であり、「sec」などとしてはならない(後述)。 「秒」は、歴史的には地球の自転の周期の長さ、すなわち「一日の長さ」(LOD)を基に定義されていた。すなわち、LODを24分割した太陽時を60分割して「分」、さらにこれを60分割して「秒」が決められ、結果としてLODの86 400分の1が「秒」と定義されてきた。しかしながら、19世紀から20世紀にかけての天文学的観測から、LODには10−8程度の変動があることが判明し和田 (2002)、第2章 長さ、時間、質量の単位の歴史、pp. 34–35、3.時間の単位:地球から原子へ、時間の定義にはそぐわないと判断された。そのため、地球の公転周期に基づく定義を経て、1967年に、原子核が持つ普遍的な現象を利用したセシウム原子時計が秒の定義として採用された。 なお、1秒が人間の標準的な心臓拍動の間隔に近いことから誤解されることがあるが偶然に過ぎず、この両者には関係はない。.

新しい!!: 抵抗変化型メモリと秒 · 続きを見る »

窒化チタン

化チタン(英語:Titanium nitride、またはtinite、略称:TiN)とは、非常に硬いセラミック材料であり、基材の表面特性を改善するために、チタン合金、鋼、炭化物、およびアルミニウム部品のコーティングとして利用される。 薄くコーティングされたTiNは、切削や摺動面の保護、金色に見えることから装飾、医療用インプラントの非毒性外装材として使用される。 ほとんどの用途では、5マイクロメートル(0.00020インチ)未満のコーティングが施される。.

新しい!!: 抵抗変化型メモリと窒化チタン · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 抵抗変化型メモリと絶対値 · 続きを見る »

界面

面(かいめん、interface)とは、ある均一な液体や固体の相が他の均一な相と接している境界のことである。この「他の均一な相」が気体もしくは真空であるとき、界面を特に表面(surface)とよぶ(例外もある)。ただし、お互いが完全に混ざり合うことはしない(混ざり合うと界面でなくなる。ただし、界面付近数原子層程度で互いの原子からなる化合物を形成する場合はある)。界面は気相と液相、液相と液相、液相と固相、固相と固相の二相間で形成される。界面を構成する分子・原子は、界面を挟んでいる相から連続的に続いているにもかかわらず、相内部とは性質が異なり、膜のようなはたらきをする。たとえば界面では光線が反射や屈折、散乱、吸収を起こし、界面間には界面張力がはたらく。 エレクトロニクス産業の要請によって固体材料の薄膜やナノテクノロジーを研究する科学分野が重要性を帯びており、特に固体同士の界面は固相界面と呼ばれて界面研究の重要分野となっている。単に界面といえば固相界面を指す場合が多い。 学問上は界面化学および表面物理学で取り扱われる。.

新しい!!: 抵抗変化型メモリと界面 · 続きを見る »

直列

列(ちょくれつ).

新しい!!: 抵抗変化型メモリと直列 · 続きを見る »

白金

白金(はっきん、platinum)は原子番号78の元素。元素記号は Pt。白金族元素の一つ。 学術用語としては白金が正しいが、現代日本の日常語においてはプラチナと呼ばれることもある。白金という言葉はオランダ語の witgoud(wit.

新しい!!: 抵抗変化型メモリと白金 · 続きを見る »

Dynamic Random Access Memory

Dynamic Random Access Memory(ダイナミック・ランダム・アクセス・メモリ、DRAM、ディーラム)は、コンピュータなどに使用される半導体メモリによるRAMの1種で、コンピュータの主記憶装置やディジタル・テレビやディジタル・カメラなど多くの情報機器の、内部での大規模な作業用記憶として用いられている。(通常のSRAMと同様に)揮発性(電源供給がなくなると記憶情報も失われる)であるばかりでなく、ICチップ中の素子に小さなキャパシタが付随すること(寄生容量)を利用した記憶素子であるため、常にリフレッシュ(記憶保持動作)を必要とするダイナミックメモリであることからその名がある。SRAMに比べ、リフレッシュのために常に電力を消費することが欠点だが、今のところ大容量を安価に提供できるという利点から、DRAMが使われ続けている。.

新しい!!: 抵抗変化型メモリとDynamic Random Access Memory · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

新しい!!: 抵抗変化型メモリと銅 · 続きを見る »

銀(ぎん、silver、argentum)は原子番号47の元素。元素記号は Ag。貴金属の一種。.

新しい!!: 抵抗変化型メモリと銀 · 続きを見る »

薄膜

薄膜(はくまく)とは薄い膜のこと。分野によって定義が異なる。.

新しい!!: 抵抗変化型メモリと薄膜 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: 抵抗変化型メモリと金属 · 続きを見る »

酸化チタン(IV)

酸化チタン(IV)(さんかチタン よん、titanium(IV) oxide)は組成式 TiO2、式量79.9の無機化合物。チタンの酸化物で、二酸化チタン(titanium dioxide)や、単に酸化チタン(titanium oxide)、およびチタニア(titania)とも呼ばれる。 天然には金紅石(正方晶系)、鋭錐石(正方晶系)、板チタン石(斜方晶系)の主成分として産出する無色の固体で光電効果を持つ金属酸化物。屈折率はダイヤモンドよりも高い。.

新しい!!: 抵抗変化型メモリと酸化チタン(IV) · 続きを見る »

酸化ニッケル(II)

酸化ニッケル(II)(Nickel(II) oxide)は、化学式がNiOの無機化合物である。ニッケルの酸化物はこの他に酸化ニッケル(III)や二酸化ニッケルなどが報告されているが、酸化ニッケル(II)は唯一詳しい構造が判明しているニッケル酸化物である 。NiOの鉱物に黄褐色のブンゼナイトがあるが非常に稀少である。ニッケルを少量含み緑色に着色した鉱物は他にクリソプレーズ(緑玉髄)がある。.

新しい!!: 抵抗変化型メモリと酸化ニッケル(II) · 続きを見る »

酸化物

酸化物(さんかぶつ、oxide)は、酸素とそれより電気陰性度が小さい元素からなる化合物である。酸化物中の酸素原子の酸化数は−2である。酸素は、ほとんどすべての元素と酸化物を生成する。希ガスについては、ヘリウム (He)、ネオン (Ne) そしてアルゴン (Ar) の酸化物はいまだ知られていないが、キセノン (Xe) の酸化物(三酸化キセノン)は知られている。一部の金属の酸化物やケイ素の酸化物(ケイ酸塩)などはセラミックスとも呼ばれる。.

新しい!!: 抵抗変化型メモリと酸化物 · 続きを見る »

酸化銅

酸化銅(さんかどう、Copper oxide、カッパーオキサイド)は、銅の酸化物である。組成の違いにより、酸化銅(I)Cu2Oと酸化銅(II)CuO がある。 Image:CopperIoxide.jpg|酸化銅(I) Image:CopperIIoxide.jpg|酸化銅(II) Category:銅の化合物 Category:酸化物.

新しい!!: 抵抗変化型メモリと酸化銅 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 抵抗変化型メモリと酸素 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: 抵抗変化型メモリと電圧 · 続きを見る »

電界効果トランジスタ

回路基板上に実装された状態の高出力N型チャネルMOSFET 電界効果トランジスタ(でんかいこうかトランジスタ、, FET)は、ゲート電極に電圧をかけることでチャネル領域に生じる電界によって電子または正孔の濃度を制御し、ソース・ドレイン電極間の電流を制御するトランジスタである。電子と正孔の2種類のキャリアの働きによるバイポーラトランジスタに対し、いずれか1種類のキャリアだけを用いるユニポーラトランジスタである。FETの動作原理は電界を使って電流を制御する点で真空管に類似している。 FETは主に接合型FET(ジャンクションFET, JFET)とMOSFETに大別される。他にも、MESFETなどの種類がある。また、それぞれの種別でチャネルの種類によりさらにn型のものとp型のものに分類される。 このページでは主にSiなどの無機半導体について述べる。有機半導体を用いたものについては有機電界効果トランジスタを参照。.

新しい!!: 抵抗変化型メモリと電界効果トランジスタ · 続きを見る »

電極

電極(でんきょく)とは、受動素子、真空管や半導体素子のような能動素子、電気分解の装置、電池などにおいて、その対象物を働かせる、あるいは電気信号を測定するなどの目的で、電気的に接続する部分のことである。 また、トランジスタのベース、FETのゲートなど、ある電極から別の電極への電荷の移動を制御するための電極もある。.

新しい!!: 抵抗変化型メモリと電極 · 続きを見る »

電気抵抗

電気抵抗(でんきていこう、レジスタンス、electrical resistance)は、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。.

新しい!!: 抵抗変化型メモリと電気抵抗 · 続きを見る »

IBM

IBM(アイビーエム、正式社名: International Business Machines Corporation)は、民間法人や公的機関を対象とするコンピュータ関連製品およびサービスを提供する企業である。本社はアメリカ合衆国ニューヨーク州アーモンクに所在する。世界170カ国以上で事業を展開している。.

新しい!!: 抵抗変化型メモリとIBM · 続きを見る »

NAND型フラッシュメモリ

ムネイル NAND型フラッシュメモリ(ナンドがたフラッシュメモリ、NANDフラッシュメモリ)は、不揮発性記憶素子のフラッシュメモリの一種である。 NOR型フラッシュメモリと比べて回路規模が小さく、安価に大容量化できる。また書き込みや消去も高速であるが、バイト単位の書き替え動作は不得手である。従来のフロッピーディスクに代わるPC用のUSBメモリやFlash SSD(SSD)、デジタルカメラ用のメモリーカード、携帯音楽プレーヤー、携帯電話などの記憶装置として使用される。.

新しい!!: 抵抗変化型メモリとNAND型フラッシュメモリ · 続きを見る »

消費電力

消費電力(しょうひでんりょく)とは、電気回路において消費される電力のこと。 ワット時で表される。.

新しい!!: 抵抗変化型メモリと消費電力 · 続きを見る »

3D XPoint

3D XPoint (スリーディークロスポイント)は2015年7月、インテルとマイクロンによって発表された不揮発性メモリの技術である。同技術を使用した記憶装置製品にインテルは Optane (オプテイン)、マイクロンは QuantX (クアンテックス)と別のブランド名を冠している。 材料や動作原理の詳細については明かされていなかったが、外部企業による検証が行われPCM(相変化メモリ)であることが分かった。ビットの記録はバルク抵抗の変化と積層可能な交差格子状の記憶素子の配列の組み合わせで行われる。また、セレクタにオボニックスイッチ(OTS:Ovonic Threshold Switch)を使っていることも大きな特徴と言える。 「3D XPointはDRAMの凡そ半分の価格になるだろうが、NANDフラッシュに比較すれば4・5倍となるだろう」とマイクロンのストレージソリューション担当ヴァイスプレジデントは述べている。 インテルの主張によれば同技術を用いた製品をNANDフラッシュと比較した場合、レイテンシは1/10に、書き込み寿命は3倍に、書き込み速度は4倍に、読み込み速度は3倍に改善され、消費電力は30%に軽減される。.

新しい!!: 抵抗変化型メモリと3D XPoint · 続きを見る »

ここにリダイレクトされます:

RRAMReRAM抵抗変化メモリ

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »