ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

存在グラフ

索引 存在グラフ

存在グラフ(Existential graph)は、チャールズ・サンダース・パースが考案した、論理式を視覚的な図として表す記法、またはその図である。パースは1882年に初めて論理グラフについての論文を書き、1914年に死去するまでその手法の研究を続けた。.

38 関係: 単項演算否定同値変数 (数学)存在記号一階述語論理二重否定の除去チャールズ・サンダース・パースモデル理論ヴィルヘルム・アッカーマンブール代数ヒラリー・パトナムダフィット・ヒルベルトベン図命題論理オーガスタス・ド・モルガンオイラー図ゴットロープ・フレーゲスタンフォード哲学百科事典全称記号統語論記号学論理学論理式論理積論理演算議論領域量化集合論推論規則恒真式概念地図様相論理木 (数学)意味論曲線1882年1914年

単項演算

単項演算とは、数学で、被作用子(オペランド)が一つだけであるような演算(つまり、入力が一つの演算)のこと。 たとえば、論理否定は真理値に対する単項演算であり、自乗は実数に対する単項演算である。階乗 n! も単項演算である。与えられた集合 S に対する単項演算は、関数 S→S に他ならない。 単項演算は、プログラミング言語においても使われる(APLではmonadicという)。たとえば、C言語の系統では、以下の単項演算子がある。.

新しい!!: 存在グラフと単項演算 · 続きを見る »

否定

数理論理学において否定 (ひてい、Negation) とは、命題の真と偽を反転する論理演算である。否定は英語で Not であるが、Invert とも言われ論理演算ではインバージョン(Inversion)、論理回路では Not回路やインバータ回路(Inverter)とも呼ばれ入力に対して出力が反転する。 命題 P に対する否定を ¬P, P, !P などと書いて、「P でない」とか「P の否定」、「P 以外の場合」などと読む。 ベン図による論理否定(NOT).

新しい!!: 存在グラフと否定 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 存在グラフと同値 · 続きを見る »

変数 (数学)

数学、特に解析学において変数(へんすう、variable)とは、未知あるいは不定の数・対象を表す文字記号のことである。代数学の文脈では不定元(ふていげん、indeterminate)の意味で変数と言うことがしばしばある。方程式において、特別な値をとることがあらかじめ期待されている場合、(みちすう)とも呼ばれる。また、記号論理学などでは(変数の表す対象が「数」に限らないという意味合いを込めて)変項(へんこう)とも言う。.

新しい!!: 存在グラフと変数 (数学) · 続きを見る »

存在記号

存在記号(そんざいきごう、existential quantifier)とは、数理論理学(特に述語論理)において、少なくとも1つのメンバーが述語の特性や関係を満たすことを表す記号である。通常「∃」と表記され、存在量化子(そんざいりょうかし)、存在限量子(そんざいげんりょうし)、存在限定子(そんざいげんていし)などとも呼ばれる。 これとは対照的に全称記号は、何かが常に真であることを示す。.

新しい!!: 存在グラフと存在記号 · 続きを見る »

一階述語論理

一階述語論理(いっかいじゅつごろんり、first-order predicate logic)とは、個体の量化のみを許す述語論理 (predicate logic) である。述語論理とは、数理論理学における論理の数学的モデルの一つであり、命題論理を拡張したものである。個体の量化に加えて述語や関数の量化を許す述語論理を二階述語論理(にかいじゅつごろんり、second-order predicate logic)と呼ぶ。それにさらなる一般化を加えた述語論理を高階述語論理(こうかいじゅつごろんり、higher-order predicate logic)という。本項では主に一階述語論理について解説する。二階述語論理や高階述語論理についての詳細は「二階述語論理」「高階述語論理」を参照。.

新しい!!: 存在グラフと一階述語論理 · 続きを見る »

二重否定の除去

二重否定の除去(にじゅうひていのじょきょ、Double negative elimination)は、論理学、特に命題論理における推論規則の1つである。いわゆる二重否定と等価なものを追加したり(二重否定の導入)、二重の否定作用素を削除したり(二重否定の除去)といった操作を論理式に施す。 これは、次の二つの文が等価であることに基づいている。 と 二重否定の除去を形式的に表すと次のようになる。 二重否定の導入を形式的に表すと次のようになる。 二重否定の導入(Double negative introduction)は、二重否定の除去の逆であり、命題の意味を変えずに二重否定を追加できることを意味している。 これらの規則はシークエントの記法を使うと次のようにも表せる。 これら2つの推論規則に演繹定理を適用すると、以下の2つの妥当な論理式が得られる。 これらは、次の1つの論理式にまとめることができる。 双方向の含意関係は同値関係であるため、整論理式内の任意の ¬¬A は A に置換でき、その際にその整論理式(wff)の真理値は変化しない。 二重否定の除去は古典論理では定理だが、直観論理ではそうではない。直観論理では「この場合、雨が降っていない、のではない(It's not the case that it's not raining)」という文は「雨が降っている」よりも弱いとされる。後者は雨が降っていることを証明する必要があるが、前者は単に雨が降っているとしても矛盾しないことを証明すればよい(自然言語における緩叙法形式でもこのような区別が見られる)。二重否定の導入は直観論理でも定理であり、また \neg \neg \neg A \vdash \neg A も直観主義でも成立する。 素朴集合論でも、補集合が同様の性質を持つ。集合 A と集合 (AC)C は等価である(ここで、AC は A の補集合を意味する)。.

新しい!!: 存在グラフと二重否定の除去 · 続きを見る »

チャールズ・サンダース・パース

チャールズ・サンダース・パース(Charles Sanders Peirce、1839年9月10日 - 1914年4月19日)は、アメリカ合衆国の哲学者、論理学者、数学者、科学者であり、プラグマティズムの創始者として知られる。マサチューセッツ州ケンブリッジ生まれ。パースは化学者としての教育を受け、米国沿岸測量局に約三十年間、科学者として雇われていた。「アメリカ合衆国の哲学者たちの中で最も独創的かつ多才であり、そしてアメリカのもっとも偉大な論理学者」ともいわれる。存命中はおおむね無視されつづけ、第二次世界大戦後まで二次文献はわずかしかなかった。莫大な遺稿の全ては今も公表されていない。パースは自分をまず論理学者とみなし、さらに論理学を記号論(semiotics)の一分野とみなした。.

新しい!!: 存在グラフとチャールズ・サンダース・パース · 続きを見る »

モデル理論

モデル理論(model theory)は、数理論理学による手法を用いて数学的構造(例えば、群、体、グラフ:集合論の宇宙)を研究(分類)する数学の分野である。 モデル理論における研究対象は、形式言語の文に意味を与える構造としてのモデルである。もし言語のモデルがある特定の文または理論(特定の条件を満足する文の集合)を満足するならば、それはその文または理論のモデルと呼ばれる。 モデル理論は代数および普遍代数と関係が深い。 この記事では、無限構造の有限一階モデル理論に焦点を絞っている。有限構造を対象とする有限モデル理論は、扱っている問題および用いている技術の両方の面で、無限構造の研究とは大きく異なるものとなっている。完全性は高階述語論理または無限論理において一般的には成立しないため、これらの論理に対するモデル理論は困難なものとなっている。しかしながら、研究の多くの部分はそのような言語によってなされている。.

新しい!!: 存在グラフとモデル理論 · 続きを見る »

ヴィルヘルム・アッカーマン

ヴィルヘルム・アッカーマン ヴィルヘルム・アッカーマン(Wilhelm Friedrich Ackermann, 1896年3月29日 - 1962年12月24日)はドイツの数学者。 計算理論での重要な例の一つであるアッカーマン関数を考案した。 アッカーマンは、1925年に2階のペアノ算術を弱めた体系の無矛盾性の証明を与え、ゲッティンゲン大学から博士号を得た。この証明は、ヒルベルトがヒルベルト・プログラムでの基本手法として考えていたアイデアに沿ったものであった。 後に、この証明では、厳格な有限の立場を越えるωωωまでの順序数の整列性を 必要とするリダクションが隠伏的に用いられていたことが判明している。 1929年から1948年まで、彼はシュタインフルトのギムナジウムで教師として教え、 その後1961年まで彼の生まれ故郷のリューデンシャイト (Lüdenscheid) の女子ギムナジウムで教えた。 彼はまたゲッティンゲン科学アカデミーの通信会員であり、ミュンスター大学の非常勤教授でもあった。 1928年、彼はダフィット・ヒルベルトが1917年から1922年に行った数理論理学の入門の講義録をもとにヒルベルトと共著でGrundzüge der theoretischen Logik (理論論理学概論) を執筆している。 また1937年には無限公理を含まない集合論の、1940年にはペアノの公理の、1952年にはtype-free logicの無矛盾性の証明を与えている。 1956年には、クラスをオブジェクトとして含み、 ある意味でカントルの集合論の自然な公理化になっているような公理的集合論の体系を導入している。 Category:ドイツの数学者 -960329 Category:ゲッティンゲン大学出身の人物 Category:ヴェストファーレン・ヴィルヘルム大学の教員 Category:1896年生 Category:1962年没 Category:数学に関する記事.

新しい!!: 存在グラフとヴィルヘルム・アッカーマン · 続きを見る »

ブール代数

ブール代数(ブールだいすう、boolean algebra)またはブール束(ブールそく、boolean lattice)とは、ジョージ・ブールが19世紀中頃に考案した代数系の一つである。ブール代数の研究は束の理論が築かれるひとつの契機ともなった。ブール論理の演算はブール代数の一例であり、現実の応用例としては、組み合わせ回路(論理回路#組み合わせ回路)はブール代数の式で表現できる。.

新しい!!: 存在グラフとブール代数 · 続きを見る »

ヒラリー・パトナム

ヒラリー・ホワイトホール・パトナム(Hilary Whitehall Putnam、1926年7月31日 - 2016年3月13日)は、アメリカ合衆国の哲学者。1960年代以来、心の哲学、言語哲学、および科学哲学において、分析哲学の中心人物であった。彼は他の者に対して行うのと同じくらい自分自身の哲学的立場についても、その欠陥が曝露されるまで厳格な分析による吟味を加えることで知られているKing, P.J. One Hundred Philosophers: The Life and Work of the World's Greatest Thinkers.

新しい!!: 存在グラフとヒラリー・パトナム · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: 存在グラフとダフィット・ヒルベルト · 続きを見る »

ベン図

ベン図が描かれたステンドグラス ベン図(ベンず、もしくはヴェン図、Venn diagram)とは、複数の集合の関係や、集合の範囲を視覚的に図式化したものである。イギリスの数学者ジョン・ベン (John Venn) によって考え出された。ベンにゆかりの深いケンブリッジ大学のゴンヴィル・アンド・キーズ・カレッジには、ベン図を描いたステンドグラスがある。.

新しい!!: 存在グラフとベン図 · 続きを見る »

命題論理

命題論理(propositional logic)とは、数理論理学(記号論理学)の基礎的な一部門であり、命題全体を1つの記号に置き換えて単純化し、論理演算を表す記号(論理記号・論理演算子)を用いて、その命題(記号)間の結合パターンを表現・研究・把握することを目的とした分野のこと。ブール論理はブール代数で形式化され2値の意味論を与えられた命題論理とみることができる。 命題を1つの記号で大まかに置き換える命題論理に対して、命題の述語(P)と主語(S)を、関数のF(x)のように別記号で表現し、更に量化子で主語(S)の数・量・範囲もいくらか表現し分けることを可能にした、すなわちより詳細に命題の内部構造を表現できるようにしたものを、述語論理と呼ぶ。.

新しい!!: 存在グラフと命題論理 · 続きを見る »

オーガスタス・ド・モルガン

ーガスタス・ド・モルガン(Augustus de Morgan, 1806年6月27日 - 1871年3月18日)は、インド生まれのイギリスの数学者。 ド・モルガンの法則を発案した。 父親がイギリス東インド会社で働いていたため、インドのマドゥライで生まれるが、生後1年もたたないうちにイングランドに戻る。16歳でケンブリッジ大学のトリニティ・カレッジに入学、ウィリアム・ヒューウェルやジョージ・ピーコックの元で学ぶ。1828年からユニヴァーシティ・カレッジ(現ユニヴァーシティ・カレッジ・ロンドン)の教授を務めた。.

新しい!!: 存在グラフとオーガスタス・ド・モルガン · 続きを見る »

オイラー図

イラー図(オイラーず、Euler diagram)は集合の相互関係を表す図。 考案者であるレオンハルト・オイラーの名をとってオイラー図と名付けられた。ベン図と似ているが、ベン図とは異なり、各集合を表す円が必ずしも重なっている必要はない(右図参照)。.

新しい!!: 存在グラフとオイラー図 · 続きを見る »

ゴットロープ・フレーゲ

フリードリヒ・ルートヴィヒ・ゴットロープ・フレーゲ(Friedrich Ludwig Gottlob Frege, 1848年11月8日 - 1925年7月26日)は、ドイツの哲学者、論理学者、数学者であり、現代の数理論理学、分析哲学の祖にあたる。 フレーゲはバルト海に面したドイツの港町ヴィスマールの生まれである。母のアウグステ・ビアロブロツキーはポーランド系である。彼ははじめイェーナ大学で学び、その後ゲッティンゲン大学に移り1873年に博士号を取得した。その後イェーナに戻り、1896年から数学教授。1925年に死去した。.

新しい!!: 存在グラフとゴットロープ・フレーゲ · 続きを見る »

スタンフォード哲学百科事典

タンフォード哲学百科事典(スタンフォードてつがくひゃっかじてん、Stanford Encyclopedia of Philosophy、 SEP)は、無料で閲覧できる、哲学専門のオンライン百科事典。使用言語は英語。各記事は編集委員によって指名された各分野の専門家によって執筆され、ピア・レビューを経た上で、一般に公開されている。さらに記事の内容は研究状況にあわせ、随時、加筆・更新されている(この際もピア・レビューを経る)。 2007年3月現在の記事数は890本。管理・運営元はスタンフォード大学 言語情報研究センター 形而上学研究室。主席編集長はエドワード・ザルタ(Edward N. Zalta)。.

新しい!!: 存在グラフとスタンフォード哲学百科事典 · 続きを見る »

全称記号

全称記号(ぜんしょうきごう、universal quantifier)とは、数理論理学において「全ての」(全称量化)を表す記号である。通常「∀」と表記され、全称量化子(ぜんしょうりょうかし)、全称限量子(ぜんしょうげんりょうし)、全称限定子(ぜんしょうげんていし)、普遍量化子(ふへんりょうかし)、普通限定子(ふつうげんていし)などとも呼ばれる。.

新しい!!: 存在グラフと全称記号 · 続きを見る »

統語論

統語論(とうごろん、syntax)とは、ヒト・人間の言語において文が構成される仕組み、またはそれを扱う言語学の一分野である。統辞論(とうじろん)、構文論(こうぶんろん)ともいう。 統語論は文法[音韻論(音の仕組み)、形態論(語が構成される仕組み)などを含む、言語の構造を成り立たせている諸原理] の一部である。ただし、特に統語論のことを指して「文法」ということもある。.

新しい!!: 存在グラフと統語論 · 続きを見る »

記号学

記号学(きごうがく、英: semiology)あるいは 記号論(きごうろん、英: semiotics)は、言語を始めとして、何らかの事象を別の事象で代替して表現する手段について研究する学問である。記号学でいう「記号」は semiosis(:en:Semiosis)で、専門用語などで「記号」と訳されることが多いいわゆるシンボルなどより広い。.

新しい!!: 存在グラフと記号学 · 続きを見る »

論理学

論理学(ろんりがく、)とは、「論理」を成り立たせる論証の構成やその体系を研究する学問である。.

新しい!!: 存在グラフと論理学 · 続きを見る »

論理式

論理式.

新しい!!: 存在グラフと論理式 · 続きを見る »

論理積

数理論理学において論理積(ろんりせき、logical conjunction)とは、与えられた複数の命題のいずれもが例外なく真であることを示す論理演算である。合接(ごうせつ)、連言(れんげん、れんごん)とも呼び、ANDとよく表す。 二つの命題 P, Q に対する論理積を P ∧ Q と書き、「P かつ Q」や「P そして Q」などと読む。 ベン図による論理積P \wedge Q の表.

新しい!!: 存在グラフと論理積 · 続きを見る »

論理演算

論理演算(ろんりえんざん、logical operation)は、論理式において、論理演算子などで表現される論理関数(ブール関数)を評価し(正確には、関数適用を評価し)、変数(変項)さらには論理式全体の値を求める演算である。 非古典論理など他にも多くの論理の体系があるが、ここでは古典論理のうちの命題論理、特にそれを形式化したブール論理に話を絞る。従って対象がとる値は真理値の2値のみに限られる。また、その真理値の集合(真理値集合)と演算(演算子)はブール代数を構成する。 コンピュータのプロセッサやプログラミング言語で多用されるものに、ブーリアン型を対象とした通常の論理演算の他に、ワード等のビット毎に論理演算を行なう演算があり、ビット演算という。 なお、以上はモデル論的な議論であり、証明論的には、公理と推論規則に従って論理式を変形(書き換え)する演算がある(証明論#証明計算の種類)。.

新しい!!: 存在グラフと論理演算 · 続きを見る »

議論領域

議論領域(ぎろんりょういき、Domain of discourse)は、演繹、特に一階述語論理で使われる用語である。量化子で扱われる実体の適切な集合を指す。 議論領域という用語は一般に、特定の議論で使われる項全体の集合を指す。特定の議論とはすなわち、任意の1つの関心領域での言語学的または意味論的項の集まりである。モデル理論的な意味論では、議論領域という用語は、モデルが基づく実体集合を指す。 データベースは組織の現実のある面をモデル化したものである。このような現実を便宜的に「議論領域」と呼ぶこともある。.

新しい!!: 存在グラフと議論領域 · 続きを見る »

量化

量化(りょうか、Quantification)とは、言語や論理学において、論理式が適用される(または満足される)議論領域の個体の「量」を指定すること。.

新しい!!: 存在グラフと量化 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

新しい!!: 存在グラフと集合論 · 続きを見る »

推論規則

推論規則(すいろんきそく、rule of inference, inference rule, transformation rule)とは、論理式から他の論理式を導く推論の規則である。 記号、公理、代入規則、推論規則によって理論を形式化したものを公理系という。 公理は記号だけで記述されるが、推論規則や代入規則はこれらの記号について述べているメタ言語で記述される。 恒真式 (トートロジー)から推論規則を導くと妥当性のある推論になる。.

新しい!!: 存在グラフと推論規則 · 続きを見る »

恒真式

恒真式(こうしんしき、トートロジー、tautology、ギリシャ語のταυτο「同じ」に由来)とは論理学の用語で、「aならば aである(a → a)」「aである、または、aでない(a ∨ ¬a)」のように、そこに含まれる命題変数の真理値、あるいは解釈に関わらず常に真となる論理式である。.

新しい!!: 存在グラフと恒真式 · 続きを見る »

概念地図

概念地図または概念マップ(英: Concept map)とは、概念間の関係を示した図である。概念と概念をラベル付きの矢印で連結し、全体として上から下に分岐していく階層構造になっている。概念同士の連結は、「AはBを増大させる」、「AはBを引き起こす」、「AはBに必要とされている」、「AはBに寄与する」といった関係を表している。概念地図法 または概念マッピング(concept mapping) は、様々な概念の関係を視覚化する技法(概念地図の作成技法)である。.

新しい!!: 存在グラフと概念地図 · 続きを見る »

様相論理

様相論理(ようそうろんり、modal logic)は、いわゆる古典論理の対象でない、様相(modal)と呼ばれる「〜は必然的に真」や「〜は可能である」といった必然性や可能性などを扱う論理である(様相論理は、部分の真理値からは全体の真理値が決定されない内包論理の一種と見ることができる)。 その歴史は古くアリストテレスまで遡ることができるが、形式的な扱いは数理論理学以降、非古典論理としてである。 様相論理では一般に、標準的な論理体系に「~は必然的である」ことを意味する必然性演算子 \Box と、「~は可能である」ことを意味する可能性演算子 \Diamond のふたつの演算子が追加される。.

新しい!!: 存在グラフと様相論理 · 続きを見る »

木 (数学)

数学、特にグラフ理論の分野における木(き、tree)とは、連結で閉路を持たない(無向)グラフである。有向グラフについての木(有向木)についても論じられるが、当記事では専ら無向木を扱う。 閉路を持たない(連結であるとは限らない)無向グラフを森(もり、forest)という。木は明らかに森である。 なお、閉路を持たない有向グラフは有向非巡回グラフである。有向木は有向非巡回グラフでもあるが、有向非巡回グラフは必ずしも有向木とは限らない。 コンピュータ上での木の扱いについては、木構造 (データ構造) を参照。 画像:Tree-sample1.png.

新しい!!: 存在グラフと木 (数学) · 続きを見る »

意味論

意味論(いみろん、英: semantics)とは、言語学では統語論に対置される分野、数学(とくに数理論理学)では証明論に対置される分野で、それらが中身(意味)に関与せず記号の操作によって対象を扱うのに対し、その意味について扱う分野である。なお、一般意味論というものもあるが、言語の使用に関する倫理を扱うものであり、ありていに言って無関係である。.

新しい!!: 存在グラフと意味論 · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: 存在グラフと曲線 · 続きを見る »

1882年

記載なし。

新しい!!: 存在グラフと1882年 · 続きを見る »

1914年

記載なし。

新しい!!: 存在グラフと1914年 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »