ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

量化

索引 量化

量化(りょうか、Quantification)とは、言語や論理学において、論理式が適用される(または満足される)議論領域の個体の「量」を指定すること。.

58 関係: A型システム型理論偶数存在グラフ存在動詞存在記号実数一階述語論理一様連続平方二階述語論理形式言語ペアノの公理チャールズ・サンダース・パースハンス・ライヘンバッハバートランド・ラッセルモンタギュー文法ヴィルヘルム・アッカーマントアルフ・スコーレムプログラミング言語プロシージャダフィット・ヒルベルトアリストテレスアルフレッド・ノース・ホワイトヘッドアロンゾ・チャーチウィラード・ヴァン・オーマン・クワインクルト・ゲーデルゲルハルト・ゲンツェンゲーデルの完全性定理ゲーデルの不完全性定理ゴットロープ・フレーゲジュゼッペ・ペアノスタンフォード哲学百科事典全称記号公理的集合論紀元前1世紀統語論無理数E解析学言語論理学論理和論理積議論領域述語論理自由変数と束縛変数自然言語自然数...集合連続 (数学)Fourier–Motzkin消去法概念記法有限集合意味論数 (文法)数量詞 インデックスを展開 (8 もっと) »

A

Aは、ラテン文字(アルファベット)の1番目の文字。小文字は a 。ギリシャ文字のΑ(アルファ)に由来し、キリル文字のАに相当する。.

新しい!!: 量化とA · 続きを見る »

型システム

型システム(type system)とは、プログラミング言語において、その式などの部分が持つ値を、その種類(型(type)、データ型も参照)に沿って分類し、プログラムが正しく振る舞うこと、といった性質について保証する手法である。型システムは、型理論に基づいており、プログラミング言語の理論において最も確立された軽量形式手法である。.

新しい!!: 量化と型システム · 続きを見る »

型理論

型理論(かたりろん、Type theory)は、数理論理学の一分野であり、「型」の階層を構築し、それぞれの型に数学的(あるいはそれ以外の)実体を割り当てるものである。階型理論(かいけいりろん、Theory of Types)とも。ある型のオブジェクトはその前提となる型のオブジェクトから構築される。この場合の「型」とは形而上的な意味での「型」である。バートランド・ラッセルは、彼が発見したラッセルのパラドックスにより素朴集合論の問題が明らかにされたことを受けて、型理論を構築した。型理論の詳細はホワイトヘッドとラッセルの 『プリンキピア・マテマティカ』にある。 型理論は、プログラミング言語の理論における型システムのベースにもなっている。「型システム」と「型理論」の語はほぼ同義として扱われることもあるが、ここでは、この記事では数理論理学の範囲を説明し、プログラミング言語の理論については型システムの記事で説明する。.

新しい!!: 量化と型理論 · 続きを見る »

偶数

偶数(ぐうすう、even number) とは、 を約数に持つ整数、すなわち で割り切れる整数のことをいう。逆に で割り切れない整数のことは、奇数という。 具体的な偶数の例として などが挙げられる。これらはそれぞれ に等しいため、 で割っても余りが生じず、 で割り切ることができる。 より派生して、 で割り切れるが では割り切れない整数を単偶数または半偶数という。これに対して、 で割り切れる整数を複偶数 または全偶数という。 偶数と奇数は、偶数全体、奇数全体をそれぞれ 1 つの元と見て、2 つの元からなる有限体の例を与える。.

新しい!!: 量化と偶数 · 続きを見る »

存在グラフ

存在グラフ(Existential graph)は、チャールズ・サンダース・パースが考案した、論理式を視覚的な図として表す記法、またはその図である。パースは1882年に初めて論理グラフについての論文を書き、1914年に死去するまでその手法の研究を続けた。.

新しい!!: 量化と存在グラフ · 続きを見る »

存在動詞

存在動詞(そんざいどうし)とは、基本的には存在を表現する動詞のことをいう。 また言語によって異なるものの、名詞や形容詞などの補語を伴って主語の状態を表現したり(これを繋辞またはコピュラという)、助動詞として進行形や受動態を表したりすることもある。英語に代表させて他の西欧語の同じ性格の動詞を包括的に be 動詞と呼ぶこともある。.

新しい!!: 量化と存在動詞 · 続きを見る »

存在記号

存在記号(そんざいきごう、existential quantifier)とは、数理論理学(特に述語論理)において、少なくとも1つのメンバーが述語の特性や関係を満たすことを表す記号である。通常「∃」と表記され、存在量化子(そんざいりょうかし)、存在限量子(そんざいげんりょうし)、存在限定子(そんざいげんていし)などとも呼ばれる。 これとは対照的に全称記号は、何かが常に真であることを示す。.

新しい!!: 量化と存在記号 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 量化と実数 · 続きを見る »

一階述語論理

一階述語論理(いっかいじゅつごろんり、first-order predicate logic)とは、個体の量化のみを許す述語論理 (predicate logic) である。述語論理とは、数理論理学における論理の数学的モデルの一つであり、命題論理を拡張したものである。個体の量化に加えて述語や関数の量化を許す述語論理を二階述語論理(にかいじゅつごろんり、second-order predicate logic)と呼ぶ。それにさらなる一般化を加えた述語論理を高階述語論理(こうかいじゅつごろんり、higher-order predicate logic)という。本項では主に一階述語論理について解説する。二階述語論理や高階述語論理についての詳細は「二階述語論理」「高階述語論理」を参照。.

新しい!!: 量化と一階述語論理 · 続きを見る »

一様連続

一様連続(いちようれんぞく、uniformly continuous)は数学における関数に対する概念で、通常の連続性の概念を強めたものである。大雑把に言って、関数の連続性とは引数 x の変化が小さいと関数値 f(x) の変化も小さい事を指すが、このとき f(x) の変化の度合いが x の変化の度合いにのみ依存し、x の値自身にはよらなければ f は一様連続であるという。 すなわち一様連続性とは、f の定義域において x と y が十分近いことを要求するだけで( x の値によらず)、f(x) と f(y) が近い値をとることを保証していることを言う。 定義より一様連続な関数は連続であるが、逆は一般には成り立たない。 しかし定義域が有界閉区間であれば、その区間上連続な関数は一様連続である事が知られている(ハイネ・カントールの定理)。 一様連続性の定義はユークリッド空間や、それを一般化した概念である距離空間において定義される。 さらに一般に一様空間上でも定義可能である。.

新しい!!: 量化と一様連続 · 続きを見る »

平方

平方(へいほう、ひらかた).

新しい!!: 量化と平方 · 続きを見る »

二階述語論理

二階述語論理(にかいじゅつごろんり、second-order predicate logic)あるいは単に二階論理(にかいろんり、second-order logic)は、一階述語論理を拡張した論理体系であり、一階述語論理自体も命題論理を拡張したものである。二階述語論理もさらに高階述語論理や型理論に拡張される。 一階述語論理と同様に議論領域(ドメイン)の考え方を使う。ドメインとは、量化可能な個々の元の集合である。一階述語論理では、そのドメインの個々の元が変項の値となり、量化される。例えば、一階の論理式 ∀x (x ≠ x + 1) では、変項 x は任意の個体を表す。二階述語論理は個体の集合を変項の値とし、量化することができる。例えば、二階の論理式 ∀S ∀x (x ∈ S ∨ x ∉ S) は、個体の全ての集合 S と全ての個体 x について、x が S に属するか、あるいは属さないかのどちらかであるということを主張している。最も一般化された二階述語論理は関数の量化をする変項も含んでいる(詳しくは後述)。.

新しい!!: 量化と二階述語論理 · 続きを見る »

形式言語

形式言語(けいしきげんご、formal language)は、その文法(構文、統語論)が、場合によっては意味(意味論)も、形式的に与えられている(形式体系を参照)言語である。形式的でないために、しばしば曖昧さが曖昧なまま残されたり、話者集団という不特定多数によってうつろいゆくような自然言語のそれに対して、一部の人工言語や、いわゆる機械可読な(機械可読目録を参照)ドキュメント類などは形式言語である。この記事では形式的な統語論すなわち構文の形式的な定義と形式文法について述べる。形式的な意味論については形式意味論の記事を参照。.

新しい!!: 量化と形式言語 · 続きを見る »

ペアノの公理

ペアノの公理(ペアノのこうり、Peano axioms) とは、自然数全体を公理化したものである。1891年に、ジュゼッペ・ペアノによって定義された。.

新しい!!: 量化とペアノの公理 · 続きを見る »

チャールズ・サンダース・パース

チャールズ・サンダース・パース(Charles Sanders Peirce、1839年9月10日 - 1914年4月19日)は、アメリカ合衆国の哲学者、論理学者、数学者、科学者であり、プラグマティズムの創始者として知られる。マサチューセッツ州ケンブリッジ生まれ。パースは化学者としての教育を受け、米国沿岸測量局に約三十年間、科学者として雇われていた。「アメリカ合衆国の哲学者たちの中で最も独創的かつ多才であり、そしてアメリカのもっとも偉大な論理学者」ともいわれる。存命中はおおむね無視されつづけ、第二次世界大戦後まで二次文献はわずかしかなかった。莫大な遺稿の全ては今も公表されていない。パースは自分をまず論理学者とみなし、さらに論理学を記号論(semiotics)の一分野とみなした。.

新しい!!: 量化とチャールズ・サンダース・パース · 続きを見る »

ハンス・ライヘンバッハ

ハンス・ライヘンバッハ(Hans Reichenbach, 1891年9月26日 - 1953年4月9日)は、科学哲学者であり、論理経験主義の代表的主唱者。ハンブルク生まれで、ロサンゼルスにて死去した。.

新しい!!: 量化とハンス・ライヘンバッハ · 続きを見る »

バートランド・ラッセル

3代ラッセル伯爵、バートランド・アーサー・ウィリアム・ラッセル(Bertrand Arthur William Russell, 3rd Earl Russell, OM, FRS、1872年5月18日 - 1970年2月2日)は、イギリスの哲学者、論理学者、数学者であり、社会批評家、政治活動家である。ラッセル伯爵家の貴族であり、イギリスの首相を2度務めた初代ラッセル伯ジョン・ラッセルは祖父にあたる。名付け親は同じくイギリスの哲学者ジョン・スチュアート・ミル。ミルはラッセル誕生の翌年に死去したが、その著作はラッセルの生涯に大きな影響を与えた。生涯に4度結婚し、最後の結婚は80歳のときであった。1950年にノーベル文学賞を受賞している。.

新しい!!: 量化とバートランド・ラッセル · 続きを見る »

モンタギュー文法

モンタギュー文法(モンタギューぶんぽう)は、自然言語の意味論へのアプローチの一つ。アメリカ合衆国の論理学者リチャード・モンタギューの名を採って名付けられた。.

新しい!!: 量化とモンタギュー文法 · 続きを見る »

ヴィルヘルム・アッカーマン

ヴィルヘルム・アッカーマン ヴィルヘルム・アッカーマン(Wilhelm Friedrich Ackermann, 1896年3月29日 - 1962年12月24日)はドイツの数学者。 計算理論での重要な例の一つであるアッカーマン関数を考案した。 アッカーマンは、1925年に2階のペアノ算術を弱めた体系の無矛盾性の証明を与え、ゲッティンゲン大学から博士号を得た。この証明は、ヒルベルトがヒルベルト・プログラムでの基本手法として考えていたアイデアに沿ったものであった。 後に、この証明では、厳格な有限の立場を越えるωωωまでの順序数の整列性を 必要とするリダクションが隠伏的に用いられていたことが判明している。 1929年から1948年まで、彼はシュタインフルトのギムナジウムで教師として教え、 その後1961年まで彼の生まれ故郷のリューデンシャイト (Lüdenscheid) の女子ギムナジウムで教えた。 彼はまたゲッティンゲン科学アカデミーの通信会員であり、ミュンスター大学の非常勤教授でもあった。 1928年、彼はダフィット・ヒルベルトが1917年から1922年に行った数理論理学の入門の講義録をもとにヒルベルトと共著でGrundzüge der theoretischen Logik (理論論理学概論) を執筆している。 また1937年には無限公理を含まない集合論の、1940年にはペアノの公理の、1952年にはtype-free logicの無矛盾性の証明を与えている。 1956年には、クラスをオブジェクトとして含み、 ある意味でカントルの集合論の自然な公理化になっているような公理的集合論の体系を導入している。 Category:ドイツの数学者 -960329 Category:ゲッティンゲン大学出身の人物 Category:ヴェストファーレン・ヴィルヘルム大学の教員 Category:1896年生 Category:1962年没 Category:数学に関する記事.

新しい!!: 量化とヴィルヘルム・アッカーマン · 続きを見る »

トアルフ・スコーレム

トアルフ・スコーレム(Albert Thoralf Skolem、1887年5月23日 - 1963年3月23日)は、ノルウェーの数学者。オスロ大学で代数学や自然数論を講義した。 数理論理学、数学基礎論で重要な発見をしている。また、不定方程式論においても、いくつかの定理を発見している。主な業績として、数理論理学では.

新しい!!: 量化とトアルフ・スコーレム · 続きを見る »

プログラミング言語

プログラミング言語(プログラミングげんご、programming language)とは、コンピュータプログラムを記述するための形式言語である。なお、コンピュータ以外にもプログラマブルなものがあることを考慮するならば、この記事で扱っている内容については、「コンピュータプログラミング言語」(computer programming language)に限定されている。.

新しい!!: 量化とプログラミング言語 · 続きを見る »

プロシージャ

プロシージャ (procedure)とは、プログラミングにおいて複数の処理を一つにまとめたものをいう。手続きとするのが定訳である。一連の処理を意味を持った一まとまりにすることで、再利用性が高まり、プログラム中に繰り返して現れる処理を1ヶ所で記述でき、プログラムの保守、管理を容易にする。 繰り返し利用されることから、ルーチンとも言う。呼び出し関係は通常階層構造をなし、その最上位にある、プログラム全体のエントリーポイントを含むルーチンをメインルーチン、呼び出されるものをサブルーチンと言う。また、関数と呼ばれることもある(通常、数学における関数とは違ったものであるので、注意が必要である)。 プログラミング言語により、プロシージャのような構文の分類や呼称はさまざまである。詳細はサブルーチンの記事を参照のこと。 Category:プログラミング言語の構文 he:שגרה ur:دستورالعمل.

新しい!!: 量化とプロシージャ · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: 量化とダフィット・ヒルベルト · 続きを見る »

アリストテレス

アリストテレス(アリストテレース、Ἀριστοτέλης - 、Aristotelēs、前384年 - 前322年3月7日)は、古代ギリシアの哲学者である。 プラトンの弟子であり、ソクラテス、プラトンとともに、しばしば「西洋」最大の哲学者の一人とされ、その多岐にわたる自然研究の業績から「万学の祖」とも呼ばれる。特に動物に関する体系的な研究は古代世界では東西に類を見ない。イスラーム哲学や中世スコラ学、さらには近代哲学・論理学に多大な影響を与えた。また、マケドニア王アレクサンドロス3世(通称アレクサンドロス大王)の家庭教師であったことでも知られる。 アリストテレスは、人間の本性が「知を愛する」ことにあると考えた。ギリシャ語ではこれをフィロソフィア()と呼ぶ。フィロは「愛する」、ソフィアは「知」を意味する。この言葉がヨーロッパの各国の言語で「哲学」を意味する言葉の語源となった。著作集は日本語版で17巻に及ぶが、内訳は形而上学、倫理学、論理学といった哲学関係のほか、政治学、宇宙論、天体学、自然学(物理学)、気象学、博物誌学的なものから分析的なもの、その他、生物学、詩学、演劇学、および現在でいう心理学なども含まれており多岐にわたる。アリストテレスはこれらをすべてフィロソフィアと呼んでいた。アリストテレスのいう「哲学」とは知的欲求を満たす知的行為そのものと、その行為の結果全体であり、現在の学問のほとんどが彼の「哲学」の範疇に含まれている立花隆『脳を究める』(2001年3月1日 朝日文庫)。 名前の由来はギリシア語の aristos (最高の)と telos (目的)から 。.

新しい!!: 量化とアリストテレス · 続きを見る »

アルフレッド・ノース・ホワイトヘッド

アルフレッド・ノース・ホワイトヘッド (Alfred North Whitehead、1861年2月15日 - 1947年12月30日)は、イギリスの数学者、哲学者である。論理学、科学哲学、数学、高等教育論、宗教哲学などに功績を残す。ケンブリッジ大学、ユニバーシティ・カレッジ・ロンドン、インペリアル・カレッジ・ロンドン、ハーバード大学の各大学において、教鞭をとる。哲学者としての彼の業績は、ハーバード大学に招聘されてからが主体であり、その時既に63歳であった。.

新しい!!: 量化とアルフレッド・ノース・ホワイトヘッド · 続きを見る »

アロンゾ・チャーチ

アロンゾ・チャーチ(Alonzo Church, 1903年6月14日 - 1995年8月11日)はアメリカの論理学者、数学者。ラムダ計算の創案者、「チャーチ=チューリングのテーゼ」の提唱者として知られる。.

新しい!!: 量化とアロンゾ・チャーチ · 続きを見る »

ウィラード・ヴァン・オーマン・クワイン

ウィラード・ヴァン・オーマン・クワイン(Willard van Orman Quine, 1908年6月25日 - 2000年12月25日)は、アメリカ合衆国の哲学者、論理学者であり、20世紀の哲学者のなかで最も影響力のある人物の一人である。分析哲学の伝統の正当な継承者であるが、哲学は概念分析ではないという考えの主たる提唱者でもあった。母校であるハーバード大学で哲学と数学を教えた。主要な業績に「経験主義のふたつのドグマ」(『論理的観点から』所収)があり、分析命題と総合命題とを区別できるとする論理実証主義がはらむような経験主義を批判し、個別の命題だけでは経験によった確証は得られない(確証されるのは命題体系全体である)とする確証の全体論(ホーリズム)を提唱した(参考:デュエム-クワイン・テーゼ)。『ことばと対象』ではさらにこの立場を発展させ、有名な翻訳の不確定性テーゼを導入した。.

新しい!!: 量化とウィラード・ヴァン・オーマン・クワイン · 続きを見る »

クルト・ゲーデル

ルト・ゲーデル(Kurt Gödel, 1906年4月28日 - 1978年1月14日)は、オーストリア・ハンガリー二重帝国(現チェコ)のブルノ生まれの数学者・論理学者である。業績には、完全性定理及び不完全性定理、連続体仮説に関する研究が知られる。.

新しい!!: 量化とクルト・ゲーデル · 続きを見る »

ゲルハルト・ゲンツェン

ルハルト・ゲンツェン ゲルハルト・カール・エーリヒ・ゲンツェン(Gerhard Karl Erich Gentzen、1909年11月24日 - 1945年8月4日)はドイツの論理学者・数学者。 ヘルマン・ワイルとパウル・ベルナイスの弟子。ゲッティンゲン大学でワイルに学び、1934年に学位を取得。プラハ大学で講師となる。1945年、第二次世界大戦でソ連軍に捕らえられ、プラハの捕虜収容所で栄養失調のため死去した。 主要な業績は、自然演繹 NK, NJ とシークエント計算 LK, LJ と呼ばれる証明論の体系の確立である。 自然演繹の体系は、「自然」の名の通り実際の人間の推論過程に近い直観的で分かりやすい体系である。 一方、シーケント計算は、最小限の公理 A → A と、構造および論理結合子に関する推論規則からなる。 NK, LK は古典論理を扱い、NJ, LJ は直観主義論理を扱う。ゲンツェンはこの LK においてカット除去定理 (基本定理) を証明した。 この定理は、ある定理を導く論理の道筋には、その定理自身と公理より複雑なものは現れないようにできることを示し、 LK の完全性の証明に使われた。 他に純粋算術の無矛盾性証明などの業績がある。 「すべての」を意味する記号∀を使い始めたのもゲンツェンである。.

新しい!!: 量化とゲルハルト・ゲンツェン · 続きを見る »

ゲーデルの完全性定理

数理論理学においてゲーデルの完全性定理(ゲーデルのかんぜんせいていり、Gödel's completeness theorem、Gödelscher Vollständigkeitssatz)とは、第一階述語論理の恒真な論理式はその公理系からすべて導出可能であることを示した定理を言う。1929年にクルト・ゲーデルが証明した。.

新しい!!: 量化とゲーデルの完全性定理 · 続きを見る »

ゲーデルの不完全性定理

ーデルの不完全性定理(ゲーデルのふかんぜんせいていり、)又は単に不完全性定理とは、数学基礎論における重要な定理で、クルト・ゲーデルが1930年に証明したものである。;第1不完全性定理: 自然数論を含む帰納的公理化可能な理論が、ω無矛盾であれば、証明も反証もできない命題が存在する。;第2不完全性定理: 自然数論を含む帰納的公理化可能な理論が、無矛盾であれば、自身の無矛盾性を証明できない。.

新しい!!: 量化とゲーデルの不完全性定理 · 続きを見る »

ゴットロープ・フレーゲ

フリードリヒ・ルートヴィヒ・ゴットロープ・フレーゲ(Friedrich Ludwig Gottlob Frege, 1848年11月8日 - 1925年7月26日)は、ドイツの哲学者、論理学者、数学者であり、現代の数理論理学、分析哲学の祖にあたる。 フレーゲはバルト海に面したドイツの港町ヴィスマールの生まれである。母のアウグステ・ビアロブロツキーはポーランド系である。彼ははじめイェーナ大学で学び、その後ゲッティンゲン大学に移り1873年に博士号を取得した。その後イェーナに戻り、1896年から数学教授。1925年に死去した。.

新しい!!: 量化とゴットロープ・フレーゲ · 続きを見る »

ジュゼッペ・ペアノ

ュゼッペ・ペアノ(ペアーノ、Giuseppe Peano, 1858年8月27日、ピエモンテ州クーネオ – 1932年4月20日、トリノ)はイタリアの数学者。トリノ大学教授。自然数の公理系 (ペアノの公理)、ペアノ曲線の考案者として知られる。 人工言語の一つである無活用ラテン語を提唱したことでも知られる。.

新しい!!: 量化とジュゼッペ・ペアノ · 続きを見る »

スタンフォード哲学百科事典

タンフォード哲学百科事典(スタンフォードてつがくひゃっかじてん、Stanford Encyclopedia of Philosophy、 SEP)は、無料で閲覧できる、哲学専門のオンライン百科事典。使用言語は英語。各記事は編集委員によって指名された各分野の専門家によって執筆され、ピア・レビューを経た上で、一般に公開されている。さらに記事の内容は研究状況にあわせ、随時、加筆・更新されている(この際もピア・レビューを経る)。 2007年3月現在の記事数は890本。管理・運営元はスタンフォード大学 言語情報研究センター 形而上学研究室。主席編集長はエドワード・ザルタ(Edward N. Zalta)。.

新しい!!: 量化とスタンフォード哲学百科事典 · 続きを見る »

全称記号

全称記号(ぜんしょうきごう、universal quantifier)とは、数理論理学において「全ての」(全称量化)を表す記号である。通常「∀」と表記され、全称量化子(ぜんしょうりょうかし)、全称限量子(ぜんしょうげんりょうし)、全称限定子(ぜんしょうげんていし)、普遍量化子(ふへんりょうかし)、普通限定子(ふつうげんていし)などとも呼ばれる。.

新しい!!: 量化と全称記号 · 続きを見る »

公理的集合論

公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。.

新しい!!: 量化と公理的集合論 · 続きを見る »

紀元前1世紀

ーマ帝国の成立。紀元前27年にオクタウィアヌスが「アウグストゥス」の称号を得てローマの帝政時代が始まった。画像はヴァティカン美術館所蔵の「プリマポルタのアウグストゥス」。 エジプト女王クレオパトラ7世。絶世の美女として知られるが、衰勢のプトレマイオス朝存続のためにローマの有力者と結ばざるを得ない事情があった。画像は19世紀フランスの画家ジャン・レオン・ジェロームの歴史画で、女王とユリウス・カエサルの出会いの状況を描いている。 カッシウスやブルートゥスに暗殺された。画像は暗殺直後を描いたジャン・レオン・ジェロームの歴史画。 アグリッパによって建設された。 ケルト人の消長。カエサルの遠征でアルプス以北のガリアは共和政ローマに帰服した。これらの地に住んでいたケルト人(ガリア人)たちはラ・テーヌ文化の担い手とも考えられている。画像はラ・テーヌ文化を代表するグンデストルップの大釜。 アンティオコス1世により独特な墳墓が営まれた。 王昭君。前漢と匈奴の和平のために呼韓邪単于へと嫁ぐことになった悲劇の女性として語り継がれた。画像は明治時代の菱田春草の「王昭君図」。 銅鐸の祭祀。荒神谷遺跡と並ぶ古代出雲を代表する加茂岩倉遺跡からは39個の銅鐸が出土した。これら銅鐸の製作年代は弥生時代中期から後期にわたる。画像は島根県立古代出雲歴史博物館での展示の様子。 紀元前1世紀(きげんぜんいっせいき、きげんぜんいちせいき)は、西暦による紀元前100年から紀元前1年までの100年間を指す世紀。紀元前を区分する最後の世紀でもある。紀元1世紀の直前の世紀である。「紀元0世紀」というものは存在しない。 なお、天文学やISO 8601では、紀元前1年を西暦0年と定めている(詳細は「紀元前1年#西暦0年」または「0年#西暦0年」を参照のこと)。.

新しい!!: 量化と紀元前1世紀 · 続きを見る »

統語論

統語論(とうごろん、syntax)とは、ヒト・人間の言語において文が構成される仕組み、またはそれを扱う言語学の一分野である。統辞論(とうじろん)、構文論(こうぶんろん)ともいう。 統語論は文法[音韻論(音の仕組み)、形態論(語が構成される仕組み)などを含む、言語の構造を成り立たせている諸原理] の一部である。ただし、特に統語論のことを指して「文法」ということもある。.

新しい!!: 量化と統語論 · 続きを見る »

無理数

無理数(むりすう、 irrational number)とは、有理数ではない実数、つまり分子・分母ともに整数である分数(比.

新しい!!: 量化と無理数 · 続きを見る »

E

Eは、ラテン文字(アルファベット)の5番目の文字。小文字は e 。ギリシャ文字のΕ(エプシロン)に由来し、キリル文字のЕに相当する。.

新しい!!: 量化とE · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: 量化と解析学 · 続きを見る »

言語

この記事では言語(げんご)、特に自然言語について述べる。.

新しい!!: 量化と言語 · 続きを見る »

論理学

論理学(ろんりがく、)とは、「論理」を成り立たせる論証の構成やその体系を研究する学問である。.

新しい!!: 量化と論理学 · 続きを見る »

論理和

''P'' ∨ ''Q'' のベン図による表現 数理論理学において論理和(ろんりわ、Logical disjunction)とは、与えられた複数の命題のいずれか少なくとも一つが真であることを示す論理演算である。離接(りせつ)、選言(せんげん)とも呼び、ORとよく表す。 二つの命題 P, Q に対する論理和を P ∨ Q と書き、「P または Q」と読む。後述のように、日常会話における「または」とは意味が異なる。.

新しい!!: 量化と論理和 · 続きを見る »

論理積

数理論理学において論理積(ろんりせき、logical conjunction)とは、与えられた複数の命題のいずれもが例外なく真であることを示す論理演算である。合接(ごうせつ)、連言(れんげん、れんごん)とも呼び、ANDとよく表す。 二つの命題 P, Q に対する論理積を P ∧ Q と書き、「P かつ Q」や「P そして Q」などと読む。 ベン図による論理積P \wedge Q の表.

新しい!!: 量化と論理積 · 続きを見る »

議論領域

議論領域(ぎろんりょういき、Domain of discourse)は、演繹、特に一階述語論理で使われる用語である。量化子で扱われる実体の適切な集合を指す。 議論領域という用語は一般に、特定の議論で使われる項全体の集合を指す。特定の議論とはすなわち、任意の1つの関心領域での言語学的または意味論的項の集まりである。モデル理論的な意味論では、議論領域という用語は、モデルが基づく実体集合を指す。 データベースは組織の現実のある面をモデル化したものである。このような現実を便宜的に「議論領域」と呼ぶこともある。.

新しい!!: 量化と議論領域 · 続きを見る »

述語論理

述語論理(じゅつごろんり、)とは、数理論理学における記号的形式体系群を指す用語で、一階述語論理、二階述語論理、、無限論理などが含まれる。これらの形式体系の特徴は、論理式に含まれる変数を量化できる点である。一般的な量化子として、存在量化子 ∃ と全称量化子 ∀ がある。変数は議論領域の要素、関係、関数などである。例えば、関数記号に対する存在量化は「ある関数が存在する」という修飾として解釈される。述語論理の基礎は、ゴットロープ・フレーゲとチャールズ・サンダース・パースがそれぞれ独自に生み出し発展させた。 述語論理と言った場合、一階述語論理を指すこともある。述語論理の公理化された形態を述語計算 (predicate calculus) と呼び、述語論理は非形式的でより直観的なものとする見方もある。 様相作用素と量化子を併用する論理も述語論理の一種とされる。これについては様相論理を参照。.

新しい!!: 量化と述語論理 · 続きを見る »

自由変数と束縛変数

数学や形式言語に関連する分野(数理論理学と計算機科学)において、自由変数(または自由変項、free variable)は数式や論理式で置換が行われる場所を指示する記法である。この考え方はプレースホルダーやワイルドカードにも関連する。 変数x は、例えば次のように書くと 束縛変数(または束縛変項、bound variable)になる。 あるいは これらの命題では、x の代わりに別の文字を使っても論理的には全く変化しない。しかし、複雑な命題で同じ文字を別の意味で再利用すると混乱が生じる。すなわち、自由変数が束縛されると、ある意味ではその後の数式の構成をサポートする作業に関与しなくなる。 プログラミングにおいては、自由変数とは関数の中で参照される局所変数や引数以外の変数を意味する。.

新しい!!: 量化と自由変数と束縛変数 · 続きを見る »

自然言語

自然言語(しぜんげんご、natural language)とは、人間によって日常の意思疎通のために用いられる、文化的背景を持って自然に発展してきた言語である。分類として、音声言語と文字言語、口頭言語と書記言語、口語と文語といったような分類があるが、いずれも似ているようだが着目点や対比軸が異なる分類であり、混同してはならない。また、以上のような分類がいずれも当たらない言語もあり、例えば日本手話(「日本語対応手話」とは異なる)がそうである。.

新しい!!: 量化と自然言語 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 量化と自然数 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 量化と集合 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 量化と連続 (数学) · 続きを見る »

Fourier–Motzkin消去法

Fourier–Motzkin消去法(Fourier-Motzkin elimination)とは、数理論理学および計算機科学において、一次不等式からなる一階述語論理式の限量子(∀や∃)を除去するアルゴリズム。限定記号消去法(Quantifier elimination)の1つ。1826年にジョゼフ・フーリエが発見し、1918年に L. L. Dines が再発見し、1936年に Theodore Motzkin が再々発見した。.

新しい!!: 量化とFourier–Motzkin消去法 · 続きを見る »

概念記法

The title page of the original 1879 edition 『概念記法』(がいねんきほう、Begriffsschrift)はゴットロープ・フレーゲによって1879年に出版された論理学に関する短い本の題名であり,またその本で創始された形式体系の名称である。 この本の完全な書名は「算術の式言語を模した、純粋な思考のための一つの式言語 eine der arithmetischen nachgebildete Formelsprache des reinen Denkens」である。『概念記法』は,アリストテレスが論理学という主題を創設して以来,論理学に関するおそらく最も重要な出版物であった。フレーゲが自分の式を開発して論理に到達しようとした動機は,ライプニッツが彼の推論計算機に対して持った動機と似ている。続いてフレーゲは,数学の基礎の研究に彼の論理計算を用い,それは次の四半世紀にわたって遂行された。.

新しい!!: 量化と概念記法 · 続きを見る »

有限集合

数学において、集合が有限(ゆうげん、finite)であるとは、自然数 n を用いて という形にあらわされる集合との間に全単射が存在することをいう(ただしここでは、n.

新しい!!: 量化と有限集合 · 続きを見る »

意味論

意味論(いみろん、英: semantics)とは、言語学では統語論に対置される分野、数学(とくに数理論理学)では証明論に対置される分野で、それらが中身(意味)に関与せず記号の操作によって対象を扱うのに対し、その意味について扱う分野である。なお、一般意味論というものもあるが、言語の使用に関する倫理を扱うものであり、ありていに言って無関係である。.

新しい!!: 量化と意味論 · 続きを見る »

数 (文法)

言語学における数(すう)とは、語を語形変化させる文法カテゴリーの一つ。多くの言語では単数と複数に分類され、さらにそれ以上に分類する言語もある。指示対象の数量が1であるものを単数、それ以上であるものを複数と呼ぶ。また言語によっては、単数・複数以外に、2をあらわすのに特別な形式をもつものがあり、双数(あるいは両数)と呼ばれる。双数は主に、目・耳・腕・足など、1対になっているものや代名詞に用いる。双数を有する言語の例として、アラビア語、スロベニア語、ソルブ語、ハワイ語などが挙げられる。 0 については、英語やスペイン語などでは複数形を用い、それぞれ 0 hours, 0 horas(0時間)のように言う。また、アイスランド語やリトアニア語などのように20以降では1の位を数の目安とするため、21、31などの場合は意味に関わらず名詞は単数形で用いる言語も存在する(アイスランド語:1/21 maður(1人/21人の男)、2/22 menn(2人/22人の男)など)。.

新しい!!: 量化と数 (文法) · 続きを見る »

数量詞

数量詞(すうりょうし、)は、数量を示す単語または句をいう。数量を特定する数詞のほか、日本語などでは数詞に助数詞を付加した単語の形を含める。さらに相対的な量を示す「少し」「少ない」「沢山」「多い」「一部」「全部」、疑問詞の「いくら」「何人」なども含む。 一般に品詞としては形容詞、名詞のほか、「何回」「何倍」のように動詞や形容詞にかかる副詞(または相当する句)などとして使用される。 日本語では以下のように、特異な副詞的な用法が多い。.

新しい!!: 量化と数量詞 · 続きを見る »

ここにリダイレクトされます:

存在量化全称量化量化子量化理論量化記号

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »