ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

偶数

索引 偶数

偶数(ぐうすう、even number) とは、 を約数に持つ整数、すなわち で割り切れる整数のことをいう。逆に で割り切れない整数のことは、奇数という。 具体的な偶数の例として などが挙げられる。これらはそれぞれ に等しいため、 で割っても余りが生じず、 で割り切ることができる。 より派生して、 で割り切れるが では割り切れない整数を単偶数または半偶数という。これに対して、 で割り切れる整数を複偶数 または全偶数という。 偶数と奇数は、偶数全体、奇数全体をそれぞれ 1 つの元と見て、2 つの元からなる有限体の例を与える。.

49 関係: 加法偶奇性十六進法十進法単偶数可換体奇数実数完全数小惑星小惑星番号三角数平方数乗法二進法便名ピタゴラスの定理ファウンデーションへの序曲フィロラオスフィボナッチ数列車番号命題アメリカ合衆国大統領選挙アイザック・アシモフオール・イーヴン (小惑星)ゴールドバッハの予想サイエンス・フィクション素数約数縁起西暦近代オリンピック航空機自然数鉄道FIFAワールドカップ減法漸化式有限体日本数学上の未解決問題数秘術整数01の冪根2468

加法

加法(かほう、addition, summation)とは、数を合わせることを意味する二項演算あるいは多項演算で、四則演算のひとつ。足し算(たしざん)、加算(かさん)、あるいは寄せ算(よせざん)とも呼ばれる。また、加法の演算結果を和(わ、)という。記号は「+」。 自然数の加法は、しばしば物の個数を加え合わせることに喩えられる。また数概念の拡張にしたがって、別の意味を持つ加法を考えることができる。たとえば実数の加法は、もはや自然数の加法のように物の個数を喩えに出すことはできないが、曲線の長さなど別の対象物を見出すことができる。 減法とは互いに逆の関係にあり、また例えば、負の数の加法として減法が捉えられるなど、加法と減法の関連は深い。これは代数学において加法群の概念として抽象化される。 無限個の数を加えること(総和法)については総和、級数、極限、ε–δ 論法などを参照。.

新しい!!: 偶数と加法 · 続きを見る »

偶奇性

数学における偶奇性(ぐうきせい、parity; パリティ)とは、ある対象を偶(ぐう、even)と奇(き、odd)の二属性のいずれか一方に排することである。しばしば、ふたつ(以上)の対象に対して、それらの偶奇性が一致しないことを以って、それらが相異なるということの理由付けとするというような議論に用いられる場合がある。 同様の性質を示す概念に「正負」があるが、正負には(しばしば特異なものを表す)零をあわせた三属性とする場合もある。.

新しい!!: 偶数と偶奇性 · 続きを見る »

十六進法

十六進法(じゅうろくしんほう、 hexadecimal)とは、16を底(てい)とし、底およびその冪を基準にして数を表す方法である。.

新しい!!: 偶数と十六進法 · 続きを見る »

十進法

十進法(じっしんほう、decimal system)とは、10 を底(てい)とし、底およびその冪を基準にして数を表す方法である。.

新しい!!: 偶数と十進法 · 続きを見る »

単偶数

単偶数(たんぐうすう、singly even number)または半偶数(はんぐうすう)とは、2 で割り切れる(偶数である)が 4 では割り切れない整数のことである。単偶数は 4n + 2(n は整数)の形をしている。2×(奇数)で表すことができる整数ともいえる。 これに対して、4 で割り切れる(4 の倍数である)整数のことを複偶数 (doubly even number) または全偶数という。.

新しい!!: 偶数と単偶数 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 偶数と可換体 · 続きを見る »

奇数

奇数(きすう、 odd number)とは、2で割り切れない整数のことをいう。一方、2で割り切れる整数のことは、偶数という。−15, −3, 1, 7, 19 などは全て奇数である。 10進法では、一の位が 1, 3, 5, 7, 9 である数は奇数である。2進法では、20 の位(すなわち一の位)が 1 ならば奇数で、0 ならば偶数である。一般に 2n 進法(n は自然数)において、ある数が偶数であるか奇数であるかは、一の位(n0 の位)を見るだけで判別できる。 偶数と奇数は、位数が2の体の例を与える。.

新しい!!: 偶数と奇数 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 偶数と実数 · 続きを見る »

完全数

完全数(かんぜんすう,)とは、自分自身を除く正の約数の和に等しくなる自然数のことである。完全数の最初の3個は、、 である。「完全数」は「万物は数なり」と考えたピタゴラスが名付けた数の一つであることに由来する「高数・数学者列伝」吉永良正『高校への数学』vol.20、8月号が、彼がなぜ「完全」と考えたのかについては何も書き残されていないようである。中世の『聖書』の研究者は、「 は「神が世界を創造した(天地創造)6日間」、 は「月の公転周期」で、これら2つの数は地上と天界における神の完全性を象徴している」と考えたとされる。古代ギリシアの数学者は他にもあと2つの完全数 を知っていた。以来、完全数はどれだけあるのかの探求が2500年以上のちの現在まで続けられている。 完全数の定義は、正の約数の総和が自分自身の2倍に等しいことと同値である。すなわち、 が完全数であるとは、約数関数 に対して が成り立つことであると表現できる。また、正の約数の逆数和が であると表現することもできる。.

新しい!!: 偶数と完全数 · 続きを見る »

小惑星

光分(左)と天文単位(右)。 ケレス(右)、そして火星(下)。小さな物ほど不規則な形状になっている。 メインベルト小惑星の分布。縦軸は軌道傾斜角。 軌道長半径 6 AU までの小惑星の分布。縦軸は軌道傾斜角。赤い点はメインベルト小惑星。 小惑星(しょうわくせい、独: 英: Asteroid)は、太陽系小天体のうち、星像に拡散成分がないものの総称。拡散成分(コマやそこから流出した尾)があるものは彗星と呼ばれる。.

新しい!!: 偶数と小惑星 · 続きを見る »

小惑星番号

小惑星番号(しょうわくせいばんごう、英語:minor planet number)とは、軌道要素が確定し、小惑星センターに正式登録された天体に与えられる登録番号である。なお、ここで言う「小惑星」とは岩石を主成分とする「小惑星(asteroid)」の事ではなく、それに加えて太陽系外縁天体、彗星・小惑星遷移天体や準惑星などを含んだ天体の総称としての「小惑星(minor planet)」の事である。.

新しい!!: 偶数と小惑星番号 · 続きを見る »

三角数

三角数(さんかくすう、)とは多角数の一種で、正三角形の形に点を並べたときにそこに並ぶ点の総数のことである。番目の三角数は から までの自然数の和に等しい。.

新しい!!: 偶数と三角数 · 続きを見る »

平方数

平方数(へいほうすう、)とは、自然数の自乗(二乗)で表される整数のことである。正方形の形に点を並べたときにそこに並ぶ点の総数に等しいので、四角数(しかくすう)ともいい、多角数の一種である。最小の平方数として、定義に を加えることができる。平方数は無数にあり、その列は次のようになる。 平方数の列の隣接二項間についての漸化式を考えると、 から連続する正の奇数の総和は平方数に等しい:\sum_^n (2k-1).

新しい!!: 偶数と平方数 · 続きを見る »

乗法

算術における乗法 (じょうほう、multiplication) は、算術の四則と呼ばれるものの一つで、整数では、一方の数 (被乗数、ひじょうすう、multiplicand) に対して他方の数 (乗数、じょうすう、multiplier) の回数だけ繰り返し和をとる(これを掛けるまたは乗じるという。)ことにより定義できる演算である。掛け算(かけざん)、乗算(じょうざん)とも呼ばれる。代数学においては、変数の前の乗数(例えば 3y の 3)は係数(けいすう、coefficient)と呼ばれる。 逆の演算として除法をもつ。乗法の結果を積 (せき、product) と呼ぶ。 乗法は、有理数、実数、複素数に対しても拡張定義される。また、抽象代数学においては、一般に可換とは限らない二項演算に対して、それを乗法、積などと呼称する(演算が可換である場合はしばしば加法、和などと呼ぶ)。.

新しい!!: 偶数と乗法 · 続きを見る »

二進法

二進法(にしんほう)とは、2 を底(てい、基(base)とも)とし、底の冪の和で数を表現する方法である。 英語でバイナリ (binary) という。binaryという語には「二進法」の他に「二個一組」「二個単位」といったような語義もある(例: バイナリ空間分割)。.

新しい!!: 偶数と二進法 · 続きを見る »

便名

航空機の便名(びんめい) あるいは フライトナンバー(flight number)とは、飛行(フライト)毎に割り当てられる番号で、航空会社、日付、便名が分かれば、フライトを一意に特定することができる。機体記号とは別のものだが、両者とも非定期航空便として運行する航空機の識別番号として利用することができる。同日中に、一機で複数のフライトを担当することもあれば、同便名のフライトでも翌日以降には別の機で運行することもあり、必ずしも便名と機体識別番号が一対一に対応しているわけではない。 便名の振り方には一応の指針があるものの、航空会社により割り当て方はまちまちである。国際線では基本的に東行き、北行きのフライトには偶数が、西行き、南行きのフライトには奇数が割り当てられる。航空会社によっては、国外へ向かうフライトに奇数を、国内へ戻ってくるフライトにその次の偶数を振ることもある。同日中に複数のフライトがある場合には、昇順に振ることが多い。例えばその日の一便目に101、折り返しの便に102を割り当て、次の往復には往路が103、復路が104という具合に便名を振る。一方、国内線では例えば羽田発着を基準に考えた場合、羽田発便を下り便として奇数、羽田着便を上り便として偶数が振られる。 3桁以内の便名は、一般に長距離便や当該航空会社の基幹となるフライトに割り当てられる。特にフライトナンバー1は航空会社の看板便に割り当てられることが多い。例えば英国航空1便は往時のロンドン発ニューヨーク行きの早朝のコンコルド、ニュージーランド航空1便はロンドン発ロサンゼルス経由のオークランド行きに、エル・アル航空の1便はテルアビブからニューヨークへの夜行便に振られている。因みに日本の航空会社においては現在、JAL1便はサンフランシスコ発東京(羽田)行き、ANA1便はワシントンD.C.(ダレス)発東京(成田)行きに振られている。一般的に4桁の便名で、1000から4000番台は子会社の担当する地方便、5000番以上は別会社の運行するコードシェア便や航空便として運行される高速列車に振られる。9000番以上は回送便に回されることが多い。上一桁が8のフライトはチャーター便のことが多いが、航空会社により別の番号を使うこともある。 過去に事故を起こしたフライトの便名は欠番にすることが多い。アラスカ航空261便は墜落事故以降、295便に改番されている。アメリカン航空77便はワシントンDCダレス国際空港からロサンゼルス国際空港行きの定期便であったが、アメリカ同時多発テロ事件でテロに用いられて以降149便に改められている。 普段我々が「フライトナンバー」と呼んでいるのは、実際には国際航空運送協会(IATA)フライトスケジュール調整委員会発行の で定められた「フライトコード」(flight code)にあたる。正式には「フライトナンバー」ばフライトコードのうち4桁以内の番号の部分を指す。例えばBA2490、BA2491Aのうち正式に「フライトナンバー」にあたるのは2490と2491の部分で、BA2490、BA2491A自体は「フライトコード」である。ただ、航空業界内や空港関係者内でも、フライトナンバーをフライトコードの意味で使うことが多い。 「フライトナンバー」は宇宙船にもつけられることがある。ただ、再利用を想定していないロケットのようなもの(例えばAriane 5 Flight 501)についてはフライトナンバーというよりは製造番号と呼ぶ方が的確。スペースシャトルの打ち上げにはSTSを頭につけたフライトナンバー、例えば「STS-47」などがつけられる。.

新しい!!: 偶数と便名 · 続きを見る »

ピタゴラスの定理

90 度回転し、緑色の部分は裏返して橙色に重ねる。 視覚的証明 初等幾何学におけるピタゴラスの定理(ピタゴラスのていり、Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す。斜辺の長さを, 他の2辺の長さを とすると、定理は が成り立つという等式の形で述べられる。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 ピタゴラスの定理によって、直角三角形をなす3辺の内、2辺の長さを知ることができれば、残りの1辺の長さを知ることができる。例えば、直交座標系において原点と任意の点を結ぶ線分の長さは、ピタゴラスの定理に従って、その点の座標成分を2乗したものの総和の平方根として表すことができる2次元の座標系を例に取ると、ある点 の 軸成分を, 軸成分を とすると、原点から までの距離は と表すことができる。ここで は平方根を表す。。このことは2次元の座標系に限らず、3次元の系やより大きな次元の系についても成り立つ。この事実から、ピタゴラスの定理を用いて任意の2点の間の距離を測ることができる。このようにして導入される距離はユークリッド距離と呼ばれる。 「ピタゴラスが直角二等辺三角形のタイルが敷き詰められた床を見ていて、この定理を思いついた」など幾つかの逸話が知られているものの、この定理はピタゴラスが発見したかどうかは分からない。バビロニア数学のプリンプトン322や古代エジプトなどでもピタゴラス数については知られていたが、彼らが定理を発見していたかどうかは定かではない。 中国古代の数学書『九章算術』や『周髀算経』でもこの定理が取り上げられている。中国ではこの定理を勾股定理、商高定理等と呼び、日本の和算でも中国での名称を用いて鉤股弦の法(こうこげんのほう)等と呼んだ。三平方の定理という名称は、敵性語が禁じられていた第二次世界大戦中に文部省の図書監修官であった塩野直道の依頼を受けて、数学者末綱恕一が命名したものである。.

新しい!!: 偶数とピタゴラスの定理 · 続きを見る »

ファウンデーションへの序曲

『ファウンデーションへの序曲』(Prelude to Foundation)は、アイザック・アシモフのSF小説。ファウンデーションシリーズの第6作で1988年に刊行された。.

新しい!!: 偶数とファウンデーションへの序曲 · 続きを見る »

フィロラオス

ピロラオス(Φιλόλαος、Philolaos、フィロラオスとも、紀元前470年頃 - 紀元前385年)は、ピュタゴラス教団の一員、数学者であり、ソクラテス以前の哲学者である。万物は無限なるもの(無限定)と有限なるもの(限定)により生じるものをその基礎としており、両者は調和をもって結びついていると説いた。地球が宇宙の中心ではないという考えを述べた最初の人物であるとされる。 音楽用パイプで実験をするピタゴラスとフィロラオス ピタゴラスは、BCE490年以後も生き続け、BCE475年に死亡したとする説をとっても、フィロラオスは、ピタゴラスの死後生まれたことになる。絵は、中世に書かれたもの。.

新しい!!: 偶数とフィロラオス · 続きを見る »

フィボナッチ数

フィボナッチ数列の各項を一辺とする正方形 メインページ(2007年〜2012年)で使われていたイメージ画像もフィボナッチ数列を利用している フィボナッチ数(フィボナッチすう、Fibonacci number)は、イタリアの数学者レオナルド・フィボナッチ(ピサのレオナルド)にちなんで名付けられた数である。.

新しい!!: 偶数とフィボナッチ数 · 続きを見る »

列車番号

列車番号(れっしゃばんごう)とは、鉄道のダイヤにおいて個々の列車に与えられる数字及び記号のことである。運転業務において列車を区別するための識別子として用いられる。.

新しい!!: 偶数と列車番号 · 続きを見る »

命題

命題(めいだい、proposition)とは、論理学において判断を言語で表したもので、真または偽という性質をもつもの。また数学で、真偽の判断の対象となる文章または式。定理または問題のこと。西周による訳語の一つ。 厳密な意味での命題の存在は、「意味」の存在と同様に、疑問を投げかける哲学者もいる。また、「意味」の概念が許容される場合にあっても、その本質は何であるかということにはなお議論のあるところである。古い文献では、語の集まりあるいはその語の集まりの表す「意味」という意味で命題という術語を用いているかどうかということが、つねに十分に明らかにされているわけではなかった。 現在では、論争や存在論的な含みを持つことを避けるため、ある解釈の下で(真か偽のいずれであるかという)真理の担い手となる記号列自体について述べる時は、「命題」という代わりに「文 (sentence)」という術語を用いる。ストローソンは「言明 ("statement")」 という術語を用いることを提唱した。.

新しい!!: 偶数と命題 · 続きを見る »

アメリカ合衆国大統領選挙

アメリカ合衆国大統領選挙(アメリカがっしゅうこくだいとうりょうせんきょ、)は、アメリカ合衆国大統領を選出するための選挙。この選挙は、具体的には数次のプロセスに分かれているが、一般に、4年毎、11月に行われる一連の選挙手続き、予備選挙となる立候補者選出および立候補者による選挙運動から選挙人による本選挙・投票・開票までの全プロセスの総称である。 各年次の大統領選挙に関する詳細は、末尾のテンプレート、または結果の表の「年」の列からリンクされている個別の記事を参照。.

新しい!!: 偶数とアメリカ合衆国大統領選挙 · 続きを見る »

アイザック・アシモフ

アイザック・アシモフ(Isaac Asimov、1920年1月2日 – 1992年4月6日)は、アメリカの作家、生化学者(ボストン大学教授)である。その著作は500冊以上を数える。彼が扱うテーマは科学、言語、歴史、聖書など多岐にわたり、デューイ十進分類法の10ある主要カテゴリのうち9つにわたるが唯一の例外は1類「哲学および心理学」である。ただし、1類に分類される The Humanist Way の序文を執筆している。、特にSF、一般向け科学解説書、推理小説によってよく知られている。 日本語では「アシモフ」と「アジモフ」などの片仮名表記があり、前者での表記が一般的であるが、本人が望んでいた読みは後者の発音に比較的近いであるAsimov の発音については自伝に has-him-of のエピソードが掲載されている。『アシモフ自伝I』 上巻31頁には、has, him, of の3つの簡単な英単語から2つの h を抜くと Asimov の発音になるという記述がある。さらに同書30頁には Asimov の s は発音としては z である旨の記述もある。これらより、本人が考えている発音をカタカナで表記すると アジモヴ の方がより近いと考えられる。しかし日本語において著者名としてアジモヴあるいはアジモブという表記をとっている書籍は国立国会図書館にはない。アシモフ自身が日本語仮名表記で「アジモフ」の表記を要求した事実はなく、日本ではアシモフの著作が紹介された当初から「アシモフ」の表記が定着している。。 ジュブナイル作品ではポール・フレンチという筆名を用いた。1942年発表のSF短編 Time Pussy では George E. Dale という筆名を用いた。1971年の著書 The Sensuous Dirty Old Man では Dr.

新しい!!: 偶数とアイザック・アシモフ · 続きを見る »

オール・イーヴン (小惑星)

ール・イーヴン (24680 Alleven) とは、小惑星帯にある小惑星の1つ。仮符号。 ロバート・マックノートによって1989年12月30日に発見された。名前は小惑星番号24680番が全て偶数であることにちなむ。.

新しい!!: 偶数とオール・イーヴン (小惑星) · 続きを見る »

ゴールドバッハの予想

ールドバッハの予想(英語:Goldbach's conjecture)とは、次のような加法的整数論上の未解決問題の1つである。ゴールドバッハ予想、ゴルドバッハの予想とも。 この予想は、ウェアリングの問題などと共に古くから知られている。4 × 1018 まで成立することが証明されていて、一般に正しいと想定されているが、多くの努力にもかかわらず未だに証明されていない。 The conjecture has been shown to hold up through 4 × 1018 and is generally assumed to be true, but remains unproven despite considerable effort.-->.

新しい!!: 偶数とゴールドバッハの予想 · 続きを見る »

サイエンス・フィクション

宇宙戦争』のイラストレーション。Henrique Alvim Corr画(1906年) SF漫画雑誌『プラネット・コミックス』 サイエンス・フィクション(Science Fiction、略語:SF、Sci-Fi、エスエフ)は、科学的な空想にもとづいたフィクションの総称。メディアによりSF小説、SF漫画、SF映画、SFアニメなどとも分類される。日本では科学小説、空想科学小説とも訳されている(詳細は呼称を参照)。.

新しい!!: 偶数とサイエンス・フィクション · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 偶数と素数 · 続きを見る »

約数

数学において、整数 の約数(やくすう、divisor)とは、 を割り切る整数またはそれらの集合のことである。割り切るかどうかということにおいて、符号は本質的な問題ではないため、 を正の整数(自然数)に、約数は正の数に限定して考えることも多い。自然数や整数の範囲でなく文字式や抽象代数学における整域などで「約数」と同様の意味を用いる場合は、「因数」(いんすう)、「因子」(いんし、factor)が使われることが多い。 整数 が整数 の約数であることを、記号 | を用いて と表す。 約数の定義を式で表すと、「整数 が の約数であるとは、ある整数 をとると が成立することである」であるが、条件「」を外すこともある(その場合、 のとき も約数になる)。 自然数(正の整数)で考えている文章では、ことわりがなくても「約数」を前提にしていることは多い。.

新しい!!: 偶数と約数 · 続きを見る »

縁起

縁起(えんぎ、pratītya-samutpāda, プラティーティヤ・サムトパーダ、paṭicca-samuppāda, パティッチャ・サムッパーダ)とは、他との関係が縁となって生起するということ。全ての現象は、原因や条件が相互に関係しあって成立しているものであって独立自存のものではなく、条件や原因がなくなれば結果も自ずからなくなるということを指す。仏教の根本的教理・基本的教説の1つであり、釈迦の悟りの内容を表明するものとされる。因縁生、縁生、因縁法、此縁性ともいう。 種々の縁起説は、〈煩悩(惑)→行為(業)→苦悩(苦)〉を骨格とするが、無明を根本原因とする12の項目からなる縁起説(十二因縁)が次第に定着した。後世には、縁起の観念を分けて、業感縁起や頼耶縁起などの諸説が立てられた。.

新しい!!: 偶数と縁起 · 続きを見る »

西暦

西暦(せいれき)とは、キリスト教でキリスト(救世主)と見なされるイエス・キリストが生まれたとされる年の翌年を元年(紀元)とした紀年法である。ラテン文字表記はヨーロッパ各国で異なるが、日本語や英語圏では、ラテン語の「A.D.」又は「AD」が使われる。A.D.またADとは「アンノドミニ (Anno Domini)」の略であり、「主(イエス・キリスト)の年に」という意味。西暦紀元、キリスト紀元ともいう。 今年は2018年 (JST) である。西ヨーロッパのキリスト教(カトリック教会、および後のプロテスタント)地域から徐々に普及し(後述)、西欧諸国が世界各地で進めた植民活動などによって伝わった結果、現在において世界で最も広く使われている紀年法となっている。 しかし、19世紀以降においては、非キリスト教徒との関係から、ADをCommon Era(略:CE、「共通紀元」の意)へ、同時に紀元前(BC)をBefore Common Era(BCE)に切り替える動きが広まっている。.

新しい!!: 偶数と西暦 · 続きを見る »

近代オリンピック

近代オリンピック(きんだいオリンピック、、)は、国際オリンピック委員会(英:)が開催する世界的な総合スポーツ大会。現在、夏季大会と冬季大会の各大会が4年に1度、夏季大会は西暦で4の倍数の年、冬季大会は4の倍数でない偶数の年で2年ずらして開催されるので、2年に1度開催されることになる。 日本語ではオリンピック、またそのシンボルマークから五輪と呼ぶこともある。.

新しい!!: 偶数と近代オリンピック · 続きを見る »

航空機

航空機(こうくうき、aircraftブリタニカ百科事典「航空機」)は、大気中を飛行する機械の総称である広辞苑 第五版 p.889「航空機」。.

新しい!!: 偶数と航空機 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 偶数と自然数 · 続きを見る »

鉄道

鉄道(てつどう、railway railroad)とは、等間隔に設置された2本の鉄製の軌条(レール)またはそれに代わる物を案内路として車輪を有する車両が走行する交通機関である。線路・停車場などの施設、旅客や貨物を輸送する列車、運行管理や信号保安まで様々な要素で構成される一連の体系である。 広い意味では、レール、案内軌条などの案内路に誘導されて走行する車両を用いた交通機関を指し、懸垂式・跨座式のモノレール、案内軌条式のAGT(新交通システム)、鋼索鉄道(ケーブルカー)、浮上式鉄道を含む。日本では鉄道事業法の許可、または、軌道法の特許を得て敷設される。トロリーバス(無軌条電車)は、架線が張られたルートを集電装置(トロリー)により集電した電気を動力として走行するバスであるが、鉄道事業法に基づく鉄道、または、軌道法上の「軌道に準ずる」軌道として扱われる。ロープウェイも鉄道事業法、または、軌道法の対象であるが、索道という扱いとなる。 なお、本項では鉄製レールの案内路を有する鉄道について解説する。.

新しい!!: 偶数と鉄道 · 続きを見る »

FIFAワールドカップ

FIFAワールドカップ()は、国際サッカー連盟(FIFA)が主催する、男子ナショナルチームによるサッカーの世界選手権大会。サッカーの大会の世界最高峰と位置付けられ、全世界のテレビ視聴者数や経済効果はオリンピックを凌ぐ世界最大のスポーツイベント。 女子の世界選手権大会についてはFIFA女子ワールドカップを、クラブチームの世界選手権大会についてはFIFAクラブワールドカップを参照。.

新しい!!: 偶数とFIFAワールドカップ · 続きを見る »

減法

減法(げんぽう、subtraction)は、一方から一部として他方を取り去ることにより両者の間の差分を求める二項演算で、算術における四則演算の 1 つ。計算することの側面を強調して引き算(ひきざん)、減算(げんさん、げんざん)などとも言う。また、引き算を行うことを「( から) を引く」 と表現する。引く数を減数(げんすう、subtrahend)と呼び引かれる数を被減数(ひげんすう、minuend)と呼ぶ。また、減算の結果は差(さ、difference)と呼ばれる。 抽象代数学において減法は多くの場合、加法の逆演算として定式化されて加法に統合される。たとえば自然数の間の減法は、整数への数の拡張により、数を引くことと負の数を加えることとが同一視されて、減法は加法の一部となる。またこのとき、常に大きいものから小さいものを減算することしかできない自然数の体系に対して、整数という体系では減算が自由に行えるようになる(整数の全体は、逆演算として減法を内包した加法に関してアーベル群になる)。.

新しい!!: 偶数と減法 · 続きを見る »

漸化式

数学における漸化式(ぜんかしき、recurrence relation; 再帰関係式)は、各項がそれ以前の項の函数として定まるという意味で数列を再帰的に定める等式である。 ある種の漸化式はしばしば差分方程式 (difference equation) と呼ばれる。また、「差分方程式」という言葉を単に「漸化式」と同義なものとして扱うことも多い。 漸化式の例として、ロジスティック写像 が挙げられる。このような単純な形の漸化式が、しばしば非常に複雑な(カオス的な)挙動を示すことがあり、このような現象についての研究は非線型解析学などと呼ばれる分野を形成している。 漸化式を解くとは、 添字 n に関する非再帰的な函数として、一般項を表すの式を得ることをいう。.

新しい!!: 偶数と漸化式 · 続きを見る »

有限体

有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。.

新しい!!: 偶数と有限体 · 続きを見る »

日本

日本国(にっぽんこく、にほんこく、ひのもとのくに)、または日本(にっぽん、にほん、ひのもと)は、東アジアに位置する日本列島(北海道・本州・四国・九州の主要四島およびそれに付随する島々)及び、南西諸島・伊豆諸島・小笠原諸島などから成る島国広辞苑第5版。.

新しい!!: 偶数と日本 · 続きを見る »

数学上の未解決問題

数学上の未解決問題(すうがくじょうのみかいけつもんだい)とは未だ解決されていない数学上の問題のことである。 未解決問題の定義を「未だ証明が得られていない命題」という立場を取るのであれば、そういった問題は数学界に果てしなく存在する。ここでは、リーマン予想のようにその証明結果が数学全域と関わりを持つような命題、P≠NP予想のようにその結論が現代科学・技術のあり方に甚大な影響を及ぼす可能性があるような命題、問いかけのシンプルさ故に数多くの数学者や数学愛好家達が証明を試みてきたような有名な命題を列挙する。.

新しい!!: 偶数と数学上の未解決問題 · 続きを見る »

数秘術

数秘術(すうひじゅつ、Numerology)とは、西洋占星術や易学等と並ぶ占術の一つで、ピタゴラス式やカバラ等が有名である。「数秘学」とも言う。 一般的な占術の方法は「命術」で、占う対象の生年月日(西暦)や姓名などから、固有の計算式に基づいて運勢傾向や先天的な宿命を占う方法である。.

新しい!!: 偶数と数秘術 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 偶数と整数 · 続きを見る »

0

0 |- | Divisors || all numbers |- | Roman numeral || N/A |- | Arabic || style.

新しい!!: 偶数と0 · 続きを見る »

1の冪根

1の冪根(いちのべきこん、root of unity)、または1の累乗根(いちのるいじょうこん)は、数学において、冪乗して 1 になる(冪単である)ような数のことである。すなわち、ある自然数 n が存在して となる z のことである。通常は複素数の範囲で考えるが、場合によっては ''p'' 進数のような他の数の体系内で考える場合もある。以下では主として複素数の場合について述べる。 自然数 n に対し、m (\zeta_n.

新しい!!: 偶数と1の冪根 · 続きを見る »

2

二」の筆順 2(二、に、じ、ふた、ふたつ)は、自然数、また整数において、1 の次で 3 の前の数である。英語の序数詞では、2nd、second となる。ラテン語では duo(ドゥオ)。.

新しい!!: 偶数と2 · 続きを見る »

4

四」の筆順 4(四、よん、し、す、よつ、よ)は、自然数および整数で、3 の次で 5 の前の数である。漢字の「四」は音読みが「し」、訓読みが「よ(よつ)」であるが、四の字「七(しち)」との聞き違いを防ぐため、近年では「よん」という読みが用いられる。英語の序数詞では 4th/''fourth'' となる。ラテン語では quattuor (クアットゥオル)。.

新しい!!: 偶数と4 · 続きを見る »

6

UNOのカード。6と9に下線がある。 「六」の筆順 6(六、ろく、りく、る、む)は、自然数または整数において、5 の次で 7 の前の数である。英語でsix(シックス)、ラテン語で sex(セクス)。なお、紙片や球体などに印字される場合、9 との混同を避けるために「6」のように下線を引いて区別されることがある。.

新しい!!: 偶数と6 · 続きを見る »

8

八」の筆順 8(八、はち、は、ぱ、や)は、自然数または整数において、7 の次で 9 の前の数である。ラテン語では octo(オクトー)。.

新しい!!: 偶数と8 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »