ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

界面

索引 界面

面(かいめん、interface)とは、ある均一な液体や固体の相が他の均一な相と接している境界のことである。この「他の均一な相」が気体もしくは真空であるとき、界面を特に表面(surface)とよぶ(例外もある)。ただし、お互いが完全に混ざり合うことはしない(混ざり合うと界面でなくなる。ただし、界面付近数原子層程度で互いの原子からなる化合物を形成する場合はある)。界面は気相と液相、液相と液相、液相と固相、固相と固相の二相間で形成される。界面を構成する分子・原子は、界面を挟んでいる相から連続的に続いているにもかかわらず、相内部とは性質が異なり、膜のようなはたらきをする。たとえば界面では光線が反射や屈折、散乱、吸収を起こし、界面間には界面張力がはたらく。 エレクトロニクス産業の要請によって固体材料の薄膜やナノテクノロジーを研究する科学分野が重要性を帯びており、特に固体同士の界面は固相界面と呼ばれて界面研究の重要分野となっている。単に界面といえば固相界面を指す場合が多い。 学問上は界面化学および表面物理学で取り扱われる。.

42 関係: 反射吸着境界屈折両親媒性分子化合物ナノテクノロジーバルク (界面化学)ダングリングボンド分子間力エントロピークーロンの法則ケルビン方程式光線固体理想気体真空界面化学界面活性剤界面準位物性物理学相転移表面表面張力表面再構成表面科学親水性親油性超音波薄膜蒸気圧自由エネルギー東京化学同人水素結合気体液体散乱曲率

反射

反射(はんしゃ、reflection)は、光や音などの波がある面で跳ね返る反応のことである。.

新しい!!: 界面と反射 · 続きを見る »

吸着

吸着(きゅうちゃく、adsorption)とは、物体の界面において、濃度が周囲よりも増加する現象のこと。気相/液相、液相/液相、気相/固相、液相/固相の各界面で生じうる。 反対に、吸着していた物質が界面から離れることを脱着または脱離(desorption)と呼ぶ。.

新しい!!: 界面と吸着 · 続きを見る »

境界

境界(きょうかい、きょうがい、けいかい)とは、事物や領域などを分ける境目のこと。分野や用法により様々な用例がある。.

新しい!!: 界面と境界 · 続きを見る »

屈折

光が屈折しているため、水中の棒が曲がって見える。 屈折(くっせつ、)とは、波(波動)が異なる媒質を通ることによって進行方向を変えることである。異なる媒質を通るときに、波の周波数が変わらずに進む速度が変わるため進行方向が変わる(エネルギー保存の法則や運動量保存の法則による)。観測されやすい屈折は、波が0度以外の角度で媒質を変えるものである。 光の屈折がもっとも身近な例であるが、例えば音波や水の波動も屈折する。波が進行方向を変える度合いとしてはホイヘンスの原理を使ったスネルの法則が成り立つ。部分的に反射する振る舞いはフレネルの式で表される。なぜ光が屈折するかについては、量子力学的にファインマンの経路積分によって説明される。.

新しい!!: 界面と屈折 · 続きを見る »

両親媒性分子

両親媒性分子(りょうしんばいせいぶんし、amphiphilic molecule)は1つの分子内に水(水相)になじむ「親水基」と油(有機相)になじむ「親油基」(疎水基)の両方を持つ分子の総称。界面活性剤などのほか、リン脂質などの生体内分子や両親媒性高分子などがある。 水中で凝集してミセルや脂質二重層に代表される二重層膜を形成する。また、水相と有機相の界面に吸着して表面張力を下げ、ミセルを形成して一様に混合させ、エマルションを形成することで、界面活性剤として機能する。.

新しい!!: 界面と両親媒性分子 · 続きを見る »

化合物

化合物(かごうぶつ、chemical compound)とは、化学反応を経て2種類以上の元素の単体に生成することができる物質であり岩波理化学辞典(4版)、p.227、【化合物】、言い換えると2種類以上の元素が化学結合で結びついた純物質とも言える。例えば、水 (H2O) は水素原子 (H) 2個と酸素原子 (O) 1個からなる化合物である。水が水素や酸素とは全く異なる性質を持っているように、一般的に、化合物の性質は、含まれている元素の単体の性質とは全く別のものである。 同じ化合物であれば、成分元素の質量比はつねに一定であり、これを定比例の法則と言い株式会社 Z会 理科アドバンスト 考える理科 化学入門、混合物と区別される。ただし中には結晶の不完全性から生じる岩波理化学辞典(4版)、p.1109、【不定比化合物】不定比化合物のように各元素の比が自然数にならないが安定した物質もあり、これらも化合物のひとつに含める。 化合物は有機化合物か無機化合物のいずれかに分類されるが、その領域は不明瞭な部分がある。.

新しい!!: 界面と化合物 · 続きを見る »

ナノテクノロジー

ナノテクノロジー (nanotechnology) は、物質をナノメートル (nm, 1 nm.

新しい!!: 界面とナノテクノロジー · 続きを見る »

バルク (界面化学)

バルク (Bulk) とは、ある物体、流体のうち界面に触れていない部分を指す。 物体の、界面や境膜、物質表面などと対になる部分であり、ある物質の物性といえばバルク部分が持つ性質を指す。主に界面化学、移動現象論、物性物理などで用いられる用語である。.

新しい!!: 界面とバルク (界面化学) · 続きを見る »

ダングリングボンド

ダングリングボンド(dangling bond)は、原子における未結合手のこと。半導体結晶に於いては、結晶の表面や格子欠陥付近では、原子は共有結合の相手を失って、結合に関与しない電子(不対電子)で占められた結合手が存在する。この手をダングリングボンドと呼ぶ。 ダングリングボンド上の電子は不安定なため化学的に活性となり、特に結晶表面の物性には重要な役割を果たす。.

新しい!!: 界面とダングリングボンド · 続きを見る »

分子間力

分子間力(ぶんしかんりょく、intermolecular force)は、分子同士や高分子内の離れた部分の間に働く電磁気学的な力である。力の強い順に並べると、次のようになる。.

新しい!!: 界面と分子間力 · 続きを見る »

エントロピー

ントロピー(entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」「でたらめさ」と表現されることもある。ここでいう「でたらめ」とは、矛盾や誤りを含んでいたり、的外れであるという意味ではなく、相関がなくランダムであるという意味である。を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者ののようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。 エントロピーはエネルギーを温度で割った次元を持ち、SIにおける単位はジュール毎ケルビン(記号: J/K)である。エントロピーと同じ次元を持つ量として熱容量がある。エントロピーはサディ・カルノーにちなんで一般に記号 を用いて表される。.

新しい!!: 界面とエントロピー · 続きを見る »

クーロンの法則

ーロンの法則(クーロンのほうそく、Coulomb's law)とは、荷電粒子間に働く反発し、または引き合う力がそれぞれの電荷の積に比例し、距離の2乗に反比例すること(逆2乗の法則)を示した電磁気学の基本法則。 ヘンリー・キャヴェンディッシュにより1773年に実験的に確かめられ、シャルル・ド・クーロンが1785年に法則として再発見した。磁荷に関しても同様の現象が成り立ち、これもクーロンの法則と呼ばれる。一般的にクーロンの法則と言えば、通常前者の荷電粒子間の相互作用を指す。クーロンの法則は、マクスウェルの方程式から導くことができる。 また、導体表面上の電場はその場所の電荷密度に比例するという法則も「クーロンの法則」と呼ばれる。こちらは「クーロンの電荷分布の法則」といい区別する。.

新しい!!: 界面とクーロンの法則 · 続きを見る »

ケルビン方程式

ルビン方程式(-ほうていしき、Kelvin equation)は液滴の半径による蒸気圧の変化を求めるための公式である。一般に以下の形で表される。 P:蒸気圧、P0:飽和蒸気圧、γ:表面張力、Vm:モル体積、r:液滴半径、R:気体定数、T:絶対温度 蒸気圧および飽和蒸気圧の単位は同一のものを用い、P/P0の値を湿度または相対湿度と呼ぶ。この式で計算できるのは P0 を満たす場合のみであり、P.

新しい!!: 界面とケルビン方程式 · 続きを見る »

光線

光線(こうせん)は、幾何光学における概念であって、線によってひかりの進行方向とエネルギーの伝播方向を示す。均質な媒質中では、光線は波面に垂直である。 直進、反射、屈折の法則に従った光線追跡で伝播方向が求められる。 太陽光線、レーザー光線などと、光の束を指していうこともある。拡散光線、平行光線もある.

新しい!!: 界面と光線 · 続きを見る »

固体

固体インスリンの単結晶形態 固体(こたい、solid)は物質の状態の一つ。固体内の原子は互いに強く結合しており、規則的な幾何学的格子状に並ぶ場合(金属や通常の氷などの結晶)と、不規則に並ぶ場合(ガラスなどのアモルファス)がある。 液体や気体と比較して、変形あるいは体積変化が非常に小さい。変形が全く起こらない剛体は理想化された固体の一つである。連続体力学においては、固体は静止状態においてもせん断応力の発生する物体と捉えられる。液体のように容器の形に合わせて流動することがなく、気体のように拡散して容器全体を占めることもない。 固体を扱う物理学は固体物理学と呼ばれ、物性物理学の一分野である。また物質科学はそもそも、強度や相変化といった固体の性質を扱う学問であり、固体物理学と重なる部分が多い。さらに固体化学の領域もこれらの学問と重なるが、特に新しい物質の開発(化学合成)に重点が置かれている。 今まで知られている最も軽い固体はエアロゲルであり、そのうち最も軽いものでは密度は約 1.9 mg/cm3 と水の密度の530分の1程度である。.

新しい!!: 界面と固体 · 続きを見る »

理想気体

想気体(りそうきたい、ideal gas)または完全気体(かんぜんきたい、)は、圧力が温度と密度に比例し、内部エネルギーが密度に依らない気体である。気体の最も基本的な理論モデルであり、より現実的な他の気体の理論モデルはすべて、低密度で理想気体に漸近する。統計力学および気体分子運動論においては、気体を構成する個々の粒子分子や原子など。の体積が無視できるほど小さく、構成粒子間には引力が働かない系である。 実際にはどんな気体分子気体を構成する個々の粒子のこと。気体分子運動論では、構成粒子が原子であってもこれを分子と呼ぶことが多い。にも体積があり、分子間力も働いているので理想気体とは若干異なる性質を持つ。そのような理想気体でない気体は実在気体または不完全気体と呼ばれる。実在気体も、低圧で高温の状態では理想気体に近い振る舞いをする。常温・常圧では実在気体を理想気体とみなせる場合が多い。.

新しい!!: 界面と理想気体 · 続きを見る »

真空

真空(しんくう、英語:vacuum)は、物理学の概念で、圧力が大気圧より低い空間状態のこと。意味的には、古典論と量子論で大きく異なる。.

新しい!!: 界面と真空 · 続きを見る »

界面化学

面化学(かいめんかがく)は、二つの物質が接する境界に生じる現象を扱う化学の一分野。研究領域がコロイド化学と近いため、学会や雑誌などでは両者を合わせて扱われる。 物質の状態により界面化学が扱う現象には以下のような例がある。.

新しい!!: 界面と界面化学 · 続きを見る »

界面活性剤

面活性剤(かいめんかっせいざい、surface active agent, surfactant)とは、分子内に水になじみやすい部分(親水基)と、油になじみやすい部分(親油基・疎水基)を持つ物質の総称。両親媒性分子と呼ばれることも多い。ミセルやベシクル、ラメラ構造を形成することで、極性物質と非極性物質を均一に混合させる働きをする。また、表面張力を弱める作用を持つ。 石鹸をはじめとする洗剤の主成分である。多数の界面活性剤が存在し、サポニンやリン脂質、ペプチドなどの天然にも界面活性剤としてはたらく物質は多い。.

新しい!!: 界面と界面活性剤 · 続きを見る »

界面準位

面準位(かいめんじゅんい, Interface state):界面の存在(あるいは形成)によって生じる電子の準位(電子状態)のことを界面準位と言う。.

新しい!!: 界面と界面準位 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: 界面と物性物理学 · 続きを見る »

*木と目をあわせた会意文字。目が木に向かい合う事から、よく見て調べる事を意味する。また向かい合う事から、「互いに」「助ける」という意味を生じた。.

新しい!!: 界面と相 · 続きを見る »

相転移

転移(そうてんい、英語:phase transition)とは、ある系の相(phase)が別の相へ変わることを指す。しばしば相変態(そうへんたい、英語:phase transformation)とも呼ばれる。熱力学または統計力学において、相はある特徴を持った系の安定な状態の集合として定義される。一般には物質の三態(固体・固相、液体・液相、気体・気相)の相互変化として理解されるが、同相の物質中の物性変化(結晶構造や密度、磁性など)や基底状態の変化に対しても用いられる。相転移に現れる現象も単に「相転移」と呼ぶことがある。.

新しい!!: 界面と相転移 · 続きを見る »

表面

表面(ひょうめん、英:surface)は、.

新しい!!: 界面と表面 · 続きを見る »

表面張力

表面張力(ひょうめんちょうりょく、)は、表面をできるだけ小さくしようとする性質のことで、界面張力の一種である。 界面とは、ある液体や固体の相が他の相と接している境界のことである。このうち、一方が液体や固体で、もう一方が気体の場合にその界面を表面という。.

新しい!!: 界面と表面張力 · 続きを見る »

表面再構成

表面再構成(ひょうめんさいこうせい、surface reconstruction、表面再配列とも言う)とは、結晶の表面上の原子がバルクとは異なる配置に並ぶこと、2017年8月4日閲覧。。再構成された表面の構造(並進対称性)はウッドの記法に基づいて Si(111)-(7×7) のように記述されることが多い。 結晶の切断面としての表面において、元のバルクとしての結晶の構造が保たれた理想表面はエネルギー的に不安定であり、表面は理想表面とは異なった構造を形成する。この時、吸着原子などを考えない清浄な表面を考えている。取り得る構造には、表面緩和、ランプリング、表面再構成などがあり、表面再構成は結晶表面の最外層及びその下数層に渡って、元のバルクとしての結晶構造とは異なる対称性を持った構造になる場合を言う。表面緩和は、結晶面の二次元的な対称性は元の結晶構造のものを保ったままで、結晶表面層の面間隔が変化する表面構造である。表面緩和は特に表面最外層と第二層の間で最も顕著に現れる。ランプリングはイオン結晶のような異なる種類の原子からなる無極性な表面で見られる表面構造で、陽イオン、陰イオンがジグザグ状の構造を形成する。これは、表面緩和の特殊な場合と考えることもでき、陽イオン、陰イオンの緩和の度合いが異なることによってジグザグ構造となる。 100) 表面における表面再構成の画像。表面原子はバルク結晶構造から外れ、溝を挟み数原子の幅に並んだ列に配置している。 表面再構成は、半導体の表面に良く現れる。半導体の理想表面の最外層では、結合の切れたダングリングボンドが存在し、その表面を非常に不安定な状態にさせる。このため表面最外層では、可能な限りダングリングボンドを減らすように構造を変化させる。典型的な例がシリコンの方向に垂直な平面(Si(100) 表面)におけるダイマー構造である。ダイマー構造は、対称な場合と非対称な場合があり、特に後者の場合、ダイマーの配列の仕方に p(2×2)、c(4×2) など複数の構造が存在する。シリコンの方向に垂直な表面(Si(111) 面)は、有名な (7×7) 構造(DASモデル)を形成する。表面再構成は、半導体表面だけでなく、貴金属や遷移金属の表面でも見られる場合がある。イオン性のある結晶での、極性のある表面(理想表面)も大変不安定で再構成構造を形成する。.

新しい!!: 界面と表面再構成 · 続きを見る »

表面科学

表面科学(ひょうめんかがく、英語:surface science)は表面または界面を扱う自然科学の一分野のこと。理論、実験両面から様々な研究が行われている。物理学を重視した表面科学を特に表面物理学という。 物質の表面は、物質の吸着と脱離、電子的な不安定さ等によって測定することが難しい状態であった。実際に表面の構造が確認できるようになったのは、1950年代に高真空状態にすることで、表面に余計な原子・分子などが付着してない洗浄度を確保できるようになってからである。 表面科学の複雑さから、ノーベル物理学賞受賞者のヴォルフガング・パウリは「固体は神がつくりたもうたが、表面は悪魔がつくった」と言い残している。.

新しい!!: 界面と表面科学 · 続きを見る »

親水性

親水性(しんすいせい、hydrophile、hydrophilicity)とは、水 (H2O) との間に親和性を示す化学種や置換基の物理的特性を指す。その親和性は通常、水素結合に由来する。なお、英語で親水性を意味する hydrophile の語は、ギリシャ語で“water” (水)を意味する hydros と、“friendship”(友好)を意味する “φιλια” (philia) に由来する。.

新しい!!: 界面と親水性 · 続きを見る »

親油性

親油性(しんゆせい)とは、化合物などが、油や非極性溶媒に溶けやすい性質のことである。 親油性の高い物質は人体や繊維などが持つ親油性の部分になじみやすく、水との親和性は低い。 そのため親油性の高い物質は水で洗い流すことが困難である。 つまり「頑固な油汚れ」と俗称される物は親油性の高く、水だけでは落ちにくい汚れということになる。 このような汚れは界面活性剤を混ぜた水でミセル内に取り込むか、有機溶媒で洗う必要がある(ドライクリーニング)。 「親油性」という用語は、「疎水性」とほぼ同義なものとして言い換えが可能な場合が多い。化学的な詳細は記事: 疎水性 を参照のこと。 しんゆせい.

新しい!!: 界面と親油性 · 続きを見る »

超音波

超音波(ちょうおんぱ、 または )とは人間の耳には聞こえない高い振動数をもつ弾性振動波(音波)である。超音波は可聴域の音と物理的特徴は変わらず、人が聴くことができないというだけである。広義の意味では、人が聞くこと以外の目的で利用される音を意味し、人間に聞こえるかどうかは問わない。超音波はさまざまな分野で利用されている。.

新しい!!: 界面と超音波 · 続きを見る »

薄膜

薄膜(はくまく)とは薄い膜のこと。分野によって定義が異なる。.

新しい!!: 界面と薄膜 · 続きを見る »

蒸気圧

蒸気圧(じょうきあつ、)、あるいは平衡蒸気圧(へいこうじょうきあつ、)とは、液相あるいは固相にある物質と相平衡になるような、その物質の気相の圧力のことである。蒸気圧は物質に特有の物性値であり、温度に依存して決まる。 物質の沸点とは、その物質が液相にあるときの蒸気圧が外圧に等しくなる温度である。また、物質の昇華点とは、その物質が固相にあるときの蒸気圧が外圧に等しくなる温度である。さらに物質が液相と固相の平衡状態にあるときの蒸気圧が外圧に等しくなる温度は三重点と呼ばれる。 液体の物質の周囲でのその物質の蒸気の分圧が液相の蒸気圧に等しいとき、その液体は蒸気と気液平衡の状態にある。 気液平衡から温度を上げると蒸気圧が上がり、蒸気の分圧より大きくなる。蒸気を理想気体とみなせば、分圧は蒸気量に比例する。液体が蒸発することで蒸気量が増えて分圧も上がり、新たな温度での蒸気圧と等しくなることで再び気液平衡となる。逆に温度を下げると蒸気圧が下がる。このときは蒸気が液体に凝縮することで分圧が下がり、新たな温度で気液平衡となる。気相と固相の相平衡でも同様に、温度の変化に対して物質が昇華して分圧が蒸気圧と等しくなるように蒸気量が変化して平衡が保たれる。 純物質の蒸気圧はクラウジウス・クラペイロンの式によって近似される。溶液であれば蒸気圧降下が起こり、これはラウールの法則で近似される。.

新しい!!: 界面と蒸気圧 · 続きを見る »

膜(まく)とは、面積に対して厚みが無視できるほど薄いような物を指すのに用いられる呼称。一般的には、柔らかくひらひらしているようなものを指すことが多く、硬くて特定の形状を持ったようなものに対しては用いられない場合が多い。また、何らかの物体の表面に一様に薄く付着した状態を指す場合もある。メンブレン (membrane) とも。.

新しい!!: 界面と膜 · 続きを見る »

自由エネルギー

自由エネルギー(じゆうエネルギー、)とは、熱力学における状態量の1つであり、化学変化を含めた熱力学的系の等温過程において、系の最大仕事(潜在的な仕事能力)、自発的変化の方向、平衡条件などを表す指標となるChang『生命科学系のための物理化学』 pp.63-65アトキンス『物理化学(上)』 pp.120-125。 自由エネルギーは1882年にヘルマン・フォン・ヘルムホルツが提唱した熱力学上の概念で、呼称は彼の命名による。一方、等温等圧過程の自由エネルギーと化学ポテンシャルとの研究はウィラード・ギブズにより理論展開された。 等温等積過程の自由エネルギーはヘルムホルツの自由エネルギー()と呼ばれ、等温等圧過程の自由エネルギーはギブズの自由エネルギー()と呼びわけられる。ヘルムホルツ自由エネルギーは F で表記され、ギブズ自由エネルギーは G で表記されることが多い。両者の間には G.

新しい!!: 界面と自由エネルギー · 続きを見る »

東京化学同人

株式会社 東京化学同人(とうきょうかがくどうじん)は、主に理・工・農・薬・医・家政学系などの教科書類、専門書、辞典類および雑誌を出版・販売する日本の出版社。.

新しい!!: 界面と東京化学同人 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 界面と水 · 続きを見る »

水素結合

doi.

新しい!!: 界面と水素結合 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

新しい!!: 界面と気体 · 続きを見る »

天然オリーブオイル 油(あぶら、ゆ、oil)とは動物や植物、鉱物などからとれる水と相分離する疎水性の物質。一般に可燃性であり、比重が小さく、水に浮く。常温で液体のものを油、固体のものを脂と使い分けることがある。高級一価アルコールと高級脂肪酸とのエステルを蝋という。精油(エッセンシャル・オイル)は、脂肪を含まず油脂とは区別される。 用途としては食用、燃料用、産業用などに大別される。.

新しい!!: 界面と油 · 続きを見る »

液体

液体の滴は表面積が最小になるよう球形になる。これは、液体の表面張力によるものである 液体(えきたい、liquid)は物質の三態(固体・液体・気体)の一つである。気体と同様に流動的で、容器に合わせて形を変える。液体は気体に比して圧縮性が小さい。気体とは異なり、容器全体に広がることはなく、ほぼ一定の密度を保つ。液体特有の性質として表面張力があり、それによって「濡れ」という現象が起きる。 液体の密度は一般に固体のそれに近く、気体よりもはるかに高い密度を持つ。そこで液体と固体をまとめて「凝集系」などとも呼ぶ。一方で液体と気体は流動性を共有しているため、それらをあわせて流体と呼ぶ。.

新しい!!: 界面と液体 · 続きを見る »

散乱

散乱(さんらん、)とは、光などの波や粒子がターゲットと衝突あるいは相互作用して方向を変えられること。.

新しい!!: 界面と散乱 · 続きを見る »

曲率

曲率(きょくりつ、)とは曲線や曲面の曲がり具合を表す量である。 例えば、半径 r の円周の曲率は 1/r であり、曲がり具合がきついほど曲率は大きくなる。この概念はより抽象的な図形である多様体においても用いられる。曲面上の曲線の曲率を最初に研究したのは、ホイヘンスとされ、ニュートンの貢献もさることながら、オイラーは曲率の研究に本格的に取り組んだ。その他モンジュ、ベルヌーイ、ムーニエなども研究した。.

新しい!!: 界面と曲率 · 続きを見る »

ここにリダイレクトされます:

界面張力界面自由エネルギー表面エネルギー

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »