ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

強相関電子系

索引 強相関電子系

強相関電子系(きょうそうかんでんしけい、英:)とは固体物理学の用語で、物質の中でも電子どうしの間に働く有効なクーロン相互作用が強いものをこのように呼び表す。.

28 関係: 奇数希土類元素一電子近似価電子化合物ハバードモデルバンド理論バンド計算モット絶縁体モデル (自然科学)ランタノイドアクチノイドウィグナー結晶固体物理学絶縁体物性物理学銅酸化物遷移元素高温超伝導重い電子系量子ホール効果金属酸化物英語電子ガス電子相関電磁相互作用電荷密度

奇数

奇数(きすう、 odd number)とは、2で割り切れない整数のことをいう。一方、2で割り切れる整数のことは、偶数という。−15, −3, 1, 7, 19 などは全て奇数である。 10進法では、一の位が 1, 3, 5, 7, 9 である数は奇数である。2進法では、20 の位(すなわち一の位)が 1 ならば奇数で、0 ならば偶数である。一般に 2n 進法(n は自然数)において、ある数が偶数であるか奇数であるかは、一の位(n0 の位)を見るだけで判別できる。 偶数と奇数は、位数が2の体の例を与える。.

新しい!!: 強相関電子系と奇数 · 続きを見る »

希土類元素

希土類元素(きどるいげんそ、)又はレアアースは、31鉱種あるレアメタルの中の1鉱種で、スカンジウム Sc、イットリウム Yの2元素と、ランタン La からルテチウム Lu までの15元素(ランタノイド)の計17元素の総称である(元素記号の左下は原子番号)。周期表の位置では、第3族のうちアクチノイドを除く第4周期から第6周期までの元素を包含する。なお、希土類・希土と略しており、かつて稀土類・稀土とも書き、それらは英語名の直訳であり、比較的希な鉱物から得られた酸化物から分離されたことに由来している。.

新しい!!: 強相関電子系と希土類元素 · 続きを見る »

一電子近似

一電子近似(いちでんしきんじ、one electron approximation):現実の系の電子は、他の電子、外部ポテンシャル(イオン芯など)からの相互作用を受ける。これはそのままでは多体問題であり、解析的に解くことは不可能で、数値的に解くには膨大な計算が必要となる。従って、多体問題を通常の電子状態計算手法(例:バンド計算など)で取り扱うことは事実上不可能である。 そこで、多体効果を有効な平均場に置き換え(→平均場近似、分子場近似)、その平均場ポテンシャルを電子が感じる一体問題と考える。この一電子のシュレーディンガー方程式を解くと、その固有関数としていくつかの軌道が求まる。これらの軌道に電子を詰めていくと電子配置が定まる。ある決まった電子配置に基づいて考えている多電子系の波動関数を作ることを一電子近似(一体近似ともいう)である。.

新しい!!: 強相関電子系と一電子近似 · 続きを見る »

価電子

価電子(かでんし、valence electron)とは、原子内の最外殻の電子殻をまわっている電子のことである。原子価電子(げんしかでんし)ともいう。ただし、最外殻電子がちょうどその電子殻の最大収容数の場合、または最外殻電子が8個の場合、価電子の数は0とする。 原子が化合物や結晶等を構成する際に、それらの化学結合や物性は、その原子内の核外電子が深く関わる。原子内の電子軌道を回る電子には、化学結合や物性に深く関わるものと、ほとんど関係しないものがある。化学結合や物性に関わる電子は、原子内の最外殻など外側を回っている。これらが価電子と言われる。逆に、原子核に近い軌道にある電子(内殻電子)は、通常の物性や化学結合に寄与することはほとんどない(が、例外も存在する)。 固体の絶縁体や半導体における価電子帯を占める電子を指すこともある。固体の金属においては、伝導電子(自由電子)に相当する。 典型元素の価電子は、その元素より原子番号の小さい最初の希ガス原子の核外電子の軌道より外側の軌道を回るものがなる。ただし、典型元素でも、ガリウムの3d軌道のように、比較的浅い内殻電子は、価電子的な振る舞いをし物性や化学結合に寄与する場合がある。例えば、窒化ガリウムでは、化合物の構成に関与している。また、遷移元素では、価電子は最外殻電子を意味していないため、特定の価電子を持っていないと言える。特にf電子をもつ元素では、価電子の定義は必ずしもこのようにはならない場合が少なくない。.

新しい!!: 強相関電子系と価電子 · 続きを見る »

化合物

化合物(かごうぶつ、chemical compound)とは、化学反応を経て2種類以上の元素の単体に生成することができる物質であり岩波理化学辞典(4版)、p.227、【化合物】、言い換えると2種類以上の元素が化学結合で結びついた純物質とも言える。例えば、水 (H2O) は水素原子 (H) 2個と酸素原子 (O) 1個からなる化合物である。水が水素や酸素とは全く異なる性質を持っているように、一般的に、化合物の性質は、含まれている元素の単体の性質とは全く別のものである。 同じ化合物であれば、成分元素の質量比はつねに一定であり、これを定比例の法則と言い株式会社 Z会 理科アドバンスト 考える理科 化学入門、混合物と区別される。ただし中には結晶の不完全性から生じる岩波理化学辞典(4版)、p.1109、【不定比化合物】不定比化合物のように各元素の比が自然数にならないが安定した物質もあり、これらも化合物のひとつに含める。 化合物は有機化合物か無機化合物のいずれかに分類されるが、その領域は不明瞭な部分がある。.

新しい!!: 強相関電子系と化合物 · 続きを見る »

ハバードモデル

ハバードモデル(Hubbard model)とは1963年にによって提出された、電子相関の効果の強い固体中の電子の振る舞いを量子論的に記述するモデルである。 元々は、遷移金属の様に最外殻電子がd軌道やf軌道にあり、電子の波動関数の広がりが大きく、電子同士の波動関数の重なりのために生じる電子相関が大きな固体中の電子を良く記述するモデルとして提出されたものである。 ハバードモデルは非常に単純なハミルトニアンを持つモデルであるにも関わらず、非常に多様な電子の振る舞いを表現できる。 この様な電子の振る舞いの多様さは電子同士の相互作用(電子相関)によってもたらされていると考えられている。電子相関が物性を決める上で重要になる系を強相関電子系と言うが、ハバードモデルは強相関電子系の基本的なモデルである。 ハバードモデルによる重要な成果としてモット絶縁体の発見、磁性の起源の尤もらしい記述、銅酸化物高温超電導体の記述等が挙げられる。これらの現象は全て不可分の物で、互いに関連した現象であると考えられている。.

新しい!!: 強相関電子系とハバードモデル · 続きを見る »

バンド理論

固体物理学における固体のバンド理論(バンドりろん、band theory)または帯理論とは、結晶などの固体物質中に分布する電子の量子力学的なエネルギーレベルに関する理論を言う。1920年代後半にフェリックス・ブロッホ、ルドルフ・パイエルス、レオン・ブリルアンらによって確立された。.

新しい!!: 強相関電子系とバンド理論 · 続きを見る »

バンド計算

バンド計算(バンドけいさん)とは、系の電子状態を求める計算及びその手法のこと。 電子状態とは、具体的にはバンド構造、電荷密度、状態密度などのことを指す。手法には経験的なものから非経験的(第一原理的)なものまで多数存在する。バンド計算が扱う系は、主に結晶のような固体が対象であることが多いが、表面系や、液体などが計算対象となることもある。 代表的な手法としては、擬ポテンシャル+平面波基底によるもの、APW法、KKR法のような全電子手法、第一原理分子動力学法、タイトバインディング法(Tight-binding method)などがある。第一原理分子動力学手法では、電子状態と共に対象となる系の構造最適化、つまり(準)安定構造を求めることができる。 バンド計算は、元々は結晶のような周期的境界条件のある系が計算対象であったが、その後、表面系や不規則二元合金などのような非周期系に対しても計算がなされるようになっていった。表面系に関してはスラブ近似を用いて計算するのが最も標準的である。不規則二元合金のようなポテンシャルがランダムな系には、コヒーレントポテンシャル近似が用いられることが多い。また実空間法のような、境界条件に縛られない計算手法も出現している。.

新しい!!: 強相関電子系とバンド計算 · 続きを見る »

モット絶縁体

モット絶縁体 (Mott-insulator) とは、バンド理論では金属的と予想されるにもかかわらず、電子間斥力の効果(電子相関効果)によって実現している絶縁体状態のことである。 バンド理論によれば、単位胞あたりの電子数が奇数の場合は、バンドは部分的にしか占有されないため、必ず金属的になるはずである。しかし実際には単位胞あたりの電子数が奇数となる化合物の中にも金属的な電気伝導を示さず、絶縁体となるものが存在する。これらの絶縁体の基底状態が電子相関に起因するものであることを指摘したのがモットとパイエルスである。モットが指摘したこの転移は、絶縁相に関して磁性の状態は仮定されていないが、現実の「モット絶縁体」では反強磁性を示すなど磁性状態になる。.

新しい!!: 強相関電子系とモット絶縁体 · 続きを見る »

モデル (自然科学)

自然科学におけるモデルは、理論を説明するための簡単な具体的なもの。特に幾何学的な図形を用いた概念や物体。.

新しい!!: 強相関電子系とモデル (自然科学) · 続きを見る »

ランタノイド

ランタノイド (lanthanoid) とは、原子番号57から71、すなわちランタンからルテチウムまでの15の元素の総称Shriver & Atkins (2001), p.12。。 「ランタン (lanthan)」+「-もどき (-oid)」という呼称からも分かるように、各々の性質がよく似ていることで知られる。 スカンジウム・イットリウムと共に希土類元素に分類される。周期表においてはアクチノイドとともに本体の表の下に脚注のような形で配置されるのが一般的である。.

新しい!!: 強相関電子系とランタノイド · 続きを見る »

アクチノイド

アクチノイド (Actinoid) とは、原子番号89から103まで、すなわちアクチニウムからローレンシウムまでの15の元素の総称を言う。.

新しい!!: 強相関電子系とアクチノイド · 続きを見る »

ウィグナー結晶

ウィグナー結晶(Wigner crystal)とは、電子ガスが取るとされる結晶状態。1934年にこれを予想したユージン・ウィグナーにちなんで名付けられている。 非常に低密度な領域では、電子は互いにクーロン斥力を及ぼし合っているにも関わらず結晶化することが予想されている。実際に、非常に低温(0.1 K程度以下)の液体ヘリウム表面上に形成された2次元電子系はウィグナー結晶(三角格子を形成)となっていることが観測されている。.

新しい!!: 強相関電子系とウィグナー結晶 · 続きを見る »

固体物理学

固体物理学(こたいぶつりがく、Solid-state physics)とは物理学の一分野であり、より広い意味で使われる物性物理学に含まれる分野である。.

新しい!!: 強相関電子系と固体物理学 · 続きを見る »

絶縁体

絶縁体(ぜつえんたい、insulator)は、電気あるいは熱を通しにくい性質を持つ物質の総称である。.

新しい!!: 強相関電子系と絶縁体 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: 強相関電子系と物性物理学 · 続きを見る »

銅酸化物

銅酸化物(どうさんかぶつ、copper oxide)は銅の酸化物のこと。高温超伝導物質の中に銅酸化物が多い。 銅酸化物の例として以下のものが挙げられる。.

新しい!!: 強相関電子系と銅酸化物 · 続きを見る »

遷移元素

遷移元素(せんいげんそ、transition element)とは、周期表で第3族元素から第11族元素の間に存在する元素の総称である IUPAC.

新しい!!: 強相関電子系と遷移元素 · 続きを見る »

高温超伝導

温超伝導(こうおんちょうでんどう、high-temperature superconductivity)とは、高い転移温度 で起こる超伝導である。.

新しい!!: 強相関電子系と高温超伝導 · 続きを見る »

重い電子系

重い電子系(おもいでんしけい、Heavy fermion)は、ランタノイドやアクチノイドの化合物において、金属的な電気伝導を示すにもかかわらず、電気伝導を担う電子の有効質量が、自由電子の質量の数百倍~千倍も「重く」なっていると考えられる一連の物質群のことである。 電子は周りの電子や磁場との相互作用により動きにくくなり、見かけ上の重さ(有効質量)が重くなる。すなわち有効質量の増大は電子間斥力の効果(電子相関)に由来するものであり、数百倍~千倍もの大きい有効質量は、ランタノイドイオンやアクチノイドイオンの持つ局在性の高いf電子間の強い斥力に起因するものと考えられている。このため、重い電子系は強相関電子系の重要な研究対象の一つとして、現在も盛んに研究されている。 有効質量が大きいこと自体も重要な研究対象であるが、それに加えて、重い電子系物質群の多様な物性が興味を惹いている。有効質量が大きいということは、電子については、遍歴性よりも局在性が強くなっていることを示している。電子の局在性が強まると、電子の持つスピンの自由度が顕れて来て、系は磁性を示すようになる。実際、重い電子系の中には、低温で磁気秩序を示すものがある。多くは反強磁性秩序であるが、強磁性秩序やその他の磁気秩序を示すものもある。重い電子系状態からこれらの磁気秩序状態への変化や、各々の状態の関係などが研究されている。また、電子間斥力が非常に強いにもかかわらず、クーパー対が形成されて超伝導を示す物質もあり、そのクーパー対の形成機構の解明も続けられている。重い電子系は高温超電導体に必要な特殊な磁場を作ることで知られている。他にも、低温で半導体的・絶縁体的な電気伝導を示す物質群もあり、重い電子系の中でも、特に、近藤半導体または近藤絶縁体、近藤半金属と呼ばれている。その例としてはCeRhSb, CeRhAs, CePtSn, CeNiSn, YbB12, SmB6, Ce3Bi4Pt3などがあげられる。.

新しい!!: 強相関電子系と重い電子系 · 続きを見る »

量子ホール効果

量子ホール効果(りょうしホールこうか、quantum hall effect)は、半導体‐絶縁体界面や半導体のヘテロ接合などで実現される、2次元電子系に対し強い磁場(強磁場)を印加すると、電子の軌道運動が量子化され、エネルギー準位が離散的な値に縮退し、ランダウ準位が形成される現象を指す。ランダウ準位の状態密度は実際の試料では不純物の影響によってある程度の広がりを持つ。この時、フェルミ準位の下の電子は、波動関数が空間的に局在するようになる。これをアンダーソン局在という。 そして絶対温度がゼロ度(.

新しい!!: 強相関電子系と量子ホール効果 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: 強相関電子系と金属 · 続きを見る »

酸化物

酸化物(さんかぶつ、oxide)は、酸素とそれより電気陰性度が小さい元素からなる化合物である。酸化物中の酸素原子の酸化数は−2である。酸素は、ほとんどすべての元素と酸化物を生成する。希ガスについては、ヘリウム (He)、ネオン (Ne) そしてアルゴン (Ar) の酸化物はいまだ知られていないが、キセノン (Xe) の酸化物(三酸化キセノン)は知られている。一部の金属の酸化物やケイ素の酸化物(ケイ酸塩)などはセラミックスとも呼ばれる。.

新しい!!: 強相関電子系と酸化物 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 強相関電子系と英語 · 続きを見る »

電子ガス

電子ガス(でんしがす、electron gas、電子気体)模型とは、一様な正電荷が分布した状態(ジェリウムモデル)に電子が存在するとした模型のこと。電子ガス模型から、プラズマ振動や、電子の遮蔽効果などの議論が出来る。.

新しい!!: 強相関電子系と電子ガス · 続きを見る »

電子相関

電子相関(でんしそうかん、electron correlation)とは、多電子系における電子間の位置の相関のこと。また電子相関エネルギーEcorr とは、多電子系における正確なエネルギーEexact とハートリー‐フォック近似によって計算したエネルギーEHF との差として定義される。 つまり多電子系における電子間の相互作用をハートリー-フォック法で扱った場合、電子相関の一部しか取り込めていない。.

新しい!!: 強相関電子系と電子相関 · 続きを見る »

電磁相互作用

電磁相互作用(でんじそうごさよう)は、電場あるいは磁場から電荷が力を受ける相互作用のことをいい、基本相互作用の一つである。電磁気学によって記述される。場の理論においてラグランジアンに対してU(1)ゲージ対称性を付与することで現れるU(1)ゲージ場の成分が電磁気学におけるいわゆるスカラーポテンシャル及びベクトルポテンシャルと対応し、また自身についても対応する自由ラグランジアンを持っている。ラグランジュ形式で議論することで、物質に対応する変数でオイラーラグランジュ方程式を解くことで電磁場から物質に対しての影響を、逆に電磁場に対応する変数でオイラーラグランジュ方程式を解くことで物質側から電磁場に与える影響を導き出すことができ、それぞれ、通常の力学でのローレンツ力とマクスウェル方程式のうちのガウスの法則とアンペールマクスウェル方程式を導出することになる。.

新しい!!: 強相関電子系と電磁相互作用 · 続きを見る »

電荷密度

電荷密度(でんかみつど、charge density)は、単位体積当たりの電荷の分布量(体積密度)。電荷を担うものとしては電子や原子核、イオンのような粒子(素粒子や正孔などを含む)であったり、仮想的に一様に分布する電荷のような場合(→参照:ジェリウムモデル)もある。 金属や半導体では、電荷密度は0と近似できる。 実験的にはX線回折実験による構造解析から得られた結果を最大エントロピー法などを使って実空間での電子の電荷分布(→電子密度に相当)が求まる。また中性子回折実験の結果から同様な手法により原子核の密度が求まる。.

新しい!!: 強相関電子系と電荷密度 · 続きを見る »

ここにリダイレクトされます:

強相関物質

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »