ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

因数分解

索引 因数分解

数学における因数分解(いんすうぶんかい、factorization)は(数、多項式、行列といったような、積の定義される)代数的対象を、(それらを掛け合わせると元に戻る)別の対象、つまり因数 (factor) の積に分解することである。たとえば、15 という数は 3 × 5 という因数の積に分解され、多項式 x2 − 4 は (x − 2)(x + 2) という因数の積に分解される。このようにより単純な対象の積になっている。 因数分解の反対は、因数を掛け合わせてもとの展開された対象を得る過程であるところの、展開である。 因数分解の目的はふつう、何らかのものを(自然数ならば素数、多項式ならば既約多項式といったような)「基本的な構成要素」に帰着させることである。1でない自然数が素数の積で表せることは算術の基本定理で、定数でない一変数複素係数多項式が一次式の積で表せることは代数学の基本定理で保障されている。ヴィエタの公式は多項式の根と係数の関係を記述するものである。 巨大整数の素因数分解は困難な問題で、これを一般に短時間に行う方法は知られていない。この複雑性はRSA暗号のような公開鍵暗号によるセキュリティの信頼性の基礎になっている。 行列も(応用に際して利用しやすい)特別な種類の行列の積に分解することができる。よく用いられるのはたとえば、直交行列やユニタリ行列あるいは三角行列などである。ほかに、QR, LQ, QL, RQ, RZ のような分解が知られる。 他の例としては、写像を特定の性質を持つ写像の合成の形に分解することが挙げられる。たとえば、任意の写像は全射と単射の合成と見ることができる。これはによって一般化される。.

33 関係: たすき単射多項式実数三角行列代数学の基本定理代数方程式係数ユニタリ行列アルゴリズム冪根写像写像の合成全射公開鍵暗号因数定理算術の基本定理素因数分解素数直交行列行列複素数関数 (数学)除法QR分解RSA暗号根と係数の関係有理数方程式既約多項式数学整数

たすき

たすき(襷、手繦)は、主に和服において、袖や袂が邪魔にならないようにたくし上げるための紐や布地を指す。通常、肩から脇にかけて通し、斜め十字に交差させて使用するが、輪状にして片方の肩から腰にかけて斜めに垂らして用いる方法もある。交差させて使用した場合を綾襷(あやだすき)と言う。「襷」という漢字は国字である。.

新しい!!: 因数分解とたすき · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 因数分解と単射 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 因数分解と多項式 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 因数分解と実数 · 続きを見る »

三角行列

数学の一分野線型代数学における三角行列(さんかくぎょうれつ、triangular matrix)は特別な種類の正方行列である。正方行列が またはであるとは主対角線より「上」の成分がすべて零となるときに言い、同様にまたはとは主対角線より「下」の成分がすべて零となるときに言う。三角行列は上半または下半三角となる行列のことを言い、また上半かつ下半三角となる行列は対角行列と呼ぶ。 三角行列に関する行列方程式は解くことが容易であるから、それは数値解析において非常に重要である。LU分解アルゴリズムにより、正則行列が下半三角行列 と上半三角行列 との積 に書くことができるための必要十分条件は、その行列の首座小行列式 (leading principal minor) がすべて非零となることである。.

新しい!!: 因数分解と三角行列 · 続きを見る »

代数学の基本定理

代数学の基本定理(だいすうがくのきほんていり、fundamental theorem of algebra)は「次数が 1 以上の任意の複素係数一変数多項式には複素根が存在する」 という定理である。.

新しい!!: 因数分解と代数学の基本定理 · 続きを見る »

代数方程式

数学において、代数方程式 (だいすうほうていしき、algebraic equation) とは(一般には多変数の)多項式を等号で結んだ形で表される方程式の総称で、式で表せば の形に表されるもののことである。言い換えれば、代数方程式は多項式の零点を記述する数学的対象である。.

新しい!!: 因数分解と代数方程式 · 続きを見る »

係数

係数(けいすう、coefficient)は、多項式の各項(単項式)を構成する因子において、変数(不定元)を除いた、定数等の因子である。例えば、4α+3β+2における、4と3と2である。この例では2がそれであるが、それ自体で項全体となっている項(あるいは、形式的には 1に掛かっている係数)を、特に定数項と呼ぶ。.

新しい!!: 因数分解と係数 · 続きを見る »

ユニタリ行列

ユニタリ行列(~ぎょうれつ、英:Unitary matrix)は、次を満たす複素正方行列 として定義される。 ここで、 は単位行列、 は行列 の随伴行列。 なお、実数で構成される行列の随伴は単に転置であるため実ユニタリ行列は直交行列に等しく、直交行列を複素数体へ拡張したものがユニタリ行列とも言える。.

新しい!!: 因数分解とユニタリ行列 · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: 因数分解とアルゴリズム · 続きを見る »

冪根

冪根「冪」の字の代わりに略字の「巾」を用いることがある。(べきこん)、または累乗根(るいじょうこん)は、冪乗(累乗)に相対する概念で、冪乗すると与えられた数になるような新たな数のことをいう。数 の冪根はしばしば と書き表される。冪根 は以下の関係を満たす。 つまり、冪根 の 乗は に等しく、この意味で を の 乗根 と呼ぶ。 は指数 と呼ばれ、記号 は根号 と呼ばれる。また、根号の中に書かれた数 は時に被開平数 と呼ばれる。 根号を用いて冪根を表す場合、それは非負の値を持つ一価関数として扱われる。このような冪根を主要根 と呼び、特に 乗根の主要根を主平方根 と呼ぶ。 数 の主要根 は指数関数と結び付けられ、 という関係が成り立つ は自然指数関数、 は自然対数。。.

新しい!!: 因数分解と冪根 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: 因数分解と写像 · 続きを見る »

写像の合成

数学において写像あるいは函数の合成(ごうせい、composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t).

新しい!!: 因数分解と写像の合成 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: 因数分解と全射 · 続きを見る »

公開鍵暗号

公開鍵暗号(こうかいかぎあんごう、Public-key cryptography)とは、暗号化と復号に別個の鍵(手順)を用い、暗号化の鍵を公開すらできるようにした暗号方式である。 暗号は通信の秘匿性を高めるための手段だが、それに必須の鍵もまた情報なので、鍵を受け渡す過程で盗聴されてしまうというリスクがあった。共通鍵を秘匿して受け渡すには(特使が運搬するというような)コストもかかり、一般人が暗号を用いるための障害であった。この問題に対して、暗号化鍵の配送問題を解決したのが公開鍵暗号である。.

新しい!!: 因数分解と公開鍵暗号 · 続きを見る »

因数定理

初等代数学における因数定理(いんすうていり、factor theorem)は、と多項式の根を結びつける定理である。因数定理は剰余の定理の特別の場合になっている。; 定.

新しい!!: 因数分解と因数定理 · 続きを見る »

算術の基本定理

pp.

新しい!!: 因数分解と算術の基本定理 · 続きを見る »

素因数分解

素因数分解 (そいんすうぶんかい、prime factorization) とは、ある正の整数を素数の積の形で表すことである。ただし、1 に対する素因数分解は 1 と定義する。 素因数分解には次のような性質がある。.

新しい!!: 因数分解と素因数分解 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 因数分解と素数 · 続きを見る »

直交行列

交行列(ちょっこうぎょうれつ, )とは、転置行列と逆行列が等しくなる正方行列のこと。つまりn × n の行列 M の転置行列を MT と表すときに、MTM.

新しい!!: 因数分解と直交行列 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 因数分解と行列 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 因数分解と複素数 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 因数分解と関数 (数学) · 続きを見る »

除法

法(じょほう、division)とは、乗法の逆演算であり四則演算のひとつに数えられる二項演算の一種である。除算、割り算とも呼ばれる。 除法は ÷ や /, % といった記号を用いて表される。除算する 2 つの数のうち一方の項を被除数 (dividend) と呼び、他方を除数 (divisor) と呼ぶ。有理数の除法について、その演算結果は被除数と除数の比を与え、分数を用いて表すことができる。このとき被除数は分子 (numerator)、除数は分母 (denominator) に対応する。被除数と除数は、被除数の右側に除数を置いて以下のように表現される。 除算は商 (quotient) と剰余 (remainder) の 2 つの数を与え、商と除数の積に剰余を足したものは元の被除数に等しい。 剰余は余りとも呼ばれ、除算によって「割り切れない」部分を表す。剰余が 0 である場合、「被除数は除数を割り切れる」と表現され、このとき商と除数の積は被除数に等しい。剰余を具体的に決定する方法にはいくつかあるが、自然数の除法については、剰余は除数より小さくなるように取られる。たとえば、 を で割った余りは 、商は となる。これらの商および剰余を求める最も原始的な方法は、引けるだけ引き算を行うことである。つまり、 を で割る例では、 から を 1 回ずつ引いていき()、引かれる数が より小さくなるまで引き算を行ったら、その結果を剰余、引き算した回数を商とする。これは自然数の乗法を足し算によって行うことと逆の関係にある。 剰余を与える演算に % などの記号を用いる場合がある。 除数が である場合、除数と商の積は必ず になるため商を一意に定めることができない。従ってそのような数 を除数とする除法の商は未定義となる(ゼロ除算を参照)。 有理数やそれを拡張した実数、複素数における除法では、整数や自然数の除法と異なり剰余は用いられず、 という関係が除数が 0 の場合を除いて常に成り立つ。この関係は次のようにも表すことができる。 実数などにおける定義から離れると、除法は乗法を持つ代数的構造について「乗法の逆元を掛けること」として一般化することができる。一般の乗法は交換法則が必ずしも成り立たないため、除法も左右 2 通り考えられる。.

新しい!!: 因数分解と除法 · 続きを見る »

QR分解

QR分解(キューアールぶんかい、QR decomposition, QR factorization)とは、m × n 実行列 Aを、 m 次直交行列 Q と m × n 上三角行列 R との積への分解により表すことまたはそう表した表現をいう。このような分解は常に存在する。 QR分解は線型最小二乗問題を解くために使用される。また、固有値問題の解法の1つである、QR法の基礎となっている。 QR分解を計算する手法として、ギブンス回転、ハウスホルダー変換、グラム・シュミット分解などがある。.

新しい!!: 因数分解とQR分解 · 続きを見る »

RSA暗号

RSA暗号とは、桁数が大きい合成数の素因数分解問題が困難であることを安全性の根拠とした公開鍵暗号の一つである。 暗号とデジタル署名を実現できる方式として最初に公開されたものである。.

新しい!!: 因数分解とRSA暗号 · 続きを見る »

根と係数の関係

根と係数の関係(こんとけいすうのかんけい)は、多項式の根と係数との間に成立する関係式を表した不変式論の定理である。.

新しい!!: 因数分解と根と係数の関係 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 因数分解と有理数 · 続きを見る »

方程式

14''x'' + 15.

新しい!!: 因数分解と方程式 · 続きを見る »

既約多項式

代数学において既約多項式(きやくたこうしき、irreducible polynomial)とは、多項式環の既約元のことである。より冗長には次のようになる。 を単位元をもつ可換環とし、その単数全体を 、一変数多項式環を とおく。多項式 が2条件.

新しい!!: 因数分解と既約多項式 · 続きを見る »

数(かず、すう、number)とは、.

新しい!!: 因数分解と数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 因数分解と数学 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 因数分解と整数 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »